Logo der Freien Universität BerlinFreie Universität Berlin

Fachbereich Mathematik und Informatik


Service-Navigation

  • Startseite
Hinweise zur Datenübertragung bei der Google™ Suche
Fachbereich Mathematik und Informatik/Mathematik/Diskrete Geometrie/

Prof. Günter M. Ziegler

Menü
  • Forschung

    loading...

  • Publikationen

    loading...

  • Projekte

    loading...

  • Termine

    loading...

  • Lebenslauf

    loading...

  • Lehre

    loading...

  • Bilder

    loading...

  • Presse

    loading...

Mikronavigation

  • Startseite
  • Mathematik
  • Arbeitsgruppen
  • Diskrete Geometrie
  • Prof. Günter M. Ziegler
  • Publikationen_old
  • Optimal bounds for the colored Tverberg problem

Optimal bounds for the colored Tverberg problem

Pavle V. M. Blagojević and Benjamin Matschke and Günter M. Ziegler

We prove a "Tverberg type" multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Barany et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Barany & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.

Titel
Optimal bounds for the colored Tverberg problem
Verfasser
Pavle V. M. Blagojević and Benjamin Matschke and Günter M. Ziegler
Quelle/n
  • http://arxiv.org/abs/0910.4987v2
Art
Text

Termine

spinner

Neuigkeiten

spinner

Service-Navigation

  • Startseite

Diese Seite

  • Drucken
  • RSS-Feed abonnieren