Configuration spaces

E. Vogt/F. Lenhardt WS 2013/14

Due:

Exercise 1

Let B, F be topological spaces. Show that the projection map $B \times F \rightarrow B$ is a fibration with fiber F.

Exercise 2

Let $p: E \rightarrow B$ be a fibration.
(i) Let $\omega:[0,1] \rightarrow B$ a path connecting the points $a=\omega(0)$ and $b=\omega(1)$. Using the lifting property of p, construct a map $f_{\omega}: F_{a} \rightarrow F_{b}$ where $F_{x}=$ $p^{-1}(x)$ is the fiber over x . For this, consider the map $F_{a} \times[0,1] \rightarrow B$ given by $(f, t) \mapsto \omega(t)$.
(ii) Show that the homotopy class of f_{ω} is independent of all choices you made.

Exercise 3

We continue the previous exercise.
(i) Show that if ω, ω^{\prime} are two paths between a and b which are homotopic relative endpoints, f_{ω} and $f_{\omega^{\prime}}$ are homotopic.
(ii) Let ω be a path from a to b and ω^{\prime} a path from b to c. We define a path $\omega * \omega^{\prime}:[0,1] \rightarrow B$ from a to c via

$$
\left(\omega * \omega^{\prime}\right)(t)= \begin{cases}\omega(2 t) & \text { if } t \leq \frac{1}{2} \\ \omega^{\prime}(2 t-1) & \text { if } t \geq \frac{1}{2}\end{cases}
$$

We can now define two homotopy classes maps from F_{a} to F_{c} : On the one hand, we can form the homotopy class $f_{\omega^{\prime}} \circ f_{\omega}$, on the other hand, we have the homotopy class of $f_{\omega * \omega^{\prime}}$. Show that these two homotopy classes are equal, i.e. that $f_{\omega^{\prime}} \circ f_{\omega}$ and $f_{\omega * \omega^{\prime}}$ are homotopic.
(iii) Show that for each $a, b \in B$ in the same path component, F_{a} and F_{b} are homotopy equivalent.

