

Configuration spaces

Problem Set 1 WS 2013/14

E. Vogt/F. Lenhardt Due:

Exercise 1

Let B, F be topological spaces. Show that the projection map $B \times F \to B$ is a fibration with fiber F.

Exercise 2

Let $p: E \to B$ be a fibration.

- (i) Let $\omega: [0,1] \to B$ a path connecting the points $a = \omega(0)$ and $b = \omega(1)$. Using the lifting property of p, construct a map $f_{\omega}: F_a \to F_b$ where $F_x = p^{-1}(x)$ is the fiber over x. For this, consider the map $F_a \times [0,1] \to B$ given by $(f,t) \mapsto \omega(t)$.
- (ii) Show that the homotopy class of f_{ω} is independent of all choices you made.

Exercise 3

We continue the previous exercise.

- (i) Show that if ω, ω' are two paths between a and b which are homotopic relative endpoints, f_{ω} and $f_{\omega'}$ are homotopic.
- (ii) Let ω be a path from a to b and ω' a path from b to c. We define a path $\omega * \omega' : [0, 1] \to B$ from a to c via

$$(\omega * \omega')(t) = \begin{cases} \omega(2t) & \text{if } t \le \frac{1}{2} \\ \omega'(2t-1) & \text{if } t \ge \frac{1}{2} \end{cases}$$

We can now define two homotopy classes maps from F_a to F_c : On the one hand, we can form the homotopy class $f_{\omega'} \circ f_{\omega}$, on the other hand, we have the homotopy class of $f_{\omega*\omega'}$. Show that these two homotopy classes are equal, i.e. that $f_{\omega'} \circ f_{\omega}$ and $f_{\omega*\omega'}$ are homotopic.

(iii) Show that for each $a, b \in B$ in the same path component, F_a and F_b are homotopy equivalent.