Abstracts
\section*{Combinatorial and polyhedral surfaces}
GÜnter M. Ziegler
(joint work with Raman Sanyal and Thilo Schröder)

1. What is a surface?

There are several different combinatorial and geometric notions of a "polyhedral surface." Topologically, we consider the connected, orientable 2-manifold without boundary of genus $g \geq 0$, denoted M_{g}.

In the combinatorial version, we look at regular cell decompositions of M_{g}, which may be obtained by drawing graphs on the surfaces M_{g}, or by combinatorial prescriptions that tell us how to glue the surface from polygons. The "rotation schemes" of Heffter [6], see also Ringel [11], fall into this category. In the following, we will insist on the intersection condition to hold, according to which the intersection of any two cells of the surface consists of either one single edge, or one vertex, or is empty.

In the geometric version, a polyhedral surface is a complex formed by flat convex polygons, represented without intersections in \mathbb{R}^{3}, or in some \mathbb{R}^{N}.

See [4] and [13] for more detailed discussions of these models.

2. F-VECTORS

For any (combinatorial or geometric) surface the f-vector $\left(f_{0}, f_{1}, f_{2}\right)$ records the number of vertices, edges, and 2-faces. It thus also measures the topological complexity of the surface, whose genus is given by

$$
g=1+\frac{1}{2}\left(f_{1}-f_{0}-f_{2}\right)
$$

and the combinatorial complexity, via the average vertex degree and the average face degree, given by

$$
\delta=\frac{2 f_{1}}{f_{0}} \quad \text { and } \quad \delta^{*}=\frac{2 f_{1}}{f_{2}}
$$

A key problem asks to characterize the f-vectors of combinatorial resp. geometric surfaces, and thus distinguish the two models in terms of their combinatorial characteristics.

For $g=0$, a little lemma of Steinitz [12] characterizes the f-vectors by

$$
f_{0}-f_{1}+f_{2}=2, \quad 2 f_{1} \geq 3 f_{0}, \quad 2 f_{1} \geq 3 f_{2}
$$

for both models. Indeed, these are the f-vectors of convex 3-polytopes.
In contrast, for $g>0$ the inequality $2 f_{1} \geq 3 f_{0}$ is tight for combinatorial surfaces, while it is strict for geometric surfaces: A geometric surface satisfying $2 f_{1}=3 f_{0}$ is necessarily realized in \mathbb{R}^{3}, and convex. Indeed, we have $2 f_{1}-3 f_{0} \geq 6$ for $g>0$; see Barnette et al. [1].

3. The high genus case

An interesting extremal case to study is when we fix the number $n:=f_{0}$, and ask for surfaces with the maximal genus, or equivalently, for surfaces with the maximal number of edges and 2 -faces. For this we may assume that the surface is triangulated, so $2 f_{1}=3 f_{2}$, and $g=1+\frac{1}{2}\left(\frac{f_{1}}{3}-n\right)$.

In the combinatorial model, the inequality $f_{1} \leq\binom{ n}{2}$ is tight for infinitely many values of n, for example for $n=4,7,12$ and for $n \equiv 7 \bmod 12$, according to Ringel et al., see [11].

On the other hand, geometric surfaces with $f_{1}=\binom{n}{2}$ exist in \mathbb{R}^{3} for $n=4,7$, but not for $n=12$, according to Bokowski \& Guedes de Oliveira [2] and Schewe (personal communication, 2005). It is an open problem whether the upper bound $f_{1}=O\left(n^{2}\right)$ is tight - the best known lower bound is $f_{1}=\Omega(n \log n)$ for surfaces, and $f_{1}=\Omega\left(n^{3 / 2}\right)$ for the weaker model of "almost disjoint triangles" $[7]$.

4. A combinatorial construction

A combinatorial Ansatz for the construction of extremal surfaces traces back to Brehm [3], see also Datta [5]: In a (p, q)-surface all vertex degrees are p and all faces are q-gons. The goal is to construct (p, p)-surfaces with few vertices.

The Ansatz now produces such surfaces on the vertex set \mathbb{Z}_{N}, by taking as the vertex sets of its faces the cyclic translates of a set $0, A_{1}, A_{2}, \ldots A_{2 m}$ with successive differences

$$
a_{1}, a_{1}, a_{2}, a_{2}, \ldots, a_{m}, a_{m}
$$

This yields a pseudomanifold (and usually a surface) if the a_{i} are distinct, and the surface will be orientable if the a_{i} are odd. The key condition to look at is the intersection property, which mandates that the consecutive partial sums of

$$
N=A_{2 m}=a_{1}+a_{1}+a_{2}+a_{2}+\ldots+a_{m}+a_{m}
$$

(other than the singleton sums) should be distinct. Datta suggests the choice $a_{i}=3^{i}$, which clearly works, but it is also easy to see that there are choices such as $a_{i}:=m^{2}+i-1$ that yield a sum f_{0} of order $O\left(m^{3}\right)$.

The open problem posed in my talk is whether sum of the a_{i} can be achieved to be $A_{2 m}=O\left(m^{2}\right)$, which would clearly be optimal. This asks for a construction of such numbers a_{i} resp. A_{i} such that all the differences $A_{i}-A_{j}$ are distinct, except for $A_{2 k-1}-A_{2 k-2}=A_{2 k}-A_{2 k-1}=a_{k}$. This asks for a variant of so-called Sidon sets. See O'Bryant [10] for a recent survey.

5. A GEOMETRIC CONSTRUCTION

In the last part of the talk, I described a geometric construction that realizes geometric $(p, 2 q)$-surfaces in the boundary complex of a polytope of dimension $2+p(q-1)$, and hence (after a generic projection) in \mathbb{R}^{5}.

For this, we use an iterated wedge polytope, a simple $2+p(q-1)$-polytope $W:=\Delta_{q-1} \triangleleft C_{p}$ with $p q$ facets. We do not describe this polytope here; it arises from a p-gon by p generalized wedge operations, as described in McMullen [9].

The dual polytope $S:=\Delta_{q-1}$ 乙 C_{p} is a simplicial $2+p(q-1)$-polytope that arises from a p-gon by successively replacing each vertex by q new vertices that span a $(q-1)$-simplex, increasing the dimension by $q-1$, with the given vertex in its barycenter. The wreath product polytopes were described by Joswig \& Lutz [8].

The vertices of W, and hence the facets of S, may be indexed by arrays

$$
\left(k_{1}, k_{2}, \ldots, *, *, \ldots, k_{p}\right)
$$

with $k_{i} \in[q]$ and two cyclicly adjacent $*$ s. Thus there are $f_{0}=p q^{p-2}$ vertices. The edges of the surface correspond to the arrays of the form

$$
\left(k_{1}, k_{2}, \ldots, *, ., \ldots, k_{p}\right)
$$

with only one $*$, which yields $f_{1}=p q^{p-1}$ edges. Finally, the faces of the surfaces are p-gons given by those arrays of the form

$$
\left(k_{1}, k_{2}, \ldots, ., ., \ldots, k_{p}\right)
$$

that additionally satisfy the condition $\sum_{i=1}^{p} k_{i} \equiv 0$ or $1(\bmod q)$. This yields a count of $f_{2}=2 q^{p-1}$ for the faces of the geometric ($p, 2 q$)-surface in question.

References

[1] D. W. Barnette, P. Gritzmann, and R. Höhne, On valences of polyhedra, J. Combinatorial Theory, Ser. A 58 (1991), 279-300.
[2] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented matroids, Discrete Comput. Geometry 24 (2000), 197-208.
[3] U. Brehm, Polyhedral maps with few edges, Topics in Combinatorics and Graph Theory (Heidelberg) (R. Bodendiek and R. Henn, eds.), Physica-Verlag, 1990, pp. 153-162.
[4] U. Brehm and J. M. Wills, Polyhedral manifolds, Handbook of Convex Geometry (P. Gruber and J. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 535-554.
[5] B. Datta, A note on the existence of $\{k, k\}$-equivelar polyhedral maps, Beiträge Geometrie Algebra 46 (2005), 537-544.
[6] L. Heffter, Ueber das Problem der Nachbargebiete, Math. Annalen 38 (1891), 477-508.
[7] G. Károlyi and J. Solymosi, Almost disjoint triangles in 3-space, Discrete Comput. Geometry 28 (2002), 577-583.
[8] F. H. Lutz and M. Joswig, One-point suspensions and wreath products of polytopes and spheres, J. Combinatorial Theory, Ser. A 110 (2005), 193-216.
[9] P. McMullen, Constructions for projectively unique polytopes, Discrete Math. 14 (1976), 347-358.
[10] K. O'Bryant, A complete annotated bibliography of work related to Sidon sets, Electronic J. Combinatorics (2004), no. DS11, http://www.combinatorics.org/Surveys/ds11.pdf.
[11] G. Ringel, Map Color Theorem, Grundlehren vol. 234, Springer-Verlag, New York, 1974.
[12] E. Steinitz, Über die Eulerschen Polyederrelationen, Archiv für Mathematik und Physik 11 (1906), 86-88.
[13] G. M. Ziegler, Polyhedral surfaces of high genus, Preprint, TU Berlin, December 2004, 21 pages; http://www.arXiv.org/math.MG/0412093.

