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Abstracts

Face numbers of centrally-symmetric polytopes: Conjectures,
Examples, Counterexamples

Günter M. Ziegler

(joint work with Raman Sanyal, Axel Werner)

The f -vectors of centrally-symmetric convex polytopes are the subject of three
conjectures A, B, C of increasing strength by Kalai [4] from 1989. Such basic open
questions illustrate that our understanding of the f -vectors of centrally-symmetric
polytopes is dramatically incomplete. (Our understanding of f -vectors of general
convex polytopes is also quite limited outside the range of simple/simplicial poly-
topes; compare [7], [8].)

In our lecture, based on [6], we described the three conjectures, and reported
that Conjectures A and B hold for d ≤ 4, while Conjecture C fails for d ≥ 4 and
Conjecture B fails for d ≥ 5.

1. The case d = 3

The case of d = 3 is easy, but it solves as a model for a complete answer: The
set of f -vectors of centrally-symmetric 3-polytopes is

Fcs
3 = {(f0, f1, f3) ∈ (2Z)3 : f0 − f1 + f2 = 2,

f0 ≤ 2f2 − 4,

f2 ≤ 2f0 − 4,

f0 + f2 ≥ 14 }.

2. Three conjectures

Kalai [4] described the following three conjectures of increasing strength about
the f -vectors of 3-dimensional centrally-symmetric polytopes.

The first one, Conjecture A, claims that every such polytope has at least 3d

non-empty faces,
d∑

i=0

fi ≥ 3d.

This became known as the 3d-conjecture. In its strong form, it would claim that
equality occurs only for Hanner polytopes, which arise from 1-polytopes (intervals
[−1, 1]) by repeated application of “taking products” and dualization.

The second one, Conjecture B, claimed that the f -vector of every centrally
symmetric d-polytope P should componentwise dominate the f -vector of one of
the Hanner polytopes, f(P ) ≥ f(H).

The third one, Conjecture C, claimed that the flag-vector flag(P ) of every
centrally symmetric d-polytope P is dominated in flag-vector space by some flag
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vector flag(H), not only componentwise, but with respect to all linear flag-vector
functionals that are nonnegative on all flag-vectors of general d-polytopes.

Kalai noted that quite obviously Conjecture C implies Conjecture B, which in
turn implies the “3d-conjecture”, Conjecture A.

3. The cases 4(A) and 4(B)

While all three conjectures clearly hold for d ≤ 3, we report that Conjectures
A and B also hold for d = 4. The proof involves simple f -vector combinatorics,
known elementary inequalities, some case distinctions, and one crucial non-trivial
inequality, gtor

2 ≥ 2. In its more general form for d-polytopes,

gtor
2 (P ) = f1 + f02 − 3f2 − df0 −

(
d+1
2

)
≥

(
d
2

)
− d,

this inequality was derived by a Campo [1] via toric geometry. Following a sug-
gestion by Kalai, we also derive an elementary proof via rigidity theory in [6].

4. Examples

As noted by Kalai, the Hanner polytopes (introduced by Hanner [3] in 1956,
described above) provide a first, very interesting class of examples. A second
class was described by Hansen [3] in 1977: The antiprisms over the independence
polytopes of self-dual perfect graphs yield self-dual centrally-symmetric polytopes
with interesting f -vectors. None of the two classes includes the other one: For
examples take the sum of two 3-cubes, resp. the Hansen polytope of the path on
4 vertices. Both classes are examples of weak Hanner polytopes as introduced by
Hansen, which have the property that any pair of opposite facets includes all the
vertices. The hypersimplex ∆(k, 2k) of dimension k − 1 is an example of a weak
Hanner polytope that is neither Hanner nor Hansen in general.

5. The case 4(C) fails

Consider the flag vector functional

α(P ) := (f02 − 3f2) + (f13 − 3f1),

which is non-negative, and vanishes exactly if P is 2-simplicial (first term) and
2-simple (second term).

This functional takes the values 9 and 12 on the 4-dimensional Hanner poly-
topes. Examples of centrally-symmetric 2-simplicial 2-simple 4-polytopes include
Schläfli’s 24-cell. Infinite families, which may also be obtained to be centrally
symmetric, are described in [5].

Thus for d = 4 Conjecture C fails strongly, in the sense that there are infinitely
many polytopes whose flag-vectors are separated from all flag-vectors of Hanner
polytopes by a common nonnegative linear functional.
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6. The cases 5(B) and 5(C) fail

For d = 5, we consider the linear f -vector functional

β(P ) := f0 + f4.

This functional satisfies β ≥ 36 on all Hanner polytopes, while β = 32 both
for the Hansen polytope associated with the path on 4 vertices, with f -vector
(16, 64, 98, 64, 16), and on the central hypersimplex ∆(6, 3), whose f -vector is
(20, 90, 120, 60, 12).

Thus for d = 5 Conjecture B fails strongly, in the sense that there are are
polytopes whose f -vectors are separated from all f -vectors of Hanner polytopes
by a common nonnegative linear functional.

This implies, that indeed Conjecture C fails for all d ≥ 4, and Conjecture B
fails for all d ≥ 5. Conjecture A remains open for d ≥ 5.

We refer to [6] for details.
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