
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173

179 181 191 193 197 199 211 223 227 229

233 239 241 251 257 263 269 271 277 281

283 293 307 311 313 317 331 337 347 349

353 359 367 373 379 383 389 397 401 409

419 421 431 433 439 443 449 457 461 463

467 479 487 491 499 503 509 521 523 541

547 557 563 569 571 577 587 593 599 601

607 613 617 619 631 641 643 647 653 659

661 673 677 683 691 701 709 719 727 733

739 743 751 757 761 769 773 787 797 809

811 821 823 827 829 839 853 857 859 863

877 881 883 887 907 911 919 929 937 941

947 953 967 971 977 983 991 997 1009 1013

1019 1021 1031 1033 1039 1049 1051 1061 1063 1069

1087 1091 1093 1097 1103 1109 1117 1123 1129 1151

1153 1163 1171 1181 1187 1193 1201 1213 1217 1223

1229 1231 1237 1249 1259 1277 1279 1283 1289 1291

1297 1301 1303 1307 1319 1321 1327 1361 1367 1373

1381 1399 1409 1423 1427 1429 1433 1439 1447 1451

1453 1459 1471 1481 1483 1487 1489 1493 1499 1511

1523 1531 1543 1549 1553 1559 1567 1571 1579 1583

1597 1601 1607 1609 1613 1619 1621 1627 1637 1657

1663 1667 1669 1693 1697 1699 1709 1721 1723 1733

1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
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The Great Prime Number Record Races1

by Günter M. Ziegler2

The year 2003 ended with several prime number records. For example, an effort headed by Jens
Franke (Bonn University) led to the solution of the RSA-576 decoding problem: the factorization
of a 174-digit decimal number.
We also have a new “largest known prime number”: a Mersenne prime number with 6320430
digits, M = 220996011 − 1. The media attribute the discovery to Michael Shafer, a chemical
engineering student at Michigan State University—but that is only part of the story.

Mersenne Numbers

The GIMPS project (“Great Internet Mersenne
Prime Search”, www.mersennse.org) was started in
1996. Its purpose is to search for larger and larger
Mersenne prime numbers. The distributed comput-
ing project recruited volunteers who, via the internet,
get the GIMPS computer programs as well as “their”
numbers for testing, who have their personal comput-
ers do slave labor, and who report their results back
to the project via the internet.

Michael Shafer got the number n = 20996011 to test
whether 2n − 1 is prime. His PC “did it” with the
GIMPS software, and it turned out that the anwer
is “yes!!” for this n. Mathwold reports that upon

this success he (Shafer, not the PC) performed a vic-
tory dance, called his wife and friends and began to
celebrate.

Let us recall: In honor of the French monk Marin
Mersenne (1588–1648) the numbers of the form Mn =
2n − 1 are called Mersenne prime numbers—if they
are prime. For this it is necessary (a nice exercise
from elementary number theory) that n itself is a
prime. But this is not sufficient: n = 11 is the first
counter-example. In 1644 Mersenne claimed that Mn

is a prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127
and 257, but for no other prime number smaller than
257 (and thus he got it wrong for exactly five cases).
Mersenne prime numbers are rather rare: It is not
known whether there are infinitely many. Only the
first 38 of them are known, plus only two more, in-

1Translated by the author from his article “Primzahl-Rekordjagd,” DMV Mitteilungen 2003-4, S. 5-7.
2Supported by the DFG Research Center FZT-86 “Mathematics in Key Technologies” in Berlin and by a DFG Leibniz grant.
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cluding the newly discovered M20996011 which is now
also the largest known prime number.

It is quite remarkable that numbers with more than
six million digits can effectively be tested for primal-
ity. This is the genuine scientific (and programming)
achievement on which the new record is based—that
the number n = 20996011 must be prime is only a
little warm-up exercise for the new record.

Marin Mersenne, 1588–1648 (Source: http://www-groups.

dcs.st-and.ac.uk/∼history/PictDisplay/Mersenne.html)

Primality tests

It has been shown only recently that there are exact
prime number tests that work in polynomial time—
see the report in the May 2003 Notices, pp. 545-552.
This was a theoretical breakthrough, but it is not yet
suitable for use “in practice.” The GIMPS project
applies for each prime n a sequence of more classical
tests, which are nicely described at www.mersenne.

org/math.htm:3

In Phase I one looks for small prime divisors q of
2n − 1. These have to satisfy (again a nice exercise)
q ≡ 1 mod 2n and q ≡ ±1 mod 8. Using a modi-
fied “Sieve of Eratosthenes” adapted to such factors,
prime divisors of Mn up to approximately 40000 (if

any) are found. For this one can exploit the fact that
divisibility tests for numbers of the form 2n − 1 can
be performed very effectively in binary arithmetic.

In Phase II one then uses a special case of the so-
called “(p− 1)-method” of Pollard (1974), which can
be used to find factors of the form q = 2kn + 1, for
which q − 1 = 2kn consists of many small prime
factors, or (in an improved version) are highly de-
composable except that one prime factor may be a
bit larger: To find q such that all prime factors are
smaller than B, one forms the product E :=

∏
p<B p

of all prime numbers that are smaller than B, and
then computes x := 3E2n. The gcd of x − 1 and
2n − 1 will then catch the divisor of 2n − 1 one is
looking for.

Only in Phase III the GIMPS project uses a method
which is guaranteed to decide whether 2n−1 is prime,
the so-called Lucas–Lehmer test (1878, 1930/1935)
for Mersenne numbers: Mn is prime if and only if
ℓn−1 ≡ 0 mod Mn, where the ℓk is defined recur-
sively by ℓ1 = 4 and ℓn = ℓ2

n−1 − 2. To do this
computation effectively, one has to square huge num-
bers really fast modulo 2n − 1. For this the num-
bers are decomposed into large blocks, and then
one works with a special version of a Fast Fourier
Transform (FFT), in this case with a FFT with re-
spect to an irrational basis that was introduced by
Richard Crandell and Barry Fagin (1994). On the

3For algorithmic prime number theory the experts recommend Richard Crandell & Carl Pomerance: “Prime Numbers. A
Computational Perspective”, Springer-Verlag, New York 2001.
For a computer algebra perspective on primality tests (and lots of other interesting topics) see Joachim von zur Gathen &
Jürgen Gerhard: “Modern Computer Algebra”, Cambridge University Press, 2. Auflage 2003.
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web pages mathworld.wolfram.com of the Mathe-
matica project, which advertise the new record, it is
suggested that GIMPS worked with a Mathematica
implementation, but that seems to slightly stretch
the facts. (The connection they can legitimately
make is that Crandell has worked on implementing
his method for the prime number tests in Mathemat-
ica.) Indeed, GIMPS works with a highly optimized
assembly code. They use floating point arithmetic
because this is more effective on Intel Pentium pro-
cessors, but this also means that the errors of floating
point arithmetic have to be detected and eliminated
separately.

Primality and factoring

Phases I and II of the GIMPS-sequence really do
produce divisors in the case of a decomposable Mn,
if they find any, but the third and decisive phase
doesn’t. In that case the answer will only be “de-
composable!” or not, without an explicit prime divi-
sor as a certificate. Thus a complete primality test is
performed, but no complete factoring is produced.

And there are good reasons for this: Not even in
the special case of Mersenne numbers does one know
an effective method for factoring. A method that
would be able to factor arbitrary numbers with a few
hundred digits would be interesting and threatening,
because the cryptographic methods that guarantee
the security of, for example, online banking and the
internet are based on the assumption that factoring
and similar problems (such as computing “discrete
logarithms”) are computationally hard.

RSA

The by now classical example of an encryption
method based on the hardness of factoring is the
“public key” encryption scheme by Ron Rivest, Adi
Shamir and Leonard Adleman published in 1978.
This RSA method is currently treated in every new
elementary number theory text book, and also used
extensively in practice—see the manual pages for
ssh on your PC, or the homepage http://www.

rsasecurity.com of Rivest, Shamir and Adleman’s

company. The security of their method against unau-
thorized decoding depends on the fact that with cur-
rent technology it is very difficult to decompose prod-
ucts with 150 or 200 decimal digits into their prime
factors. The company “RSA Securities” has even of-
fered prizes for factoring their challenge problems.4

The first of them is/was a prize of $10,000 for factor-
ing the number “RSA-576”:

18819881292060796383869723946165043980
71635633794173827007633564229888597152
34665485319060606504743045317388011303
39671619969232120573403187955065699622
1305168759307650257059

with 174 decimal digits, that is, 576 binary digits
(bits). This problem has been cracked by Jens Franke
of Bonn University, as reported by Heise Online news
service on December 8: The number has factors

39807508642406493739712550055038649119
90643623425267084063851895759463889572
61768583317

and

47277214610743530253622307197304822463
29146953020971164598521711305207112563
63590397527

(87 digits each) and these are prime—which again
with the current methods is very easy to verify. For
his factorization Franke has used the “General Num-
ber Field Sieve (GNFS).” This method was intro-
duced by Buhler, Lenstra and Pomerance (1993). It
has a running time of exp(O( 3

√
n log n)) for n-digit

numbers; this is not quite polynomial, but is nearly
so. The GNFS had already been used to factor
the smaller test problems, ranging from RSA-100 to
RSA-512, the latter in August 1999.

4http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html
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More Records

And there are even more current records with respect
to factorization: Indeed, people are not only try-
ing to test Mersenne numbers for primality, but also
to decompose them completely into prime factors.
NFSNET (http://www.nfsnet.org) is another dis-
tributed computing project, which recently (success
announced on December 2) managed in internet joint
work to factorize the Mersenne number 2757 −1 com-
pletely. The prime factors 9815263 and 561595591 of
this number had been known before, but the 213-digit
rest was a hard piece of work: It was now decomposed
into the prime factors

57221370220020678242482279750958577491
51312827809388406962346253182128916964
593

and

24033821640983508088736273403005965446
68900235634433213056506664319381390111
97710904242694120545430727149147426656
77774247325292327559.

This achievement is based on the “Special Number
Field Sieve (SNFS)”—a faster specialized version of
the GNFS, which is applicable only for special num-
bers, such as those of the form bn ± 1.

Record Chase

The chase for new records will continue. In 2000, the
“Electronic Frontier Foundation” (http://www.eff.
org/) has paid their first prize, $50,000, for the first
prime number with more than one million digits. For
the identification of a prime number with more than
ten million decimal digits they have offered a prize
of $100,000. This adds to the excitement, and the
GIMPS project is looking for fellow combatants, who
would enlist their computers for the record chase.

At the same time, the larger RSA challenge prob-
lems wait to be attacked. RSA-640, a number with
193 decimal digits, is the next one on the list: $20,000
has been offered for it.

And the next Mersenne number on the hit list of NF-
SNET is 2811−1. This project is looking collaborators
as well.

So, many poor little personal computers will be fed
numbers and tortured with prime number tests and
decomposition methods, in the hope that their own-
ers might be able to cash in on a part of the fame
and glory (and the prize money) for the next record,
which surely is soon to be achieved.
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