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Tverberg’s celebrated theorem from 1966 [7], its topological version by Bárány,

Shlosman & Szűcs [1] and Özaydin [4] 1981/1987, and the 2009 optimal colored
version by Blagojević, Matschke & Ziegler [3], may together be summarized as
follows:

Theorem (Tverberg [7]; topological Tverberg [1] [4]; optimal colored Tverberg [3]).
Let d ≥ 1 and r ≥ 2, and let N ≥ N0 := (r − 1)(d+ 1)− 1.
(1) For any affine map f : ∆N → Rd the N -dimensional simplex ∆N contains

r points x1, . . . , xr that lie in r vertex-disjoint faces σ1, . . . , σr of ∆ whose
images coincide: f(x1) = · · · = f(xr).

(2) If r ≥ 2 is a prime power, then this holds more generally for arbitrary con-
tinuous maps.

(3) If r ≥ 2 is a prime, then the faces σi may in addition be required to have
distinct vertex colors (that is, to be “rainbow faces”) for any coloring of the
vertex set of ∆N whose color classes have size at most r − 1.

In our lecture we presented a new, simple and elementary, proof technique
(see [2]) that establishes many of the known extensions of these theorems for maps
of a simplex ∆N of higher dimension N directly from these optimal results for
N = N0. Indeed, we even obtain sharpened and improved results from this.

Our new technique relies on a concept of “Tverberg unavoidable subcomplexes”:

Definition 1 (Tverberg unavoidable subcomplexes). Let r ≥ 2, d ≥ 1, and N be
integers, and let f : ∆N → Rd be a continuous map with at least one Tverberg
r-partition. Then a subcomplex Σ ⊆ ∆N is Tverberg unavoidable if for every
Tverberg partition {σ1, . . . , σr} for f there is at least one face σj that lies in Σ.

Examples of Tverberg unavoidable complexes are obtained using the pigeon-
hole principle. For example, for any set S of at most 2r − 1 vertices in ∆N the
subcomplex of faces with at most one vertex in S is Tverberg unavoidable. And

if r(k + 2) > N + 1, then the k-skeleton ∆
(k)
N of ∆N is Tverberg unavoidable.

If N is large enough, then we can require points of Tverberg coincidence to
equalize additional constraint functions, via maps to an extended target space:

Lemma 2 (Key lemma #1). Let r be a prime power, d ≥ 1, and c ≥ 0. Let
N ≥ Nc := (r − 1)(d + 1 + c) and let f : ∆N → Rd and g : ∆N → Rc be
continuous. Then there are r points xi ∈ σi, where σ1, . . . , σr are pairwise disjoint
faces of ∆N with g(x1) = · · · = g(xr) and f(x1) = · · · = f(xr).

Using the symmetry of the problem, we now obtain a Tverberg partition that
does not only have one, but all of its faces in the unavoidable subcomplex:

Lemma 3 (Key lemma #2). Let r be a prime power, d ≥ 1, and N ≥ N1 =
(r − 1)(d + 2). Assume that f : ∆N → Rd is continuous and that the subcomplex
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Σ ⊆ ∆N is Tverberg unavoidable for f . Then there are r pairwise disjoint faces
σ1, . . . , σr of ∆N , all of them contained in Σ, such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

For example, our Ansatz produces directly from the topological Tverberg the-
orem a colored version that is stronger than Živaljević & Vrećica’s 1992 colored
Tverberg’s theorem [9] that is valid for all prime powers r:

Theorem 4 (Weak colored Tverberg). Let r be a prime power, d ≥ 1, N ≥
Nd+1 = (r − 1)(2d + 2) and let f : ∆N → Rd be continuous. If the vertices of
∆N are colored by d + 1 colors, where each color class has cardinality at most
2r− 1, then there are r pairwise disjoint rainbow faces σ1, . . . , σr of ∆N such that
f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Similarly we obtain directly from the topological Tverberg theorem a strength-
ened version of the generalized van Kampen–Flores theorem of Sarkaria [5] and
Volovikov [8] from 1991/1996:

Theorem 5 (Generalized van Kampen–Flores). Let r be a prime power, d ≥ 1,
N ≥ N1 = (r−1)(d+2), and k ≥ d r−1

r de. Then for every continuous f : ∆N → Rd

there are r pairwise disjoint faces σ1, . . . , σr of ∆N , with dimσi ≤ k for 1 ≤ i ≤ k,
such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

As another example, our machinery reproves Soberón’s 2013 Tverberg theorem
with equal barycentric coordinates and at the same time produces a new topolog-
ical version of this result.

Details appear in our paper [2].
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theorem of Tverberg, J. London Math. Soc. 23 (1981), 158–164.
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