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Abstracts

Combinatorial and polyhedral surfaces

Günter M. Ziegler

(joint work with Raman Sanyal and Thilo Schröder)

1. What is a surface?

There are several different combinatorial and geometric notions of a “polyhedral
surface.” Topologically, we consider the connected, orientable 2-manifold without
boundary of genus g ≥ 0, denoted Mg.

In the combinatorial version, we look at regular cell decompositions of Mg,
which may be obtained by drawing graphs on the surfaces Mg, or by combinato-
rial prescriptions that tell us how to glue the surface from polygons. The “rotation
schemes” of Heffter [6], see also Ringel [11], fall into this category. In the follow-
ing, we will insist on the intersection condition to hold, according to which the
intersection of any two cells of the surface consists of either one single edge, or one
vertex, or is empty.

In the geometric version, a polyhedral surface is a complex formed by flat convex
polygons, represented without intersections in R3, or in some RN .

See [4] and [13] for more detailed discussions of these models.

2. f-Vectors

For any (combinatorial or geometric) surface the f -vector (f0, f1, f2) records
the number of vertices, edges, and 2-faces. It thus also measures the topological
complexity of the surface, whose genus is given by

g = 1 + 1

2
(f1 − f0 − f2),

and the combinatorial complexity, via the average vertex degree and the average
face degree, given by

δ = 2f1
f0

and δ∗ = 2f1
f2

.

A key problem asks to characterize the f -vectors of combinatorial resp. geometric
surfaces, and thus distinguish the two models in terms of their combinatorial
characteristics.

For g = 0, a little lemma of Steinitz [12] characterizes the f -vectors by

f0 − f1 + f2 = 2, 2f1 ≥ 3f0, 2f1 ≥ 3f2

for both models. Indeed, these are the f -vectors of convex 3-polytopes.
In contrast, for g > 0 the inequality 2f1 ≥ 3f0 is tight for combinatorial surfaces,

while it is strict for geometric surfaces: A geometric surface satisfying 2f1 = 3f0
is necessarily realized in R3, and convex. Indeed, we have 2f1 − 3f0 ≥ 6 for g > 0;
see Barnette et al. [1].
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3. The high genus case

An interesting extremal case to study is when we fix the number n := f0, and
ask for surfaces with the maximal genus, or equivalently, for surfaces with the
maximal number of edges and 2-faces. For this we may assume that the surface is
triangulated, so 2f1 = 3f2, and g = 1 + 1

2
( f1
3
− n).

In the combinatorial model, the inequality f1 ≤
(

n
2

)

is tight for infinitely many
values of n, for example for n = 4, 7, 12 and for n ≡ 7 mod 12, according to Ringel
et al., see [11].

On the other hand, geometric surfaces with f1 =
(

n
2

)

exist in R3 for n = 4, 7,
but not for n = 12, according to Bokowski & Guedes de Oliveira [2] and Schewe
(personal communication, 2005). It is an open problem whether the upper bound
f1 = O(n2) is tight — the best known lower bound is f1 = Ω(n logn) for surfaces,
and f1 = Ω(n3/2) for the weaker model of “almost disjoint triangles” [7].

4. A combinatorial construction

A combinatorial Ansatz for the construction of extremal surfaces traces back
to Brehm [3], see also Datta [5]: In a (p, q)-surface all vertex degrees are p and all
faces are q-gons. The goal is to construct (p, p)-surfaces with few vertices.

The Ansatz now produces such surfaces on the vertex set ZN , by taking as
the vertex sets of its faces the cyclic translates of a set 0, A1, A2, . . . A2m with
successive differences

a1, a1, a2, a2, . . . , am, am.

This yields a pseudomanifold (and usually a surface) if the ai are distinct, and the
surface will be orientable if the ai are odd. The key condition to look at is the
intersection property, which mandates that the consecutive partial sums of

N = A2m = a1 + a1 + a2 + a2 + . . .+ am + am

(other than the singleton sums) should be distinct. Datta suggests the choice
ai = 3i, which clearly works, but it is also easy to see that there are choices such
as ai := m2 + i− 1 that yield a sum f0 of order O(m3).

The open problem posed in my talk is whether sum of the ai can be achieved to
be A2m = O(m2), which would clearly be optimal. This asks for a construction of
such numbers ai resp. Ai such that all the differences Ai −Aj are distinct, except
for A2k−1 −A2k−2 = A2k −A2k−1 = ak. This asks for a variant of so-called Sidon
sets. See O’Bryant [10] for a recent survey.

5. A geometric construction

In the last part of the talk, I described a geometric construction that realizes
geometric (p, 2q)-surfaces in the boundary complex of a polytope of dimension
2 + p(q − 1), and hence (after a generic projection) in R5.

For this, we use an iterated wedge polytope, a simple 2 + p(q − 1)-polytope
W := ∆q−1 ! Cp with pq facets. We do not describe this polytope here; it arises
from a p-gon by p generalized wedge operations, as described in McMullen [9].
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The dual polytope S := ∆q−1 % Cp is a simplicial 2 + p(q − 1)-polytope that
arises from a p-gon by successively replacing each vertex by q new vertices that
span a (q− 1)-simplex, increasing the dimension by q− 1, with the given vertex in
its barycenter. The wreath product polytopes were described by Joswig & Lutz [8].

The vertices of W , and hence the facets of S, may be indexed by arrays

(k1, k2, . . . , ∗, ∗, . . . , kp),

with ki ∈ [q] and two cyclicly adjacent ∗s. Thus there are f0 = p qp−2 vertices.
The edges of the surface correspond to the arrays of the form

(k1, k2, . . . , ∗, ., . . . , kp),

with only one ∗, which yields f1 = p qp−1 edges. Finally, the faces of the surfaces
are p-gons given by those arrays of the form

(k1, k2, . . . , ., ., . . . , kp),

that additionally satisfy the condition
∑p

i=1
ki ≡ 0 or 1 (mod q). This yields a

count of f2 = 2 qp−1 for the faces of the geometric (p, 2q)-surface in question.
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