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Abstract. Viewed geometrically, the simplex algorithm on a (primally and dually
non-degenerate) linear program traces a monotone edge path from the starting
vertex to the (unique) optimum. Which path it takes depends on the pivot rule.
In this paper we survey geometric and combinatorial aspects of the situation: How
do “real” linear programs and their polyhedra look like? How long can simplex
paths be in the worst case? Do short paths always exist? Can we expect randomized
pivot rules (such as Random Edge) or deterministic rules (such as Zadeh’s rule) to
find short paths?
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1 Introduction

What can geometry contribute to the study and understanding of linear programs
and of the simplex algorithm? This little survey attempts to sketch a variety of
answers to this question: We want to show that geometry and geometric insights
can contribute both to the understanding of “real” linear programs and to the
construction of “extremal” examples on which (certain variants of) the simplex
algorithm would or should “behave badly.” For this, we will not be so naive to
assume that the nice, symmetrical and “interesting” examples of polytopes that lie
at the core of modern polytope theory such as the permuto-associahedron displayed
in Figure 1 have much to do in their combinatorics and geometry with the polytopes
and polyhedra that arise as the feasible regions of linear programs “in practice.”
Indeed, we have to admit that of course we do not know how a “real” linear program
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Figure 1. A nice polytope [30].

in, say, d = 1000 variables and with n = 5000 constraints “looks like.” (This is, if
you ask for a geometric impression rather than just looking at the input file.)

But still this may be a reasonable question: Take for an example the smallest
entry of the netlib collection, the afiro linear program, as displayed in Figure 2.
What can we say about the geometry of such a program? Well, we can say a
lot. Before we start the discussion, let us just fix a bit of notation, and — more
importantly — match a few terms that have become standard in linear programming
and in polytope theory, respectively. So, for the following d will be used for the
dimension of a problem; in geometry this will be the dimension of a polytope,
in linear programming this will be the number of (free) variables. Similarly, n
will denote the number of facets of a polytope, corresponding to the number of
(essential) inequalities for a linear program. Standard arguments (linear algebra,
perturbation) allow one — at least for the analysis of extremal examples — to
assume that the linear program under consideration is primally nondegenerate (that
is, the pohyhedron is simple), that the objective function is given by the last variable
xq (and thus we are trying to maximize the height of a point in the polyhedron),
that the program is dually nondegenerate (that is, the polyhedron has no horizontal
edges), and finally that the feasible region is bounded (and hence we are looking at
a polytope rather than a polyhedron).

2 Real Linear Programs

What do “real” linear programs “look like,” and how can we analyze and picture
them? In this section, we will sketch two approaches to this question. The first
one is based on the fact that computational polytope theory (cf. [16]) has made
enormous progress since the sixties, so that now we can compute and analyze the
full polyhedron at least for small linear programs, and try to understand it. The
second approach is based on the shadow boundary algorithm, which can be (ab)used
to compute 2-dimensional pictures (projections) of linear programs.

The shadow boundary algorithm for linear programming starts at a feasible
vertex of the polyhedron, for which it is easy to construct a linear function ctx that
is optimal at the given vertex, and then traces the sequence of optimal vertices



/* objective function: */
min: + 10 X39 + -0.48 X36 + -0.6 X23 + -0.32 X14 + -0.4 X02 ;

/* constraints */
X561 : + 1 X38 + 1 X16 <= 300;
X50 : + 1 X26 + 1 X04 <= 310;

X49 : + -1 X37 + 0.326 X09 + 0.313 X08 + 0.313 X07 + 0.301 X06 <= 0;

X48 : + -1 X24 + 0.301 X01 <= 0;

X47 : + 0.107 X31 + 0.108 X30 + 0.108 X29 + 0.109 X28 + -1 X15 <= 0;

X46 : + 0.109 X22 + -1 X03 <= 0;

X45 : + 2.279 X35 + 2.249 X34 + 2.219 X33 + 2.191 X32 + -1 X25 + 2.429 X13\\
+ 2.408 X12 + 2.386 X11 + 2.364 X10 <= 0;

X43 : + -1 X35 + 1 X31 <= 0;

X42 : + -1 X34 + 1 X30 <= 0;

X41 : + -1 X33 + 1 X29 <= 0;

X40 : + -1 X32 + 1 X28 <= 500;

R23 : + 1 X39 + 1 X37 + -1 X36 + 1 X31 + 1 X30 + 1 X29 + 1 X28 = 44;

R22 : + 1 X38 + -0.37 X31 + -0.39 X30 + -0.43 X29 + -0.43 X28 = 0;

X44 : + 1.4 X36 + -1 X23 <= 0;

X27 : + 1 X22 <= 500;

R20 : + 1 X26 + -0.43 X22 = 0;

R19 : + 1 X256 + 1 X24 + 1 X23 + -1 X22 = 0;

X20 : + -1 X13 + 1 X09 <= 0;

X19 : + -1 X12 + 1 X08 <= 0;

X18 : + -1 X11 + 1 X07 <= 0;

X17 : + -1 X10 + 1 X06 <= 80;

R13 : + 1 X16 + -0.86 X09 + -0.96 X08 + -1.06 X07 + -1.06 X06 = 0;

R12 : + 1 X156 + 1 X14 + -1 X09 + -1 X08 + -1 X07 + -1 X06 = 0;

X21 : + 1.4 X14 + -1 X02 <= 0;

X05 : + 1 X01 <= 80;

R10 : + 1 X04 + -1.06 X01 = 0;

RO9 : + 1 X03 + 1 X02 + -1 X01 = 0;%

Figure 2. The afiro linear program.

that appear while the linear objective function is linearly interpolated between the
starting objective function c!z and the final objective function d‘z. Geometrically,
this procedure computes a part of the boundary of a 2-dimensional projection of
the feasible region of the linear program. If we continue the procedure, by next
interpolating between d'x and —c'z, then between —c'z and —d'x, and finally be-
tween —d‘z and c'z, we compute the full 2-dimensional projection. Thus we obtain
pictures. This idea was developed, implemented and tested in the Diplomarbeit of
S. Fischer [4], who produced interesting and somewhat surprising pictures of the
polyhedra of linear programs in the netlib library. The picture gallery of Figure 3
of rather typical examples is supposed to illustrate that some linear programs have
rather sharp angles (in their 2-dimensional projections) while others appear to be
rather round (with many vertices very close to each other in a 2-dimensional pro-
jection). Here the two directions of projections are typically taken to be the given
objective function and the first or last variable.

On the other hand, for “small” linear programs such as afiro a complete
analysis of the linear program is possible. The Polymake-system of Gawrilow and
Joswig [8, 9] is a tool that for a linear program/polyhedron given by a list of
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Figure 3. Siz shadows of linear programs (from [4])

inequalities would (attempt to) run a convex hull algorithm to determine the list of
vertices, then produce all kinds of combinatorial information “asked for,” such as
the number of vertices, the graph, the graph diameter, etc. This was carried out in
the Diplomarbeit of D. Weber [34, pp. 20/21].

For example, the afiro-problem has 32 variables, but it includes 8 equations,



so the dimension of the polytope is d = 24. It has 19 explicit inequality constraints,
plus the 32 nonnegativities, but many constraints are redundant. Indeed, the poly-
tope has only n = 29 facets. It has 1654 vertices, of which only 78 are degenerate.
Thus, the minimal degree is 24, the maximal degree is 39. (These degeneracy data
are, of course, only observed if we interpret the coefficients of the afiro problem
as rational numbers.) The average vertex degree is 24.71, not much more than the
minimal degree. The linear program has 20433 edges, of which 11718 are horizon-
tal: This is more than half of them, perhaps the first big surprise! With respect
to the given objective function, the linear program has a unique maximal vertex,
which has the maximal degree 39; on the other side, there are 4 minimal vertices
for the given objective function, all of which are simple (of degree 24). The minimal
vertices describe a face of dimension 2 (a quadrilateral). The (graph-theoretic) dis-
tance between the minimal vertices to the maximal one is just 2, while the diameter
of the polyhedron is 5. (Thus the problem satisfies the Hirsch bound, as discussed
below, with equality!) What else do you want to know about this linear program?
Chances are that your question can easily be answered by the Polymake system.

3 Long Paths

A lot of effort has been put into the goal to understand the “worst case” of the
simplex algorithm. In particular, we are trying to resolve the central question:

The Complexity of Linear Programming. Is there a strongly polynomial (sim-
plex) algorithm for linear programming?

A natural approach to resolve this question is to construct and understand “bad
examples” of linear programs for (selected) variants of the simplex algorithm. Thus
the development of bad examples and the understanding of pivot rules should, ide-
ally, be closely connected. We would expect that bad examples show that certain
pivot rules are not good; on the other hand, they should tell us how pivot rules
have to be designed in order to escape the “bad examples.” This program has been
worked out only partially up to now. It has produced the “deformed product” ex-
amples of bad linear programs, which managed to fool all the classical deterministic
pivot rules for linear programming into exponential behaviour.

The first and classical example of bad linear programs is given by the Klee-
Minty cubes [21]. These are deformed d-dimensional cubes for which there is a
monotone path (that is, a path on which the objective function increases strictly)
through all the 2¢ vertices. The classical Dantzig pivot rule as well as various
lexicographic rules can be made to be exponential on these examples.

In his linear programming book [29, p. 76], Manfred Padberg talks about what
he calls “worstcasitis”: Following Klee and Minty’s initial breakthrough there was
a whole flood of papers that produced bad/exponential examples for all kinds of
pivot rules in linear programming. Although some of these constructions are quite
ingenious, one gets the feeling that they all more or less work along the same lines,
and produce the same type of bad examples, namely “deformed products.” And
indeed, a precise and systematic concept of “deformed products” was formalized by
Amenta and Ziegler [1], for which the following is essentially true:
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Figure 4. The bad network problem from [35]

“Theorem”: The Klee-Minty cubes and all other published bad examples of linear
programs (that is, exponential examples for the simplex algorithm with various privot
rules) can be constructed and analyzed as iterated deformed products.

We refer to Amenta and Ziegler [1] for details of this construction, including many
examples and pictures. Here we want to present just one additional example not
shown in [1]. Namely, Zadeh [35] presented a sequence of min-cost flow problems Ny,
for which the network simplex algorithm produces an exponential number of steps.
It may seem surprising that even these examples are iterated deformed products:

Theorem [35] [27]. The polytope Py, of Zadeh’s network Ny, satisfies:
o The network N, has 2k + 2 nodes and k> + k + 2 edges.
o The corresponding polytope Py has dimension k> —k+1 and k*> +k —1 facets.
e The polytope Py is an iterated deformed product of 2k — 2 simplices:

Pk = Ak X Ak—l X (Ak_g)Q X ... X (Al)Q.

Thus Py has (k + 1)!(k — 1)! vertices.

e On this iterated deformed product, the network simplex algorithm (with the
common “Path,” “M-Path,” “Primal Dual,” and “Cycle” pivot rules) will
trace a monotone path through 2F + 2F=2 — 1 vertices.



4 Longest Paths

How long can monotone paths be on a linear program of dimension d with n con-
straints? This is an extremal problem that was perhaps first asked by Klee in 1965
[19], and for which the complete answer is not really known (although the general
impression about this may be different).

Indeed, let us assume here and in the following that we are dealing with d-
dimensional polytopes with n facets that are simple, with an objective function that
is nondegenerate. Then we can consider the following three quantities:

e M(d,n) is defined as the maximal number of vertices on a monotone path
on a simple d-polytope with n facets. This is the quantity we are after: it
represents the worst case for the simplex algorithm with the most stupid choice
of pivots, in the worst possible example.

e Myp(d,n) is defined as the maximal number of vertices for a d-dimensional
polytope with n facets. Clearly this represents an upper bound for M (d, n),
and a claim by Motzkin [28] led to the “upper bound conjecture” that the
maximum is given by the dual of a cyclic polytope Cy(n). The upper bound
theorem was proved by McMullen in 1970 [26]; so we now know that

n — d n—1-— d—1
Mus(dn) = faa(Ca(m) = ( L@D”>+< Eﬂiz 1).
2 2

e M (d,n) is the maximal number of any 2-dimensional projection of a sim-
ple d-polytope with n facets. This quantity is of interest since it represents
the worst case for the simplex algorithm with the shadow vertex rule on a
d-dimensional problem with n constraints. This is also the rule for which
Borgwardt [2] has shown that the simplex algorithm is polynomial (essen-
tially linear) on average for a reasonable model of “random linear program.”
It is also the Gass-Saaty rule for parametric linear programming.

In summary, we now have a chain of inequalitites
Msh (d; TL) < M(d; TL) < Mubt (dv n)a

where we know the exact value of the right hand side, we have exponential lower
bounds for the left hand side, but the quantity in the middle is the one that “we
are after.” But how tight are these bounds? Do we always have equality?

To illustrate the gap in our knowledge, let us first discuss the “diagonal”
case of n = 2d. In this case the maximal number of vertices is roughly given by
Moy =~ (%)d/2 ~ 2.6%, while the lower bound is at least 2¢ < M,(d, 2d), as is
shown by the deformed cubes of Goldfarb [10] [1, Section 4.3]. Of course there is
a huge gap between 2¢ and 2.6¢, and we do not know which of the two bounds is
closer to the truth.

For a second example, let us just consider the case d = 4. In this case we have
Mypi(4,n) = %n(n— 3), and this value is achieved by the duals of cyclic 4-polytopes.
On the other hand, the 2-dimensional projections of duals of cyclic polytopes have
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at most 3n vertices, and these do not represent the best lower bound for M, (d, n)
[1, Section 5.4].

It is clear (see [1]) that Mgp(d,n) = M(d,n) = Myp:(d,n) holds for d < 3 as
well as for n < d+2. A current study of Kaibel, Pfeifle, and Ziegler [15] is resolving
at least the first few nontrivial precise values. In particular, for d =4 and n = 7,8
we have

12 = M,(4,7) < M@A,7) = Muu(4,7) = 14

and
16 < Mg, (4,8) < M(4,8) = Muu(4,8) = 20.

In particular, the lower bound of M (4,8) > 17, first achieved by C. Schultz [31] on
the dual of a cyclic polytope, is better than the lower bound of 16 that gets from
the Klee-Minty cubes.

On the other hand, we know from an enumeration of “Hamiltonian abstract
objective functions with the Holt-Klee property” that the value of 20 is not achieved
for duals of cyclic polytopes C4(8): These are customarily taken as the canonical
examples of polytopes that yield equality in the upper bound theorem, but they
are not the only ones. For d = 4 and n = 8 there are exactly two other types of
neighborly 4-polytopes with 8 vertices, called Ng and Ng§ by Griinbaum [11, p. 125],
and on both of these equality M (4,8) = 20 is achieved.

In summary, the available data don’t contradict a conjecture that

M(d,n) = Muw(d,n)

holds for all n > d > 1. The author believes that this conjecture is indeed quite
plausible. In any case, it is interesting that neither deformed products nor dual-to-
cyclic polytopes give worst-possible results.

5 Short Paths

Let us now reverse the question: We are not any more asking for bad examples for
a given pivot rule, but we rather ask for a pivot rule that is good on all examples.
Thus we are trying to answer a tandem of two questions:

e Is there always a short path “to the top”?

e ... and can one find one?

Our geometric model/interpretation is again that we are studying a simple d-
dimensional simple polytope for which the last coordinate x4 is a linear objective
function that is not constant on any edge. A short path is any path whose length
(number of vertices) is polynomial in the number n of facets (and in the dimension
d<n).

A natural approach, trying to provide a positive answer to the questions above,
is to construct and analyze (new) pivot rules that have a chance to be (at least)
polynomial. Thus we are looking for short monotone paths from any given vertex of
the polytope to the (unique) top vertex. This is doomed to fail if there are no such
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short paths at all, perhaps not even nonmonotone short paths. A key question, first
apparently posed by W. Hirsch in 1957, is the following:

Conjecture 1 (The Hirsch Conjecture [3, pp. 160, 168]). Does every d-
dimensional polytope with n facets have graph-theoretic diameter at most n — d?

This is a famous/notorious question, and there have been many diverse at-
tempts to provide an answer. We refer to the extensive survey by Klee and Klein-
schmidt [20] for information, as well as to [36, Lecture 3] for more recent updates.
In particular, the following two conjectures are known to be equivalent to the Hirsch
Conjecture:

Conjecture 2 (The d-Step Conjecture). Is it true that for all d > 1 and for
all d-polytopes with 2d facets, and for any two vertices w and v that do not lie in a
common facet, there is a path from u to v of length d?

Conjecture 3 (The Nonrevisiting Path Conjecture). For any two vertices
on a simple polytope, is there always a path between them that does not leave and
then revisit any one of the facets?

The Hirsch Conjecture is old, classical, interesting, important, and still un-
solved. More concretely, the status of the conjecture may be summarized as follows:

e The Hirsch conjecture is true for d < 3, but not proved for any d > 3 [22].
e The d-Step Conjecture is known to be true for d <5 [22].

e The Hirsch Conjecture is tight for all n > d > 8: for any parameters in this
range, there is a d-polytope with n facets that has graph-theoretic diameter
exactly n —d [12] [5].

e No polynomial upper bound is known for the diameter of a simple d-polytope
with n facets; the best upper bound of n!°89*1 is due to Kalai and Kleit-
man [18].

In an attempt to provoke the construction of interesting (counter)examples for the
Hirsch Conjecture, the following “rather daring” conjecture was published in 1995:

Conjecture 4 (The “Strong Monotone” Hirsch Conjecture [36]). For any
simple d-polytope with n faces and for any generic linear objective function, is there
always a monotone path from the (unique) minimal vertex to the (unique) maximal
vertex of length at most n — d?

This conjecture escapes the counterexamples to the “Monotone Hirsch Con-
jecture” by Todd [33], for which the starting vertex is not the minimal one. It also
escaped an attack by Holt and Klee [13]. Thus this conjecture is still open.

How about pivot rules that have a chance to find polynomial paths on linear
programs? In the following, we want to discuss three such rules.
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Pivot Rule I (“RANDOM_EDGE”). Given any vertex that is not the top vertez,
choose one of the outgoing improving edges, uniformly with equal probability.

Warning: This pivot rule sounds simple, but it seems to be awful to analyze in any
nontrivial example. Its status may be summarized as follows:

e On the Klee-Minty cubes this pivot rule has essentially quadratic running

times: )
d < B < d+1 :
8logd 2

see Gértner, Henk, and Ziegler [7].

e The running time of this pivot rule is at most quadratic on all iterated de-
formed product examples.

e Thus this rule might as well be quadratic in expected running time on every
example, but no sub-exponential upper bound on the expected running time
has been proved.

Figure 5. A bad 3-dimensional example for RANDOM_EDGE (from [32])

As a challenge (and a nice example to illustrate the complexity and behaviour
of the RANDOM_EDGE rule), we ask for the maximal expected running time on a
3-dimensional simple polytope with n facets and 2n — 4 vertices. For this Figure 5
indicates a classe of examples for which the expected running time from the “worst”
vertex is roughly %n. The expected running time for every starting vertex can be
computed recursively for the RANDOM_EDGE rule: It is 0 for the top vertex, and
for every other vertex it is 1 plus the average of the expected running times when
starting at its upper neighbors. The resulting values are also indicated for the
example in Figure 5. We refer to Kaibel et al. [32] for a detailed discussion of the
RANDOM_EDGE rule on 3-dimensional polytopes — whose worst-case behaviour
poses surprisingly tricky problems (for example, the factor % is not worst-possible).
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Pivot Rule IT (“RANDOM_FACET”). At any given starting vertex that is not
the top vertex, move up if there is a unique edge on which the objective function is
increasing. If there is more than one such edge, choose a random facet that contains
the given vertex, and solve the linear program restricted to this facet recursively (that
is, by calling RANDOM_FACET).

This rule may seem a bit more contrived than RANDOM_EDGE, but it turns out to
be sometimes much more accessible to analysis. It was introduced by Kalai [17],
and simultaneously (in a dual simplex algorithm setting) by Matousek, Sharir, and
Welzl [25]. Its status may be summarized as follows:

e The running time of RANDOM_FACET is at most quadratic (in d) on the Klee-
Minty cubes. In fact, one can come up with an exact formula that yields the
exact expected running time for every single starting vertex on the Klee-Minty
cubes [7].

e There is a sub-exponential (but not polynomial) upper bound for the expected
running time of the RANDOM_FACET simplex algorithm of

O (d2n + c‘/m) ,

due to Kalai [17], Matousek, Sharir, and Welzl [25].

e RANDOM_FACET is slow on the Matousek-cubes [24]: These are edge ori-
entations of the d-dimensional cubes that are not in general geometrically
realizable. Combinatorially they may be described recursively as follows: In
the bottom facet of the d-cube take any MatousSek-orientation; all the vertical
edges are directed upward; on the top facet, we copy the directions from the
bottom facet, except that all the edges of any given parallel class may be
reversed (simultaneously).

e But amazingly, there is again a quadratic upper bound for the running time
of RANDOM_FACET on any Matousek-cube that is geometrically realizable, as
was shown by Gértner [6].

Finally, we want to discuss a deterministic rule which still (as far as we know) has
a chance to be polynomial in the worst case:

Pivot Rule IIT (“LEAST_ENTERED”). At any given vertex that is not the top
vertex, among the increasing edges that leave the vertex choose any edge that leaves
a facet that has been left least often on the previous mowves.

Thus this rule is deterministic, but its choices depend heavily on previous choices.
Also it cannot be purely implemented just on the graph: It is essential that we know
for each edge the (unique!) facet of the polytope that it leaves. The formulation
given here depends heavily on the fact that we deal with a simple polytope: Given
any edge incident to a vertex v of a simple polytope, there is always a unique facet
that contains v but not the edge.



14

Dear V.‘;Aw S

P lease Pe;‘l’ s Flny, o ‘lBOO to 4he
{ived povion  whe  caw find o teuntevexample
Yo ke  leard evised vale ov preve 3 b be
Fo‘v)uamlcx\. The leard ewkned vule euntsar 4le
mprvevimg  Valalle  wlil her Liew evdaed leagd
o dan,

S :nlel.L’ )

Novemaw Zadel,

Figure 6. Zadeh’s offer

The LEAST_ENTERED rule was proposed by Norman Zadeh around 1980, and
he offered $1000 to anyone who can prove or disprove that this rule is polynomial
in the worst case; see the text of Figure 6 in Zadeh’s handwriting (from a letter to
Victor Klee, reproduced with his kind permission). Just to encourage the readers
to try their luck on this problem, we want to mention that according to a recent
magazine report [23], Norman Zadeh is now a successful businessman for whom it
should be no problem to pay for the prize once you have solved the problem. Good
luck!
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Note added in proof. There is substantial recent progress on the “monotone up-
per bound problem” discussed in Section 14.4: The inequality M (d,n) < M(d, n)
is tight (holds with equality) for the cases

n < d+ 2: see B. Gértner, J. Solymosi, F. Tschirschnitz, P. Valtr, and E. Welzl,
One line and n points, in: Proc. 33rd Ann. ACM Symp. Theory of Computing
(STOC), ACM Press 2001, pp. 306-315, and

d < 4: see J. Pfeifle, Extremal Constructions for Polytopes and Spheres, Disserta-
tion, TU Berlin 2003.

However, the inequality is not tight in general:
M(6,9) < Myup:(6,9) =30

was established by J. Pfeifle and G. M. Ziegler, On the Monotone Upper Bound
Problem, Preprint, 15 pages, TU Berlin 2003; math.CO/0308186; Experimental
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