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Dedicated to Michael Röckner on the occasion of his 60th Birthday.

Abstract

We review the formulation of the stochastic Burgers equation as a martingale problem.
One way of understanding the difficulty in making sense of the equation is to note that
it is a stochastic PDE with distributional drift, so we first review how to construct finite-
dimensional diffusions with distributional drift. We then present the uniqueness result
for the stationary martingale problem of [GP16], but we mainly emphasize the heuristic
derivation and also we include a (very simple) extension of [GP16] to a non-stationary
regime.

1 Introduction

In the past few years there has been a high interest and tremendous progress in so called sin-
gular stochastic PDEs which involve very irregular noise terms (usually some form of white
noise) and nonlinear operations. The presence of the irregular noise prevents the solutions
from being smooth functions and therefore the nonlinear operations appearing in the equa-
tion are a priori ill-defined and can often only be made sense of with the help of some form
of renormalization. The major breakthrough in the understanding of these equations was
achieved by Hairer [Hai12] who noted that in a one-dimensional setting rough path integra-
tion can be used to make sense of the ill-defined nonlinearities and then used this insight to
solve the Kardar-Parisi-Zhang (KPZ) equation for the first time [Hai13] and then proceeded
to develop his regularity structures [Hai14] which extend rough paths to higher dimensions
and allow to solve a wide class of singular SPDEs. Alternative approaches are paracontrolled
distributions [GIP15] and renormalization group techniques [Kup16], but they all have in
common that they essentially bypass probability theory and are based on pathwise argu-
ments. A general probabilistic understanding of singular SPDEs still seems out of reach, but
recently we have been able to prove uniqueness for the stationary martingale problem for the
stochastic Burgers equation [GP16] (an equivalent formulation of the KPZ equation) which
was introduced in 2010 by Gonçalves and Jara [GJ10, GJ14]1, see also [GJ13]. The aim of this
short note is to give a pedagogical account of the probabilistic approach to Burgers equation.
We also slightly extend the result of [GP16] to a simple non-stationary setting.

∗Financial support by the DFG via Research Unit FOR 2402 is gratefully acknowledged.
1The paper [GJ14] is the revised and published version of [GJ10].
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One way of understanding the difficulty in finding a probabilistic formulation to singular
SPDEs is to note that they are often SPDEs with distributional drift. As an analogy, you
may think of the stochastic ordinary differential equation

dxt = b(xt)dt+
√

2dwt, (1)

where x : R+ → R, w is a one-dimensional Brownian motion, and b ∈ S ′, the Schwartz
distributions on R. It is a nontrivial problem to even make sense of (1) because x takes
values in R but for a point z ∈ R the value b(z) is not defined. One possible solution
goes as follows: If there exists a nice antiderivative B′ = b, then we consider the measure
µ(dx) = (exp(B(x))/Z)dx on R, where Z > 0 is a normalization constant. If b itself is a
continuous function, then this measure is invariant with respect to the dynamics of (1) and
the solution x corresponds to the Dirichlet form E(f, g) =

∫
∂xf(x)∂xg(x)µ(dx). But E makes

also sense for distributional b, so in that case the solution to (1) can be simply defined as the
Markov process corresponding to E . Among others, the works [Mat94, Mat95] are based on
this approach.

An alternative viewpoint is to consider the martingale problem associated to (1). The
infinitesimal generator of x should be L = b∂x + ∂2

xx and we would like to find a sufficiently
rich space of test functions ϕ for which

Mϕ
t = ϕ(xt)− ϕ(x0)−

∫ t

0
Lϕ(xs)ds

is a continuous martingale. But now our problem is that the term b∂xϕ appearing in Lϕ is the
product of a distribution and a smooth function. Multiplication with a non-vanishing smooth
function does not increase regularity (think of multiplying by 1 which is perfectly smooth),
and therefore Lϕ will only be a distribution and not a function. But then the expression∫ t

0 Lϕ(xs)ds still does not make any sense! The solution is to take non-smooth functions ϕ
as input into the generator because multiplication with a non-smooth function can increase
regularity (think of multiplying an irregular function f > 0 with 1/f): If we can solve the
equation Lϕ = f for a given continuous function f , then we can reformulate the martingale
problem by requiring that

Mϕ
t = ϕ(xt)− ϕ(x0)−

∫ t

0
f(xs)ds

is a continuous martingale. If we are able to solve the equation Lϕ = f for all continuous
bounded functions f , then we explicitly obtain the domain of the generator L as dom(L) =
{ϕ : Lϕ = f for some f ∈ Cb}. In that case the distribution of x is uniquely determined
through the martingale problem. Of course Lϕ = f is still not easy to solve because Lϕ
contains the term b∂xϕ which is a product between the distribution b and the non-smooth
function ∂xϕ and therefore not always well defined. In the one-dimensional time-homogeneous
framework that we consider here it is however possible to apply a transformation that removes
this ill-behaved term and maps the equation Lϕ = f to a well posed PDE provided that b is
the derivative of a continuous function. This was carried out in the very nice papers [FRW03,
FRW04], where it was also observed that the solution is always a Dirichlet process (sum of
a martingale plus a zero quadratic variation term), and that if (bn) is a sequence of smooth
functions converging in S ′ to b, then

xt = x0 + lim
n→∞

∫ t

0
bn(xs)ds+

√
2wt. (2)
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So while b(xs) at a fixed time s does not make any sense, there is a time-decorrelation effect
happening that allows to define the integral

∫ t
0 b(xs)ds using the above limit procedure.

The transformation of the PDE breaks down as soon as we look at multi-dimensional or
time-inhomogeneous diffusions. But the philosophy of solving Lϕ = f to identify the domain
of the generator carries over. It is then necessary to deal with PDEs with distributional
coefficients, and using paraproducts, rough paths, and paracontrolled distributions respec-
tively, the construction of x could recently be extended to the multi-dimensional setting for
comparably regular b (Hölder regularity > −1/2) [FIR17], a more irregular one-dimensional
setting [DD16] (Hölder regularity > −2/3), and finally the irregular multi-dimensional set-
ting [CC15] (Hölder regularity > −2/3). In all these works the time-homogeneity no longer
plays a role. Let us also mention that all these works are concerned with probabilistically weak
solutions to the equation. If b is a non-smooth function rather than a distribution, then it is
possible to find a unique probabilistically strong solution. This goes back to [Zvo74, Ver80]
and very satisfactory results are due to Krylov and Röckner [KR05]. For a pathwise approach
that extends to non-semimartingale driving noises such as fractional Brownian motion see
also [CG16]. A good recent survey on such “regularization by noise” phenomena is [Fla11].

Having gained some understanding of the finite-dimensional case, we can now have a look
at the stochastic Burgers equation on the one-dimensional torus T = R/Z, u : R+ × T→ R,

dut = ∆utdt+ ∂xu
2
tdt+

√
2d∂xWt, (3)

where ∂tW is a space-time white noise, that is the centered Gaussian process with covariance
E[∂tW (t, x)∂tW (s, y)] = δ(t − s)δ(x − y). We would like to understand (3) as an infinite-
dimensional analogue of (1) for a particular b. It is known that the dynamics of u are
invariant under the measure µ, the law of the space white noise on T, which means that for
fixed times ut is a distribution with regularity C−1/2−ε (i.e. the distributional derivative of a
(1/2 − ε) Hölder continuous function) and not a function. But then the square u2

t does not
make any sense analytically because in general it is impossible to multiply distributions in
C−1/2−ε. Let us however simply ignore this problem and try to use the probabilistic structure
of u to make sense of u2. For simplicity we start u in the stationary measure µ. Then u2

t is
simply the square of the white noise, and this is something that we can explicitly compute.
More precisely, let ρ ∈ C∞c (R) be a nonnegative function with

∫
R ρ(x)dx = 1 and define the

convolution
(ρN ∗ u)(x) :=

∑
k∈Z

u(Nρ(N(x− k − ·)).

Then ρN ∗u is a smooth periodic function that converges to u, and in particular (ρN ∗u)2 is well
defined. Let us test against some ϕ ∈ C∞ and consider (ρN ∗u)2(ϕ) =

∫
T(ρN ∗u)2(x)ϕ(x)dx.

The first observation we then make is that E[
∫
T(ρN ∗ u)2(x)ϕ(x)dx] = cN

∫
T ϕ(x)dx with a

diverging constant cN → ∞. So to have any hope to obtain a well-defined limit, we should
rather consider the renormalized ((ρN ∗ u)2 − cN )(ϕ). Of course, the constant cN vanishes
under differentiation so we will not see it in the equation that features the term ∂xu

2 and
not u2. Now that we subtracted the mean E[(ρN ∗ u)2(ϕ)], we would like to show that the
variance of the centered random variable stays uniformly bounded in N . This is however not
the case, and in particular ((ρN ∗ u)2 − cN )(ϕ) does not converge in L2(µ). But L2(µ) is
a Gaussian Hilbert space and ((ρN ∗ u)2 − cN ) lives for all N in the second (homogeneous)
chaos. Since for sequences in a fixed Gaussian chaos convergence in probability is equivalent
to convergence in L2 (see [Jan97], Theorem 3.50), ((ρN ∗ u)2 − cN )(ϕ) does not converge
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in any reasonable sense. Therefore, the square u2(ϕ) (or rather the renormalized square
u�2(ϕ) = (u2 −∞)(ϕ)) cannot be declared as a random variable! However, and as far as we
are aware it was Assing [Ass02] who first observed this, the renormalized square does make
sense as a distribution on L2(µ). More precisely, if F (u) is a “nice” random variable (think
for example of F (u) = f(u(ϕ1), . . . , u(ϕn)) for f ∈ C∞c (R) and ϕk ∈ C∞(T), k = 1, . . . , n),
then E[((ρN ∗ u)2 − cN )(ϕ)F (u)] converges to a limit that we denote with E[u�2(ϕ)F (u)] and
that does not depend on the mollifier ρ. This means that we cannot evaluate u 7→ u�2(ϕ)
pointwise, but it makes sense when tested against smooth random variables by evaluating
the integral

∫
C−1/2−ε u�2(ϕ)F (u)µ(du). Compare that with a distribution T ∈ S ′(R) on R

for which the pointwise evaluation T (x) makes no sense, but we can test T against smooth
test functions ψ by evaluating the integral

∫
R T (x)ψ(x)dx. Of course in finite dimensions the

integration is canonically performed with respect to the Lebesgue measure, while in infinite
dimensions we have to pick a reference measure which here is the invariant measure µ.

So u�2(ϕ) is a distribution on the infinite-dimensional space C−1/2−ε and therefore the
stochastic Burgers equation (3) is an infinite-dimensional analog to (1). We would like to use
the same tools as in the finite dimensional case, and in particular we would like to make sense
of the martingale problem for u. However, while in finite dimensions it is possible to solve the
equation Lϕ = f under rather general conditions, now this would be an infinite-dimensional
PDE with a distributional coefficient. There exists a theory of infinite-dimensional PDEs, see
for example [DPZ02, BKRS15], but at the moment it seems an open problem how to solve
such PDEs with distributional coefficients. On the other side, if we simply plug in a smooth
function F into the formal generator L, then LF is only a distribution and not a function
and therefore no smooth F can be in the domain of the Burgers generator. Assing [Ass02]
avoided this problem by considering a “generalized martingale problem”, where the drift
term

∫ t
0 ∂xu

2
sds =

∫ t
0 ∂xu

�2
s ds never really appears. However, it is still not known whether

solutions to the generalized martingale problem exist and are unique. This was the state
until 2010, when Gonçalves and Jara [GJ10] introduced a new notion of martingale solution
to the stochastic Burgers equation by stepping away from the infinitesimal approach based
on the generator and by making use of the same time-decorrelation effect that allowed us
to construct

∫ t
0 b(xs)ds in (2) despite the fact that b(xs) itself makes no sense. In the next

chapter we discuss their approach and how to prove existence and uniqueness of solutions.

2 Energy solutions to the stochastic Burgers equation

We would now like to formulate a notion of martingale solution to the stochastic Burgers
equation

dut = ∆utdt+ ∂xu
2
tdt+

√
2d∂xWt.

As discussed above the infinitesimal picture is not so clear because the drift is a distribution in
an infinite-dimensional space. So the idea of Gonçalves and Jara [GJ14] is to rather translate
the formulation (2) to our context. Let us call u a martingale solution if u ∈ C(R+,S ′),
where S ′ = S ′(T) are the (Schwartz) distributions on T, and if there exists ρ ∈ C∞c (R) with∫
R ρ(x)dx = 1 such that with ρN = Nρ(N ·) the limit∫ ·

0
∂xu

2
sds(ϕ) := lim

N→∞

∫ ·
0

(us ∗ ρN )2(−∂xϕ)ds
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exists for all ϕ ∈ C∞(T), uniformly on compacts in probability. Note that because of the
derivative ∂x here it is not necessary to renormalize the square by subtracting a large constant.
Moreover, we require that for all ϕ ∈ C∞(T) the process

Mt(ϕ) := ut(ϕ)− u0(ϕ)−
∫ t

0
us(∆ϕ)ds−

∫ t

0
∂xu

2
sds(ϕ), t > 0, (4)

is a continuous martingale with quadratic variation 〈M(ϕ)〉t = 2‖∂xϕ‖2L2t. It can be easily
shown that martingale solutions exist, for example by considering Galerkin approximations
to the stochastic Burgers equation.

On the other side, martingale solutions are very weak and give us absolutely no control
on the nonlinear part of the drift, so it does not seem possible to show that they are unique.
To overcome this we should add further conditions to the definition, and Gonçalves and Jara
assumed in [GJ14] additionally that u satisfies an energy estimate, that is

E

[(∫ t

s
{(ur ∗ ρN )2(−∂xϕ)− (ur ∗ ρM )2(−∂xϕ)}dr

)2
]
.

(t− s)
M ∧N

‖∂xϕ‖2L2 .

The precise form of the estimate is not important, we will only need that it implies
∫ ·

0 ∂xu
2
sds ∈

C(R+,S ′) and that for every test function ϕ the process
∫ ·

0 ∂xu
2
sds(ϕ) has zero quadratic

variation. Consequently, u(ϕ) is a Dirichlet process (sum of a continuous local martingale
and a zero quadratic variation process) and admits an Itô formula [RV07]. Any martingale
solution that satisfies the energy estimate is called an energy solution.

This is still a very weak notion of solution, and there does not seem to be any way
to directly compare two different energy solutions and to show that they have the same
law. To see why the additional structure coming from the energy estimate is nonetheless
very useful, let us argue formally for a moment. Let u be a solution to Burgers equation
∂tu = ∆u+ ∂xu

2 + ∂t∂xW . Then u = ∂xh for the solution h to the KPZ equation

∂th = ∆h+ (∂xh)�2 + ∂tW = ∆h+ (∂xh)2 −∞+ ∂tW.

But the KPZ equation can be linearized through the Cole-Hopf transform [BG97]: We for-
mally have h = log φ for the solution w to the linear stochastic heat equation

∂tφ = ∆φ+ φ∂tW, (5)

which is a linear Itô SPDE that can be solved using classical theory [Wal86, DPZ14, PR07].
So if we can show that every energy solution u satisfies u = ∂x log φ where φ solves (5), then
u is unique. And the key difference between energy solutions and martingale solutions is that
for energy solutions we have an Itô formula that allows us to perform a change of variables
that maps u to a candidate solution to the stochastic heat equation.

So let u be an energy solution, let ρ ∈ S (R) be an even function with Fourier transform
ρ̂ =

∫
R e

2πix·ρ(x)dx ∈ C∞c (R) and such that ρ̂ ≡ 1 on a neighborhood of 0, and define

uLt := F−1
T (ρ̂(L−1·)FTut) = ρL ∗ ut, t > 0 (6)

where FTu(k) :=
∫
T e

2πikxu(x)dx respectively F−1
T ψ(x) :=

∑
k∈Z e

2πikxψ(k) denote the
Fourier transform (respectively inverse Fourier transform) on the torus. We then integrate
uL by setting

hLt := F−1
T (FTΘFT(uLt )) = Θ ∗ uLt = (Θ ∗ ρL) ∗ ut =: ΘL ∗ ut, t > 0,
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where FTΘ(k) = 1k 6=0(2πik)−1 and therefore ∂x(Θ ∗ u) = u −
∫
T u(x)dx. Since

∫
T u(x)dx

is conserved by the stochastic Burgers equation, it suffices to prove uniqueness of ∂x(Θ ∗ u).
Writing hLt (x) = ut(Θ

L
x ) for ΘL

x (y) := (Θ ∗ ρL)(x− y), we get from (4)

dhLt (x) = ∆xh
L
t (x) + u2

t (∂xΘL
x )dt+

√
2dWt(∂xΘL

x )

for a white noise W , and d〈hL(x)〉t = 2‖∂xΘL
x‖2L2(T)dt. It is not hard to see that ∂xΘL

x = ρLx−1

for ρLx (y) = ρL(x − y). So setting φLt (x) := eh
L
t (x) we have by the Itô formula for Dirichlet

processes [RV07] and a short computation

dφLt (x) = ∆xφ
L
t (x)dt+

√
2φLt (x)dWt(ρ

L
x ) + dRLt (x) +KφLt (x)dt+ φLt (x)dQLt

−
√

2φLt (x)dWt(1)− 2φLt (x)dt,

where

RLt (x) :=

∫ t

0
φLs (x)

{
u2
s(∂xΘL

x )−
(

(uLs (x))2 −
∫
T
(uLs (y))2dy

)
−K

}
ds (7)

for a suitable constant K and

QLt :=

∫ t

0

{
−
∫
T
((uLs )2(y)− ‖ρL‖2L2(R))dy + 1

}
ds. (8)

Proposition 2.1. Let u ∈ C(R+,S ′) be an energy solution to the stochastic Burgers equation
such that

sup
x∈T,t∈[0,T ]

E[|eut(Θx)|2] <∞. (9)

If for RL and QL defined in (7) and (8) respectively and every test function ϕ the process
RL(ϕ) converges to zero uniformly on compacts in probability and QL converge to a zero
quadratic variation process Q, then u is unique in law and given by ut = ∂x log φt+

∫
T u0(y)dy,

where φ is the unique solution to the stochastic heat equation

dφt = ∆φtdt+ φtdWt, φ0(x) = eu0(Θx).

Proof. This is Theorem 2.13 in [GP16]. Actually we need a slightly stronger convergence of
RL(ϕ) and QL than locally uniform, but to simplify the presentation we ignore this here.

Remark 2.2. The strategy of mapping the energy solution to the linear stochastic heat equa-
tion is essentially due to Funaki and Quastel [FQ15], who used it in a different context to
study the invariant measure of the KPZ equation. In their approach similar correction terms
as RL and QL appeared, and the fact that they were able to deal with them gave us the courage
to proceed with the rather long computations that control RL and QL in our setting.

So to obtain the uniqueness of energy solutions we need to verify the assumptions of
Proposition 2.1. Unfortunately we are not able to do this because while the energy condition
gives us good control of the Burgers nonlinearity

∫ ·
0 ∂xu

2
sds, it does not allow us to bound

general additive functionals
∫ ·

0 F (us)ds such as the ones appearing in the definition of RL.
To understand which condition to add in order to control such additive functionals, let us

recall how this can be (formally) achieved for a Markov processX with values in a Polish space.
Assume that X is stationary with initial distribution µ, denote its infinitesimal generator with
L, and let L∗ be the adjoint of L in L2(µ). Then L can be decomposed into a symmetric

6



part LS = (L+ L∗)/2 and an antisymmetric part LA = (L − L∗)/2. Moreover, if we reverse
time and set X̂t = XT−t for some fixed T > 0, then (X̂t)t∈[0,T ] is a Markov process in its
natural filtration, the backward filtration of X, and it has the generator L∗. See Appendix 1
of [KL13] for the case where X takes values in a countable space. So by Dynkin’s formula for
F ∈ dom(L) ∩ dom(L∗) the process

MF
t = F (Xt)− F (X0)−

∫ t

0
LF (Xs)ds, t > 0,

is a martingale, and

M̂F
t = F (X̂t)− F (X̂0)−

∫ t

0
L∗F (X̂s)ds, t ∈ [0, T ],

is a martingale in the backward filtration. We add these two formulas and obtain the following
decomposition which is reminiscent of the Lyons-Zheng decomposition of a Dirichlet process
into a sum of forward martingale and a backward martingale:

MF
t + (M̂F

T − M̂F
T−t) = −2

∫ t

0
LSF (Xs)ds,

so any additive functional of the form
∫ t

0 LSF (Xs)ds is the sum of two martingales, one in
the forward filtration, the other one in the backward filtration. The predictable quadratic
variation of the martingale MF is

〈MF 〉t =

∫ t

0
(LF 2(Xs)− 2F (Xs)LF (Xs))ds,

and

〈M̂F 〉t =

∫ t

0
(L∗F 2(X̂s)− 2F (X̂s)L∗F (X̂s))ds.

So the Burkholder-Davis-Gundy inequality gives for all p > 2

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
LSF (Xs)ds

∣∣∣∣p
]
. T p/2−1

∫ T

0
E[(LF 2(Xs)− 2F (Xs)LF (Xs))

p/2]ds

+ T p/2−1

∫ T

0
E[(L∗F 2(X̂s)− 2F (X̂s)L∗F (X̂s))

p/2]ds

= T p/2E[(LF 2(X0)− 2F (X0)LF (X0))p/2]

+ T p/2E[(L∗F 2(X0)− 2F (X0)L∗F (X0))p/2],

where in the last step we used the stationarity of X. Moreover, if LA satisfies Leibniz rule
for a first order differential operator, then LAF 2 − 2FLAF = 0 and therefore

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
LSF (Xs)ds

∣∣∣∣p
]
. T p/2E[(LSF 2(X0)− 2F (X0)LSF (X0))p/2].

That is, we can bound additive functionals of a stationary Markov process X in terms of the
symmetric part of the generator LS and the invariant measure µ. We call this inequality the
martingale trick.
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For the stochastic Burgers equation this promises to be very powerful, because formally
an invariant measure is given by the law of the spatial white noise and the symmetric part of
the generator is simply the generator LS of the Ornstein-Uhlenbeck process dXt = ∆Xtdt+
d∂xWt, that is the linearized Burgers equation. This also suggests that LA is a first order
differential operator because it corresponds to the drift ∂xu

2. We thus need a notion of solution
to the stochastic Burgers equation which allows us to make the heuristic argumentation above
rigorous. This definition was given by Gubinelli and Jara in [GJ13]:

Definition 2.3. Let u be an energy solution to the stochastic Burgers equation. Then u is
called a forward-backward (FB) solution if additionally the law of ut is that of the white noise
for all t > 0, and for all T > 0 the time-reversed process ût = uT−t, t ∈ [0, T ], is an energy
solution to

dût = ∆ûtdt− ∂xû2
tdt+

√
2d∂xŴt,

where ∂tŴ is a space-time white noise in the backward filtration.

Remark 2.4. [GJ13] do not define FB-solutions, but they also call their solutions energy
solutions. For pedagogical reasons we prefer here to introduce a new terminology for this third
notion of solution. Also, the definition in [GJ13] is formulated slightly differently than above,
but it is equivalent to our definition.

Of course, we should first verify whether FB-solutions exist before we proceed to discuss
their uniqueness. But existence is very easy and can be shown by Galerkin approximation.
Also, it is known for a wide class of interacting particle systems that they are relatively
compact under rescaling and all limit points are FB-solutions to Burgers equation [GJ14,
GJS15, DGP16]. A general methodology that allows to prove similar results for many particle
systems was developed in [GJ14]. So all that is missing in the convergence proof is the
uniqueness of FB-solutions.

Lemma 2.5. If u is a FB-solution, then the martingale trick works:

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
LSF (us)ds

∣∣∣∣p
]
. T p/2E[E(F (u0))p/2],

where E(F (u)) = 2
∫
R |∂xDxF (u)|2dx for the Malliavin derivative D which is defined in terms

of the law of the white noise.

Proof. This is Lemma 2 in [GJ13] or Proposition 3.2 in [GP16].

Given a FB-solution u we can thus control any additive functional of the form
∫ ·

0 LSF (us)ds.
To bound

∫ ·
0 G(us)ds for a given G we therefore have to solve the Poisson equation LSF = G.

This is an infinite-dimensional partial differential equation and a priori difficult to understand.
However, we have to only solve it in L2(µ) which has a lot of structure as a Gaussian Hilbert
space. In particular we have the chaos decomposition

F =
∞∑
n=0

Wn(fn)

for all F ∈ L2(µ), where fn ∈ L2(Rn) and Wn(fn) is the n-th order Wiener-Itô integral over
fn. And the action of the Ornstein-Uhlenbeck generator on Wn(fn) has a very simple form:

LSWn(fn) = Wn(∆fn),
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where ∆ = ∂2
x1 + . . . + ∂2

xn is the Laplace operator on Rn, see Lemma 3.7 in [GP16]. This
reduces the equation LSF = G to the infinite system of uncoupled equations

∆nfn = gn, n ∈ N0,

where G =
∑

nWn(gn).
To test the tools we have developed so far, let us apply them to the Burgers nonlinearity:

Lemma 2.6. Let u be a FB-solution. There exists a unique process
∫ ·

0 u
�2
s ds ∈ C(R+,S ′)

such that ∂x
∫ ·

0 u
�2
s ds =

∫ ·
0 ∂xu

2
sds and such that for all T, p > 0, α ∈ (0, 3/4), and χ, ϕ ∈ S

with
∫
R χ(x)dx = 1 we have with χN = Nχ(N ·)

lim
N→∞

E

[∥∥∥∥∫ ·
0
u�2s ds(ϕ)−

∫ ·
0

((us ∗ χN )2 − ‖χN‖2L2)(ϕ)ds

∥∥∥∥p
Cα([0,T ],R)

]
= 0.

Proof. This is a combination of Proposition 3.15 and Corollary 3.17 in [GP16].

The Hölder regularity of
∫ ·

0 ∂xu
2
sds(ϕ) for ϕ ∈ S is indeed only 3/4−ε and not better than

that. This means that the process u(ϕ) is not a semimartingale. In particular, if we assume
for the moment that the stochastic Burgers equation defines a Markov process on a suitable
Banach space of distributions, then the map u 7→ u(ϕ) for ϕ ∈ S is not in the domain of its
generator. In fact it is an open problem to find any nontrivial function in the domain of the
Burgers generator.

Next, we would like to use the martingale trick to prove the convergence of RL and QL that
we need in Proposition 2.1. However, while for the Burgers nonlinearity the additive functional
was of the form

∫ ·
0 G(us)ds with a G that has only components in the second Gaussian

chaos, the situation is not so simple for RL because the factor eu(ΘLx ) has an infinite chaos
decomposition. While in principle it is still possible to write down the chaos decomposition
of RL exlicitly, we prefer to follow another route. In fact there is a general tool for Markov
processes which allows to control additive functionals without explicitly solving the Poisson
equation, the so called Kipnis-Varadhan estimate. It is based on duality and reads

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
F (us)ds

∣∣∣∣2
]
. T‖F‖2−1

for
‖F‖2−1 = sup

G
{2E[F (u0)G(u0)] + E[F (u0)LSF (u0)]}.

Corollary 3.5 in [GP16] proves that this inequality holds also for FB-solutions, despite the
fact that we do not know yet whether they are Markov processes. In fact FB-solutions give us
enough flexibility to implement the classical proof from the Markovian setting, as presented
for example in [KLO12]. Based on the Kipnis-Varadhan inequality, Gaussian integration by
parts, and a lenghty computation we are able to show the following result:

Theorem 2.7. Let u be a FB-solution to the stochastic Burgers equation. Then the assump-
tions of Proposition 2.1 are satisfied and in particular the law of u is unique.

Proof. This is a combination of Lemmas A.1–A.3 in [GP16].
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Both the assumption of stationarity and the representation of the backward process are
only needed to control additive functionals of the FB-solution u and thus to prove the con-
vergence of RL and QL. If we had some other means to prove this convergence, uniqueness
would still follow. One interesting situation where this is possible is the following: Let u be an
energy solution of the stochastic Burgers equation which satisfies (9), and assume that there
exists a FB-solution v such that P � PFB, where P denotes the law of u on C(R+,S ′) and
PFB is the law of v. Then the convergence in probability that we required in Proposition 2.1
holds under PFB and thus also under P and therefore u is still unique in law. Of course, the
assumption P� PFB is very strong, but it can be verified in some nontrivial situations. For
example in [GJS15] some particle systems are studied which start in an initial condition µn

that has bounded relative entropy H(µn|ν) with respect to a stationary distribution ν, uni-
formly in n. Denoting the distribution of the particle system started in π by Pπ, we get from
the Markov property H(Pµn |Pν) = H(µn|ν). Assume that the rescaled process converges to
the law PFB of a FB-solution under Pν , and to the law of an energy solution P under Pµn .
Then

H(P|PFB) 6 lim inf
n→∞

H(µn|ν) <∞,

and in particular P � PFB; here we used that the relative entropy is lower semicontinuous.
Therefore, the scaling limits of [GJS15] are still unique in law, even though they are not
FB-solutions. Let us summarize this observation:

Theorem 2.8. Let u be an energy solution to the stochastic Burgers equation which satis-
fies (9) and let v be an FB-solution. Denote the law of u and v with P and PFB, respectively.
Then the measure P is unique. In particular this applies for the non-stationary energy solu-
tions constructed in [GJS15].

Remark 2.9. For simplicity we restricted our attention to the equation on T, but everything
above extends to the stochastic Burgers equation on R. Also, once we understand the unique-
ness of Burgers equation it is not difficult to also prove the uniqueness of its integral, the KPZ
equation. For details see [GP16].
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