```
47
                  41
                           43
                                                           61
                                           53
 73
127
         79
131
                 137
                         139
                                  149
                                          151
                                                  157
                                                           163
                 191
                                  197
                                          199
 179
         181
                         193
                                                           223
 233
         239
                 241
                         251
 283
         293
                 307
                         311
                                  313
                                          317
                                                  331
                                                           337
                                                                           349
 353
         359
                                                                           409
                 367
                         373
                                  379
                                          383
 419
         421
                 431
                         433
                                  439
                                                                           463
         479
 467
                 487
                         491
                                  499
                                          503
                                                  509
                                                                           541
                 563
 607
         613
                 617
                         619
                                  631
                                          641
                                                                           659
 661
         673
                 677
                         683
                                  691
                                          701
                                                  709
                                                                   727
                                                                           733
 811
877
         821
                 823
                                          839
                                                                   859
                                                                           863
         881
                                  907
                                                  919
                                                                  937
                                                                           941
                 883
                                                                  1009
1019
        1021
                1031
                        1033
                                 1039
                                         1049
                                                 1051
                                                         1061
                                                                  1063
                                                                          1069
1087
        1091
                1093
                        1097
                                 1103
                                         1109
                                                                  1129
                                                         1123
                                                                          1151
                                                 1117
1229
        1231
                1237
                        1249
                                 1259
                                         1277
                                                 1279
                                                         1283
                                                                  1289
                                                                          1291
1297
        1301
                1303
                        1307
                                 1319
                                         1321
                                                 1327
                                                         1361
                                                                  1367
                                                                          1373
1381
        1399
                        1423
                                         1429
                1409
1453
        1459
                1471
                        1481
                                 1483
                                         1487
                                                 1489
                                                         1493
                                                                  1499
                                                                          1511
1523
        1531
                1543
                                 1553
                                         1559
                                                 1567
                                                         1571
                                                                          1583
1597
        1601
                1607
                        1609
                                 1613
                                         1619
                                                 1621
                                                         1627
                                                                  1637
                                                                          1657
1663
        1667
                1669
                        1693
                                 1697
                                         1699
                                                 1709
                                                         1721
                                                                  1723
                                                                          1733
1741
```

The Great Prime Number Record Races¹

by Günter M. Ziegler²

The year 2003 ended with several prime number records. For example, an effort headed by Jens Franke (Bonn University) led to the solution of the RSA-576 decoding problem: the factorization of a 174-digit decimal number.

We also have a new "largest known prime number": a Mersenne prime number with 6320430 digits, $M=2^{20996011}-1$. The media attribute the discovery to Michael Shafer, a chemical engineering student at Michigan State University—but that is only part of the story.

Mersenne Numbers

The GIMPS project ("Great Internet Mersenne Prime Search", www.mersennse.org) was started in 1996. Its purpose is to search for larger and larger Mersenne prime numbers. The distributed computing project recruited volunteers who, via the internet, get the GIMPS computer programs as well as "their" numbers for testing, who have their personal computers do slave labor, and who report their results back to the project via the internet.

Michael Shafer got the number n = 20996011 to test whether $2^n - 1$ is prime. His PC "did it" with the GIMPS software, and it turned out that the anwer is "yes!!" for this n. Mathwold reports that upon

this success he (Shafer, not the PC) performed a victory dance, called his wife and friends and began to celebrate.

Let us recall: In honor of the French monk Marin Mersenne (1588–1648) the numbers of the form $M_n = 2^n - 1$ are called Mersenne prime numbers—if they are prime. For this it is necessary (a nice exercise from elementary number theory) that n itself is a prime. But this is not sufficient: n = 11 is the first counter-example. In 1644 Mersenne claimed that M_n is a prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, but for no other prime number smaller than 257 (and thus he got it wrong for exactly five cases). Mersenne prime numbers are rather rare: It is not known whether there are infinitely many. Only the first 38 of them are known, plus only two more, in-

¹Translated by the author from his article "Primzahl-Rekordjagd," DMV Mitteilungen 2003-4, S. 5-7.

²Supported by the DFG Research Center FZT-86 "Mathematics in Key Technologies" in Berlin and by a DFG Leibniz grant.

cluding the newly discovered $M_{20996011}$ which is now also the largest known prime number.

It is quite remarkable that numbers with more than six million digits can effectively be tested for primality. This is the genuine scientific (and programming) achievement on which the new record is based—that the number n=20996011 must be prime is only a little warm-up exercise for the new record.

Marin Mersenne, 1588-1648 (Source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Mersenne.html)

Primality tests

It has been shown only recently that there are exact prime number tests that work in polynomial time—see the report in the May 2003 Notices, pp. 545-552. This was a theoretical breakthrough, but it is not yet suitable for use "in practice." The GIMPS project applies for each prime n a sequence of more classical tests, which are nicely described at www.mersenne.org/math.htm:

In Phase I one looks for small prime divisors q of $2^n - 1$. These have to satisfy (again a nice exercise) $q \equiv 1 \mod 2n$ and $q \equiv \pm 1 \mod 8$. Using a modified "Sieve of Eratosthenes" adapted to such factors, prime divisors of M_n up to approximately 40000 (if

any) are found. For this one can exploit the fact that divisibility tests for numbers of the form $2^n - 1$ can be performed very effectively in binary arithmetic.

In Phase II one then uses a special case of the socalled "(p-1)-method" of Pollard (1974), which can be used to find factors of the form q=2kn+1, for which q-1=2kn consists of many small prime factors, or (in an improved version) are highly decomposable except that one prime factor may be a bit larger: To find q such that all prime factors are smaller than B, one forms the product $E:=\prod_{p<B}p$ of all prime numbers that are smaller than B, and then computes $x:=3^{E2n}$. The gcd of x-1 and 2^n-1 will then catch the divisor of 2^n-1 one is looking for.

Only in Phase III the GIMPS project uses a method which is guaranteed to decide whether 2^n-1 is prime, the so-called Lucas-Lehmer test (1878, 1930/1935) for Mersenne numbers: M_n is prime if and only if $\ell_{n-1} \equiv 0 \mod M_n$, where the ℓ_k is defined recursively by $\ell_1 = 4$ and $\ell_n = \ell_{n-1}^2 - 2$. To do this computation effectively, one has to square huge numbers really fast modulo $2^n - 1$. For this the numbers are decomposed into large blocks, and then one works with a special version of a Fast Fourier Transform (FFT), in this case with a FFT with respect to an irrational basis that was introduced by Richard Crandell and Barry Fagin (1994). On the

³For algorithmic prime number theory the experts recommend Richard Crandell & Carl Pomerance: "Prime Numbers. A Computational Perspective", Springer-Verlag, New York 2001.

For a computer algebra perspective on primality tests (and lots of other interesting topics) see Joachim von zur Gathen & Jürgen Gerhard: "Modern Computer Algebra", Cambridge University Press, 2. Auflage 2003.

web pages mathworld.wolfram.com of the Mathematica project, which advertise the new record, it is suggested that GIMPS worked with a Mathematica implementation, but that seems to slightly stretch the facts. (The connection they can legitimately make is that Crandell has worked on implementing his method for the prime number tests in Mathematica.) Indeed, GIMPS works with a highly optimized assembly code. They use floating point arithmetic because this is more effective on Intel Pentium processors, but this also means that the errors of floating point arithmetic have to be detected and eliminated separately.

Primality and factoring

Phases I and II of the GIMPS-sequence really do produce divisors in the case of a decomposable M_n , if they find any, but the third and decisive phase doesn't. In that case the answer will only be "decomposable!" or not, without an explicit prime divisor as a certificate. Thus a complete primality test is performed, but no complete factoring is produced.

And there are good reasons for this: Not even in the special case of Mersenne numbers does one know an effective method for factoring. A method that would be able to factor *arbitrary* numbers with a few hundred digits would be interesting and threatening, because the cryptographic methods that guarantee the security of, for example, online banking and the internet are based on the assumption that factoring and similar problems (such as computing "discrete logarithms") are computationally hard.

RSA

The by now classical example of an encryption method based on the hardness of factoring is the "public key" encryption scheme by Ron Rivest, Adi Shamir and Leonard Adleman published in 1978. This RSA method is currently treated in every new elementary number theory text book, and also used extensively in practice—see the manual pages for ssh on your PC, or the homepage http://www.rsasecurity.com of Rivest, Shamir and Adleman's

company. The security of their method against unauthorized decoding depends on the fact that with current technology it is very difficult to decompose products with 150 or 200 decimal digits into their prime factors. The company "RSA Securities" has even offered prizes for factoring their challenge problems.⁴ The first of them is/was a prize of \$10,000 for factoring the number "RSA-576":

 $18819881292060796383869723946165043980\\71635633794173827007633564229888597152\\34665485319060606504743045317388011303\\39671619969232120573403187955065699622\\1305168759307650257059$

with 174 decimal digits, that is, 576 binary digits (bits). This problem has been cracked by Jens Franke of Bonn University, as reported by *Heise Online* news service on December 8: The number has factors

 $39807508642406493739712550055038649119 \\90643623425267084063851895759463889572 \\61768583317$

and

47277214610743530253622307197304822463 29146953020971164598521711305207112563 63590397527

(87 digits each) and these are prime—which again with the current methods is very easy to verify. For his factorization Franke has used the "General Number Field Sieve (GNFS)." This method was introduced by Buhler, Lenstra and Pomerance (1993). It has a running time of $\exp(O(\sqrt[3]{n\log n}))$ for n-digit numbers; this is not quite polynomial, but is nearly so. The GNFS had already been used to factor the smaller test problems, ranging from RSA-100 to RSA-512, the latter in August 1999.

⁴http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

More Records

And there are even more current records with respect to factorization: Indeed, people are not only trying to test Mersenne numbers for primality, but also to decompose them completely into prime factors. NFSNET (http://www.nfsnet.org) is another distributed computing project, which recently (success announced on December 2) managed in internet joint work to factorize the Mersenne number $2^{757}-1$ completely. The prime factors 9815263 and 561595591 of this number had been known before, but the 213-digit rest was a hard piece of work: It was now decomposed into the prime factors

 $57221370220020678242482279750958577491\\51312827809388406962346253182128916964\\593$

and

 $24033821640983508088736273403005965446\\ 68900235634433213056506664319381390111\\ 97710904242694120545430727149147426656\\ 77774247325292327559.$

This achievement is based on the "Special Number Field Sieve (SNFS)"—a faster specialized version of the GNFS, which is applicable only for special numbers, such as those of the form $b^n \pm 1$.

Record Chase

The chase for new records will continue. In 2000, the "Electronic Frontier Foundation" (http://www.eff.org/) has paid their first prize, \$50,000, for the first prime number with more than one million digits. For the identification of a prime number with more than ten million decimal digits they have offered a prize of \$100,000. This adds to the excitement, and the GIMPS project is looking for fellow combatants, who would enlist their computers for the record chase.

At the same time, the larger RSA challenge problems wait to be attacked. RSA-640, a number with 193 decimal digits, is the next one on the list: \$20,000 has been offered for it.

And the next Mersenne number on the hit list of NF-SNET is $2^{811}-1$. This project is looking collaborators as well.

So, many poor little personal computers will be fed numbers and tortured with prime number tests and decomposition methods, in the hope that their owners might be able to cash in on a part of the fame and glory (and the prize money) for the next record, which surely is soon to be achieved.

Günter M. Ziegler
Inst. Mathematics, MA 6-2
TU Berlin
D-10623 Berlin, Germany
ziegler@math.tu-berlin.de