Polyhedral surfaces of high genus

Günter M. Ziegler— 2008

The construction of the COMBINATORIAL data for a surface with n vertices of maximal genus is a classical problem: The maximal genus g=[(n-3)(n-4)/12] was achieved in the famous ``Map Color Theorem'' by Ringel et al. (1968). We present the nicest one of Ringel's constructions, for the case when n is congruent to 7 mod 12, but also an alternative construction, essentially due to Heffter (1898), which easily and explicitly yields surfaces of genus g ~ 1/16 n^2. For GEOMETRIC (polyhedral) surfaces with n vertices the maximal genus is not known. The current record is g ~ n log n, due to McMullen, Schulz & Wills (1983). We present these surfaces with a new construction: We find them in Schlegel diagrams of ``neighborly cubical 4-polytopes,'' as constructed by Joswig & Ziegler (2000).

TitelPolyhedral surfaces of high genus
VerfasserGünter M. Ziegler
Erschienen inDiscrete Differential Geometry, Oberwolfach Seminars, volume 38, pages 191-213