On the number of simplicial 3 -spheres and 4-polytopes with N facets

Günter M. Ziegler
(joint work with Bruno Benedetti)

1. Question

Is the number of combinatorial types of simplicial 3 -spheres on N facets bounded by an exponential function C^{N} ?

This question is fundamental for the construction of a partition functions for quantum gravity [1], where space is modelled by a 3 -sphere glued from regular tetrahedra of edge lengths ε, and one is interested in the limit if $N \rightarrow \infty$, which corresponds to modelling space by triangulations by regular tetrahedra of edge lengths $\varepsilon \rightarrow 0$.

2. Related

A related question asks for the number of simplicial 3 -spheres and 4-polytopes on n vertices. Here it is long known that there are only exponentially many polytopes [5], while there are more than exponentially many spheres [11].

3. LOCAL CONSTRUCTIBILITY

In the lower-dimensional case of simplicial 2-spheres, we have the same count for 2 -spheres and for 3 -polytopes with N facets, due to Steinitz' theorem. The answer is asymptotically of the order of $\left(\frac{256}{27}\right)^{N / 2}$, according to Tutte [12].

An elementary approach to this case, which also gives an exponential upper bound and invites for generalization to higher dimensions, first counts plane "trees of N triangles" (which correspond to triangulations of an $(2 N+1)$-gon, so there are less than $2^{2 N}$ of these), and then gluings on the boundary, which amounts to planar matchings in the exterior (which again yields a factor of $2^{2 N}$).

In 1995 Durhuus and Jonsson [3] introduced a concept that generalizes this approach: A simplicial 3 -sphere is locally constructible (LC) if it can be obtained from a tree of tetrahedra by successive gluings of adjacent (!) boundary triangles. They showed that there are only exponentially-many LC 3 -spheres.

4. Hierarchy

We link the LC concept with the notions of shellability and constructibility that were established in combinatorial topology [2], and thus obtain the following hierarchy for simplicial 3 -spheres:

$$
\text { polytopal } \Rightarrow \text { shellable } \Rightarrow \text { constructible } \Rightarrow \text { LC. }
$$

5. Main Results

Theorem 1. Every constructible simplicial sphere is LC.
This result establishes the hierarchy above. We also have an extension to simplicial d-spheres, $d \geq 2$. It depends on a simple lemma, according to which gluing two LC d-pseudomanifolds along a common strongly-connected pure $(d-1)$-complex in the boundary yields an LC d-complex.
Theorem 2. There are less than $2^{8 N}$ LC simplicial 3-spheres on N facets.
This result slightly sharpens an estimate by Durhuus and Jonsson. We also extend it to LC d-spheres.

Combination of Theorem 2 with the hierarchy (Theorem 1) yields that there are only exponentially-many simplicial 4-polytopes with a given number of facets. (This answers a question by Kalai; as pointed out by Fukuda at the workshop, this may as well be derived from the fact that there are only exponentially many simplicial 4 -polytopes on n vertices by [5].)

More generally, for fixed d we get that there are only exponentially-many shellable d-spheres on N facets. This is interesting when compared with the studies of Kalai $[7]$ and Lee [8], which showed that for $d \geq 4$, there are more than exponentially many shellable d-spheres on n vertices.
Theorem 3. If a simplicial 3 -sphere S contains a triangle L that is knotted such that the fundamental group of its complement in S has no presentation with 3 generators, then S is not $L C$.

This result is derived from the fact that if S is an LC 3 -sphere and Δ is a facet of S, then $S \backslash \Delta$ is collapsible. By a result by Lickorish [9] this implies that the fundamental group of $S \backslash L$ has a presentation with at most 3 generators.

Combined with the known constructions of simplicial 3 -spheres with badlyknotted triangles (which go back to Furch [4]), this yields that not all simplicial 3 -spheres are locally constructible. This solves a problem by Durhuus and Jonsson. More precisely, spheres with a knotted triangle are not constructible by [6], but if the knot is not complicated, they can be LC (this we derive from [10]).

The basic question about the number of simplicial 3 -spheres with N facets remains, as far as we know, open.

References

[1] J. Ambjørn, B. Durhuus, and T. Jonsson, Quantum Geometry, Cambridge University Press, Cambridge, 1997.
[2] A. Björner, Topological methods, in Handbook of Combinatorics, R. Graham, M. Grötschel, and L. Lovász, eds., Amsterdam, 1995, Elsevier, pp. 1819-1872.
[3] B. Durhuus and T. Jonsson, Remarks on the entropy of 3-manifolds, Nuclear Physics B, 445 (1995), pp. 182-192.
[4] R. Furch, Zur Grundlegung der kombinatorischen Topologie, Abh. Math. Sem. Univ. Hamburg, 3 (1924), pp. 69-88.
[5] J. Goodman and R. Pollack, There are asymptotically far fewer polytopes than we thought, Bull. Am. Math. Soc., 14 (1986), pp. 127-129.
[6] M. Hachimori and G. M. Ziegler, Decompositions of simplicial balls and spheres with knots consisting of few edges, Math. Zeitschrift, 235 (2000), pp. 159-171.
[7] G. Kalai, Many triangulated spheres, Discrete Comput. Geometry, 3 (1988), pp. 1-14.
[8] C. W. Lee, Kalai's squeezed spheres are shellable, Discrete Comput. Geometry, 24 (2000), pp. 391-396.
[9] W. B. R. Lickorish, Unshellable triangulations of spheres, Europ. J. Combinatorics, 12 (1991), pp. 527-530.
[10] W. B. R. Lickorish and J. M. Martin, Triangulations of the 3-ball with knotted spanning 1-simplexes and collapsible r-th derived subdivisions, Trans. Amer. Math. Soc., 170 (1972), pp. 451-458.
[11] J. Pfeifle and G. M. Ziegler, Many triangulated 3-spheres, Mathematische Annalen, 330 (2004), pp. 829-837.
[12] W. T. Tutte, On the enumeration of convex polyhedra, J. Combinatorial Theory, Ser. B, 28 (1980), pp. 105-126.

