

Configuration spaces

 $Problem Set 2 \\ WS 2013/14$ 

E. Vogt/F. Lenhardt Due: 05.11.2013

## Exercise 1

Let  $S_n$  be the symmetric group on n letters. Show that the configuration space  $F_n(\mathbb{R})$  of n ordered particles in  $\mathbb{R}$  is homotopy equivalent to  $S_n$  considered as a space with the discrete topology.

## Exercise 2

Show that the configuration space  $F_n(S^1)$  of *n* ordered particles in  $S^1$  is homotopy equivalent to  $S_{n-1} \times S^1$ .

## Exercise 3

The symmetric group  $S_n$  acts on  $F_n(\mathbb{R})$  via  $\sigma(x_1, \ldots x_n) = (x_{\sigma(1)}, \ldots x_{\sigma(n)})$ . Show that the quotient  $F_n(\mathbb{R})/S_n$  is contractible.

## Exercise 4

Let M be a *connected* manifold and  $x, y \in M$ . Show that there is a homeomorphism  $f: M \to M$  such that f(x) = y. *Hint*: Consider for  $x \in M$  fixed the set

 $\{y \in M \mid \text{there is a homeomorphism of } M \text{ sending } x \text{ to } y\}$