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Why study polytopes? Because they are so beautiful, intriguing, and important,
and because there are so many interesting questions about polytopes waiting to
be studied and solved.

This answer may be true, but of course it leaves many questions open.
In particular, what makes a subject such as polytopes “important,” and what
makes questions about polytopes “interesting”? As we will see, many basic
questions about polytopes have been presented to the theory “from outside,”
and many of these questions are still waiting for a definitive answer. So, the
following panorama of the theory of polytopes, written in the year 2000, will
ask “Who’s asking?” for a selection of seven themes that seem central, important,
beautiful, and intriguing. These without doubt will keep us occupied for a while,
fascinated, and trying to give answers.

Polytope theory has never been a “theory about the empty set”: indeed, there
are interesting examples all over the place, and the study of the “key examples”
has so often led one to intriguing phenomena, surprising effects, and eventually
to some answers. Thus a second question we will pose for each of the seven
themes is “Can you give me a good example?”.

The third leading question I’d love to pose for each theme is “Where are
we going?” What’s the theory going to look like, say, in 2017, at the 50th
anniversary of the publication of Grünbaum’s classic volume [23] that defined
the field? I don’t know, of course. But I will try to point to a few directions that
seem worthwhile to explore.

1. Symmetry

The theory of polytopes has firm roots in classical Greek mathematics: the dis-
covery/construction of the “Platonic solids” can be traced back to Euclid’s book
XIII of the “Elements” [3], and the discussion of their beauty and universality
to Plato, although “The early history of these polyhedra is lost in the shad-
ows of antiquity” [13, p. 13]. They are what we now call the “regular convex
3-dimensional polytopes.” The complete list consists of the tetrahedron, the
cube (the fundamental building block of real three-space), the octahedron, the
dodecahedron and the icosahedron. We owe to the Greeks also the concept of
duality, under which the tetrahedron is self-dual, while the cube is dual to the
octahedron, and the dodecahedron is dual to the icosahedron. We also owe to
the Greeks a lot of mysticism associated with these beautiful objects, which
were put into bijection with “the elements,” the planets, etc.
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“What are the symmetry groups of regular polytopes?” This is a very natural
question, and it was asked from many directions, and thus has found many
extensions. With hindsight, it may seem strange that the concept of a group was
first developed for symmetries of fields (Galois groups), in the context of the
solution of polynomial equations by radicals, and not in the study of polytopes.
Nevertheless, undergraduate textbooks nowadays start the discussion of groups
with the example of the symmetry groups of a hexagon, and of the cube, but
not with the roots of a quintic!

The classification of all the regular polytopes was achieved by the ingenious
Swiss geometer Ludwig Schläfli around 1852: Besides the “obvious ones,”
namely the d-dimensional cube and the d-dimensional cross polytope (that is,
the unit balls of R

d in �∞- respectively �1-norms) and the Platonic solids,
there are three exceptional examples in dimension 4: the 24-cell, the 120-cell,
and the 600-cell, whose facets are 24 octahedra, 120 dodecahedra, respectively
600 tetrahedra. One may take the regular polytopes just as “curious objects” of
analytical geometry, but we now know that there is much more to them than
“meets the eye.” For example, consider the classification of the irreducible finite
groups generated by reflections, known as the Coxeter groups. All of these occur
either as symmetry groups of regular polytopes (if the Coxeter diagram is linear)
or as the Weyl group of a root system (if all the weights of the Coxeter graph
are in {2, 3, 4, 6}), or both. The latter case provides also the classification of
the simple Lie algebras, and thus the structure theory of simple complex and
of compact real Lie groups. In the overlap of the two cases above one has a
the “usual suspects” (the symmetry groups Ad−1 and BCd of the d-simplices
and of the d-cubes), plus one exceptional example: the 24-cell, with symmetry
group F4, which is a remarkable object, interesting from many points of view.
For example, the fact that (besides the simplices) the 24-cell is the only self-dual
regular polytope, can be made responsible for “special effects” that occur for
F4-buildings. If you ask about key examples, in the theory of regular polytopes
this is definitely one to look at. (Coxeter’s book [13] is the classical reference
on regular polytopes.)

Who is asking? Among many others there are the problems posed by crystal-
lography and by crystallographers: to classify the possible symmetries occuring
in “nature,” to classify the symmetry groups of crystals, to classify the poly-
topes that tile space (particularly interesting for crystallographers are the tilings
of 3-space), etc. Many of these questions have been answered satisfactorily for
a long time, such as the classification of the crystallographic space groups in di-
mensions 3 and 4, although only very recently we got them “into our hands” in a
unified way that is also accessible as a database and with the algorithms needed
to manipulate them. On the other hand, the question of the possible tilings of 3-
space is by far not answered completely, and there are still fascinating questions
to be studied. These include:

– What is the maximal number of facets of a convex polyhedron that can be
used for a complete face-to-face tiling of 3-space with congruent copies?
(The current record, a polyhedron with 34 faces, is due to Engel (1981).)

– Does every tiling of d-space by translates of one single polytope admit a
scalar product for which the tiles arise as the Dirichlet-Voronoı̈ cells of the
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figure 1 (left)
The regular 3-polytopes

figure 2 (right)
A “Schlegel diagram” of the 24-cell

lattice? (This “geometrization conjecture” of Voronoı̈ (1908) is known to be
true in dimensions up to 4, where we understand lattice tilings quite well,
and in a number of special cases, but the general question is still open.)

Another question, on a borderline between discrete geometry and crystal-
lography, and thus not easily formulated as a precise “mathematical question,”
asks for the possible tilings of 3-space that can be “chemically realized.” And
indeed, interesting new such structures can be found both in the computer and
in the laboratory. See [15] for recent “front-page news” in this direction.

2. Counting Faces

The Euler polyhedron formula

v + f = e + 2,

connecting the numbers of vertices, facets, and edges of a convex 3-polytope,
was at various occasions listed as one of the “top ten theorems of mathematics.”
This formula has an interesting history [18], and it was the starting point for a
wealth of further developments. Let us first rewrite the equation as

f0 − f1 + f2 = 2,

where fi denotes the number of i-dimensional faces of the polytope. In this
context, the “obvious extension” to d dimensions is the relation

f0 − f1 + f2 − . . .+ −1d−1 fd−1 = 1 + (−1)d−1
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between the entries of the so-called f -vector ( f0, f1, . . . , fd−1) of a d-dimen-
sional polytope. It was also found by Schläfli in 1852. However, Schläfli’s proof
was not complete: It depended on a “good ordering” of the facets, in modern
terms “shelling,” whose existence was established only in 1970, by Bruggesser
and Mani. But a valid proof was given by Poincaré, and this was a starting point
of modern algebraic topology.

“What are the possible f -vectors of convex d-polytopes?” This question is
easily answered in dimensions 2 and 3: For d = 2 the f -vectors are ( f0, f1)

with f0 = f1 ≥ 3. For d = 3 the answer given by Steinitz (1906) was that
the f -vector ( f0, f1, f2) has to satisfy only the conditions f2 ≤ 2 f0 − 4 and
f0 ≤ 2 f2 −4, in addition to the Euler formula. It is a nice exercise to verify that
all integral vectors ( f0, f1, f2) that satisfy these conditions are indeed f -vectors
of 3-polytopes.

The next step would be to answer the analogous question in dimension
d = 4, but this is an unsolved problem, even though a lot of work has gone
into it – see [7] and [8]. We do know a lot of conditions by now that have
to be satisfied for f -vectors ( f0, f1, f2, f3) of 4-polytopes, but there are also
substantial “conditions missing.” At the moment it seems that we are far from
a complete answer from both sides: On the one hand, there inequalities that we
don’t know or at least cannot prove, such as

f1 + f2 ≤ 6( f0 + f3).

On the other hand, we do not have enough good construction methods for classes
of interesting 4-polytopes. The problem is that most polytopes that you can
easily “write down” are either simple or simplicial: either their facets, or their
vertices, are in sufficiently “general position.” Perhaps we don’t even understand
the true complexity and degeneracy that may occur in polytopes of dimensions
4 and higher. We’ll have to work harder on this!

If we restrict our attention to the case of simplicial polytopes (where each
facet is a simplex), then the situation is much better, and indeed the characteriza-
tion of the f -vectors of simplicial convex polytopes is a spectacular achievement
of modern polytope theory.

The extremal examples for the simplicial case can be described explicitly:
Given a simplicial d polytope with n vertices, Barnette’s “Lower Bound The-
orem” (1971) says that the number of facets is minimized by any “stacked
polytope,” which is obtained from a simplex via n − d − 1 stellar subdivisions
on facets, resulting in a total of (d + 1) + (d − 1)(n − d − 1) facets. At the
other extreme, the “Upper Bound Theorem” of McMullen (1970) establishes
that the maximal number of facets is obtained by any “neighborly” polytope,
for which every set of 	 d

2 
 vertices form a face. The neighborly polytopes have
many facets:

fd−1 =
(

n − � d
2 �

	 d
2 


)
+

(
n − 1 − � d−1

2 �
	 d−1

2 

)
,

to be precise. There are “super-exponentially many” different combinatorial
types of neighborly polytopes (Shemer 1982), but the only infinite class of
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examples that one can construct “in closed form” seems to be that of the cyclic
polytopes: take the convex hull of any n distinct points

Cd(n) := conv{γ (t1), γ (t2), . . . , γ (tn)}
on a curve γ of order d. For this one can take the “moment curve”

γ (t) := (t, t2, . . . , td),

for which the combinatorics (“Gale’s evenness criterion”) can be derived from
Vandermonde determinants, or – in even dimensions, and that’s the interesting
case – one can take a trigonometric curve of the form

γ (t) := (cos(t), sin(t), cos(2t), sin(2t), . . . , cos( d
2 t), sin( d

2 t)),

which results in a symmetric polytope, with a vertex transitive group of rotational
symmetries!

figure 3
A cyclic polytope C3(6) and a stacked
polytope.

The complete characterization of all the f -vectors of simplicial polytopes,
between these two extremes, is known as the “g-Theorem.” It consists of four
different parts, each of them substantial, surprising, and with its own difficulties.
The first one was a conjecture, the “g-Conjecture” of McMullen (1971), propos-
ing an intricate set of linear and nonlinear inequalities that were supposed to
give a complete characterization. The second step was a construction by Billera
and Lee (1980), which established that every vector that satisfies McMullen’s
condition does indeed arise as the f -vector of a simplicial d-polytope. For
this, Billera and Lee had to come up with “many examples” of simplicial poly-
topes with different f -vectors: and they did! They constructed their polytopes
as shadow-boundaries of cyclic polytopes – or, equivalently, as d-dimensional
central projections of (d + 1)-dimensional cyclic polytopes. The third step was
achieved by Stanley (1980): he established a link to the theory of toric varieties,
where to each simplicial polytope one can associate a toric variety that is “rea-
sonably smooth,” and whose rational Betti numbers are given by linear functions
of the f -vector. So, Stanley established that the validity of McMullen’s con-
ditions would follow from a “hard Lefschetz theorem” for such toric varieties.
Part four was to prove this hard Lefschetz theorem – which turned out to be
harder than expected. The first proof was wrong, the second one was extremely
technical and difficult, and the third one – by McMullen (1993) – turned things
around and used intricate convex geometry methods to establish the algebraic
geometry result . . . and a definitive “simple” proof, which might perhaps also
be true for “star convex” polytopes, still does not seem in sight.

Also beyond the simplicial case, the area of “counting faces” features many
good open questions, among them:

– Characterize the f -vectors of 4-dimensional polytopes.
– Characterize the f -vectors of centrally-symmetric simplicial polytopes.
– Characterize the f -vectors of cubical polytopes (that is, of polytopes for

which all the faces are combinatorial cubes).

The f -vector also includes a lot of information about the combinatorial “size”
and complexity of a polytope. It is quite strange to see how little we really know;
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so, for example, at the moment we cannot even answer whether

fi ≥ 1
1000 min{ f0, fd−1}

holds for all convex polytopes (for 0 < i < d − 1). Or, in other words, could a
convex polytope really have a “thin waist”?

3. Paths

Linear programming is an extremely important part of mathematical program-
ming, not only commercially, but also since many other routines (for example for
combinatorial optimization) depend on the efficient solution of linear programs.
Geometrically, the linear programming problem is to find a “highest point” (with
respect to some linear height function) in some polytope or polyhedron that is
given as an intersection of half spaces (that is, as the set of solutions to a finite
system of linear inequalitities). The simplex algorithm for linear programming,
as developed chiefly by George Dantzig starting in 1947, solves this problem
by first finding one “feasible” vertex of the polyhedron, and then moving along
edges of the polyhedron in such a way that the linear objective function is in-
creased during each step. Linear programming theory (see e.g. [32]) provides
a number of methods and transformations that reduce the general case to the
study of “nice” problems, which satisfy a number of special properties, namely
that

figure 4
A possible path “to the top” taken by a
simplex algorithm.

– the polyhedron is bounded (a polytope),
– it is full-dimensional (a d-polytope in d-space),
– it is simple (every vertex is incident to exactly d edges), and
– the objective function is generic (no two vertices of the polytope get the

same value, and thus no edge is “horizontal” with respect to the objective
function).

For the following, we may even assume that we are provided with one vertex
of the polyhedron as our “starting point,” and we may assume that this point is
the lowest vertex of the polytope. Now the simplex algorithm chooses edges to
“walk along them” in order to “reach the top.” But which edges to take?

This is a question asked by linear programming to polytope theory. In fact,
there are three different main questions, none of them answered satisfactorily
by now, and each of them intriguing:

– “Is there always a ‘short’ path?”
– “How long can a monotone path be?”
– “Would a random monotone path be short?”

For each of them, the ‘short’ and ‘long’ is meant in terms of the size of
the input polytope, which is given by the dimension d, and the number n of
facets/inequalities.

The first question was apparently asked by Warren Hirsch of George Dantzig
at a conference in 1957, and it appears in Dantzig’s fundamental book from 1963
[14]: “Is there always a short path (specifically, a path using at most n−d edges)
from each vertex to every other vertex?” So the Hirsch conjecture – intensively
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studied but still unsolved [28] – claims that the combinatorial diameter of a
simple d-polytope with n facets is bounded by n − d. This conjecture is best
possible: There are example polytopes of diameter n − d for all n > d ≥ 8
(Holt & Klee 1998; Fritzsche & Holt 1999). However, we have no upper bound
available that would even be polynomial in n and d; the best result to date, due
to Kalai and Kleitman (1992), amounts to an upper bound of n1+log d .

The Hirsch conjecture is of great importance because of its close connection
to the complexity of the simplex method. In particular, if there is no polynomial
upper bound on this diameter, then the simplex algorithm can not provide a
strongly polynomial method for linear programming. But a positive solution
of the Hirsch conjecture could also provide us with a method to find short
paths. And thus, we are dealing with the complexity of the linear programming
problem itself [10] [32].

The second question, “How many edges can a monotone path on a simple
polytope have in the worst case?”, is a beautiful example from mathematics
history where the question that was asked, and the answer that was finally
provided for it, don’t really fit together. On the way to an answer, Gale (1963)
found/constructed the duals of the cyclic polytopes, which have many vertices.
And then the answer that was given to our question is composed of two parts:

– The number of vertices on a monotone path is bounded by the number of all
vertices of the polytope.

– The number of vertices of a d-polytope with n facets is bounded by the
number of facets of the cyclic polytope Cd(n), according to the Upper Bound
Theorem.

Both bounds are sharp – the second one for the duals of cyclic polytopes, the
first one for example for a sequence of deformed cubes constructed by Klee and
Minty (1972): The Klee-Minty cubes are “deformed” so that there is a monotone
path through all the vertices. Many other examples were given of polytopes with
long monotone paths, but they all rely on the “deformed product” idea of Klee
and Minty [1].

1

2

3

figure 5
A 3-dimensional Klee-Minty cube.

However, to answer the original question, we must find out whether both
bounds above can be simultaneously tight: It is not clear that for a dual of
a cyclic polytope, there can be a monotone path through all, or most, of the
vertices. Thus there is still a huge gap between the upper bound provided by the
Upper Bound Theorem and the length of a monotone path that one can actually
construct via deformed products . . .

If – for the third question – we look at a random path from the bottom to
the top vertex of a polyhedron, how long will that be? Exponentially long paths
exist, as we see from the Klee-Minty cubes. However, it is still possible that
the expected length of a (suitably selected) random path will be polynomial,
or even quadratic in n and d. This would provide a strongly polynomial (ran-
domized) method for linear programming and thus settle the question about
the complexity of linear programming in all kinds of complexity models that
admit a probabilistic method. However, the method of taking “randomly the
next increasing edge” is easy to describe, but seems nasty to analyze. There
are other probabilistic rules that are harder to describe, but easier to analyze
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[25]. A crucial point seems to be that purely combinatorial games/arguments
will not suffice to settle the problem; rather, we have to see whether we can get
genuinely geometric arguments and properties to help [20].

All three basic questions about paths on polytopes are important, but at the
moment we cannot answer them. The solution will be that we need to use new
tools, from other parts of Mathematics. On the one hand, probability theory
enters as soon as we consider the simplex algorithm (with random pivots) as a
stochastic process: Analyze it!

A different point of view is that polytopes should be considered as “round”
in quite a variety of different ways: A suitable coordinate transformation can be
computed that eliminates “thin” and “flat” polytopes, so we can assume that our
polytope is “round.” For large and complex polytopes, perhaps convex geometry
versions of paths on reasonably smooth bodies could be applied [30]. But there
are also discrete models of curvature (see [19]) according to which boundaries
of polytopes could be positively or at least non-negatively curved, which could
imply small diameters, one might hope.

4. 0/1-Polytopes

Combinatorial optimization has had remarkable success in the exact solution of
large instances of (N P-)hard optimization problems, such as travelling salesman
and max-cut problems. This success is based on investigations in “polyhedral
combinatorics,” the study of the combinatorics (in particular, the facets) of
specific classes of 0/1-polytopes, such as the travelling salesman polytopes and
the cut polytopes.

The 0/1-cube [0, 1]d = conv({0, 1}d) is a very basic, simple d-polytope.
The 0/1-polytopes arise as the convex hulls of subsets of the vertex set of the
0/1-cube, that is, as conv(V ) for subsets V ⊆ {0, 1}d . Some of these 0/1-
polytopes are quite intricate beasts, have extremely complicated structure, and
pose lots of difficult and interesting questions.

figure 6
A regular 0/1-tetrahedron and a non-
regular 0/1-octahedron.

The past ten years have given us a good overview over extremal properties
of 0/1-polytopes. The next ten years should provide us with a picture of the
typical 0/1-polytopes – in terms of the same parameters and properties that
were and are interesting for extremal 0/1-polytopes.

To produce a “typical” 0/1-polytope one could look at a random 0/1-
polytope, that is, a polytope whose vertices are chosen with equal probability
from the vertices of the d-dimensional 0/1-cube. Random 0/1-polytopes are
particularly interesting since they provide a natural model of random polytopes
that are typically neither simple nor simplicial. The number of vertices would be
fixed in advance – say 2d, or d2, or 2d/2 vertices. You might complain that such
a choice is quite arbitrary: Well, it is; what we’d really want to understand is
the evolution of a random polytope, the development of its expected parameters
when the number of vertices grows from d + 1 to 2d , with the random vertices
added one by one. (One might take the evolution of the random graph, which
is quite well understood by now, as a role model.)

Thus each of the exciting extremal results that we now know about 0/1-
polytopes becomes a much more difficult question for the evolution of a random
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0/1-polytope. We here name just a few, and refer to [34] for references and
details.

We know that 0/1-polytopes may have lots of edges; for example, there are
examples such as the cut polytopes with an exponential number of vertices that
are 2-neighborly, that is, any two vertices are connected with an edge. We also
know that vertex degrees may be as large as 2d−1 and even larger that that, from
an example found by O. Aichholzer.

We know that the integral facet-defining inequalities of 0/1-polytopes may
have huge coefficients: The upper bound provided by Hadamard’s inequality
applied to 0/1-determinants is essentially sharp (Alon & Vũ 1997).

And, perhaps most strikingly, let’s consider the basic question “How many
facets can a d-dimensional 0/1-polytope have?” It appears for example in a
paper by Grötschel and Padberg (1988) about the travelling salesman polytopes,
where they asked for an a priori estimate for the travelling salesman polytopes.
Only very recently we got closer to convincing answers: On the one hand, there
is an upper bound of roughly (d − 2)!, due to Fleiner, Kaibel & Rote (2000).
On the other hand, Bárány & Pór (2000) produced a first superexponential
lower bound for the number of suitable random 0/1-polytopes with a rather
large (exponential) number of vertices. Their investigation includes a lot of
information about the geometry of these random 0/1-polytopes, including quite
precise descriptions about the points that “with high probability” lie in the
random 0/1-polytope.

“Do the examples of interest in combinatorial optimization, such as trav-
elling salesman polytopes and cut polytopes, really “look” and “behave” like
random 0/1-polytopes?” In fact, these two examples behave quite differently.
They both arise from the following construction: Let Km denote a complete
graph with m vertices and d := (m

2

)
edges. If we identify the d edges of Km

with the coordinates 1, 2, . . . , d, then the subsets of the edge set of Km cor-
respond to the 0/1-vectors of length d, that is, to the vertices of [0, 1]d . The
travelling salesman polytope Tm is now defined as the convex hull of all the 0/1-
vectors that correspond to the travelling salesman tours in Km , while the cut
polytope Cm is defined as the convex hull of those 0/1-vectors that correspond
to the edge sets of cuts through the graph Km .

What can we say about these examples? One can say quite a lot. For ex-
ample, the travelling salesman polytope Tm has dimension m(m−3)

2 , it is very
symmetric (with a vertex transitive symmetry group), it has lots of facets (large
classes of which can be explicitly described), and it is very complicated. This is
strikingly apparent from the result of Billera and Sarangarajan (1996) that every
0/1-polytope appears as a face of a travelling salesman polytope. Thus, there
is no hope for a complete description or perfect analysis of these polytopes.
Nevertheless, many of the facts that were found out about the combinatorics of
these polytopes (in particular, about their classes of facets) have been used in
practice: Embedded into cutting plane procedures this has led to striking suc-
cesses, such as the exact solution of travelling salesman problems with more
than 10 000 nodes [2].

And the cut-polytopes? They are full-dimensional, they are also very sym-
metric (even though this is not quite apparent from the definition!), they have
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extremely many facets (as one can see from explicit computations for m ≤ 9),
and they are rather neighborly: Any two vertices determine an edge, any three of
them determine a triangle. Thus, the combinatorial types of the low-dimensional
faces are very restricted: They are all simplices! Again, large classes of facets
of cut polytopes can be described – via a “functional analysis connection” to
the study of finite metric spaces [16] – and this was used successfully in the
solution of max-cut problems occuring in practice.

So, this is a success story for polytopes, giving the basis for powerful opti-
mization methods. But, let’s not get too excited about this: Great challenges do
remain! To mention just one, while travelling salesman problems of large size
and max-cut problems of medium size can be solved successfully these days,
stable set and coloring problems are much harder: they seem computationally
quite intractable. There are 0/1-polytopes associated with these coloring prob-
lems, such as the stable set polytopes. And those wait for further investigation
from a polytope theory point of view.

5. Integer Points

“How can one count the number of integral points in a polytope?” The counting
of lattice points in polytopes is a difficult matter [6] – much more complicated
than one might think, as one can see from some of the answers that are more
complicated than one might think. Take, for example, the example of an or-
thogonal tetrahedron ∆[a, b, c], with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), and
(0, 0, c). This is a tetrahedron of volume 1

6 abc, and thus one would expect that

for large a, b, c the number of lattice points is roughly 1
6 abc. Indeed it is, but the

precise number is not easy to get into one’s hands. Furthermore, we know from
complexity theory and combinatorial optimization that the number of integer
points in a polytope is extremely hard to compute if the dimension is not fixed.

Geometric arguments about integer points in polytopes have been studied as
a (successful) tool for number-theoretic investigations since the time of Gauß. It
was Minkowski who (around 1900) created a whole subject called the “geometry
of numbers” that treats the geometry of convex bodies – and thus in particular
polytopes – in relation to the lattice of integral points in R

d . A classical theorem
by Minkowski says that a centrally-symmetric convex body which does not
contain any lattice points other than its center cannot have a volume that is
larger than 2d . If we look at convex bodies that do not contain any interior
lattice points, then we know that they have to be “flat” in some lattice direction.
This is a classical theorem of Khintchine (1948). But how flat exactly such a
body must be is not clear: The latest results (Banaszczyk et al. 1998) give an
upper bound of the order of d3/2 for the number of adjacent lattice hyperplanes
that contain the body, but we seem to have examples only of lattice width d, as
given by

{(x1, . . . , xd) ∈ R
d : xi ≥ 0 for all i, x1 + . . .+ xd ≤ d}.

Many investigations in this context concern quite general convex bodies. But the
geometry of numbers has also produced specific results about lattice polytopes:
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figure 7
White’s tetrahedron ∆(4, 3).

Polytopes all of whose vertices have integral coordinates. With this extra restric-
tion, even tetrahedra become interesting. For example, a result found by White
(1964), rediscovered and reproved many times afterwards, states that a lattice
tetrahedron which contains no integral points other than its vertices, must be “of
width one”: It can be constructed by taking vertices from two adjacent lattice
planes and thus it is equivalent to one of the tetrahedra ∆(p, q) obtained by
taking the points (0, 0, 0) and (1, 0, 0) at “height zero” and the points (0, 0, 1)
and (p, q, 1) at “height one,” for 0 < q < p and gcd(q, p) = 1.

In higher dimension, we have no complete classification of the empty lattice
simplices, and we do not know their maximal width [24].

The theory of toric varieties, created by Demazure (1970), by Mumford
et al. (1973) [27], and others, has revived and intensified the study of lattice
polytopes. The reason is that toric geometry associates interesting complex
algebraic varieties with lattice polytopes, and all the simple or subtle questions
about those varieties can be translated into problems on lattice polytopes via a
well-established dictionary [17]! Using this connection, Pommersheim (1993)
discovered a quite remarkable formula for the lattice points in the the tetrahedron
∆[a, b, c] in terms of a, b, c and certain number theoretical functions, namely,
Dedekind sums s(ab, c), s(ac, b) and s(bc, a). Pommersheim’s formula was
derived from the Todd characteristic class of the associated toric variety:

#(∆[a, b, c] ∩ Z
3) = abc

6
+ 2 + ab + ac + bc + a + b + c

4

+ (ab)2 + (ac)2 + (bc)2 + 1

12abc
− s(ab, c)− s(ac, b)− s(bc, a),

where s(p, q) = ∑q
i=1((

i
q ))((

pi
q )) and ((x)) = x − 	x
 − x − 1

2 for x /∈ Z,
((x)) = 0 for x ∈ Z.

The dictionary between lattice polytopes and toric varieties has also led to
new questions about lattice polytopes, for example to the study of unimodu-
lar triangulations: “Which lattice polytopes have triangulations into simplices
of minimal volume (determinant 1) that use only integral vertices?” Every 2-
dimensional polytope has such a triangulation, but many 3-dimensional ones do
not: For example, the empty lattice simplices∆(p, q) don’t have such triangu-
lations, for p > 1. Knudsen, Mumford and Waterman [27] have an intriguing
theorem which states that every lattice polytope has such a unimodular triangu-
lation after you enlarge it by some suitable large integral factor. This theorem is

Page: 11 job: ziegler Engquist/Schmid (eds.) Mathematics Unlimited – 2001 and Beyond date: 25-Sep-2000



12 G. M. Ziegler

a gem that has never been polished and displayed in full light, and which would
deserve that! Moreover, we should answer a few questions: For example,

– Would every sufficiently large integral factor be good enough?
– If the dimension is 3, does a factor of 4 always suffice? (We know that

k∆(p, q) has a unimodular triangulation for every k ≥ 4.)
– In any dimension d, is there some factor that is good enough for all lattice

d-polytopes?

On the other hand, Bruns, Gubeladze & Trung (1997) have shown (quite easily)
that for every lattice polytope P , the expanded version k P will have a covering
by unimodular simplices, if k is large enough.

Physicists have also been asking questions in this context: For building
“string theories” they need so-called Calabi-Yau manifolds; examples for such
manifolds can be constructed as generic hypersurfaces in toric varieties; and
the dictionary tells us that these toric Calabi-Yau manifolds correspond to “re-
flexive lattice polytopes”: These are polytopes with integral vertices, with the
origin in their interior, such that all facets determine lattice hyperplanes that are
adjacent to a lattice hyperplane through the origin. Or, equivalently: We look at
integral polytopes such that the polar dual polytope is integral as well. It follows
from general results in the geometry of numbers that in every dimension there
are only finitely many examples of such reflexive polytopes. In dimension 2
there are sixteen non-equivalent types. Kreuzer and Skarke [29] have classi-
fied the reflexive polytopes in dimensions 3 and 4: There are 4319 respectively
473800776 of them. Among these “tons of” examples there are a few really
fascinating ones. For example, in their classification they have found remark-
able symmetric coordinates for the 24-cell, with integral coordinates both for
the polytope and its polar dual!

6. Combinatorial Types

“Can’t one just enumerate all the combinatorial types of d-dimensional poly-
topes with n vertices?” One can, in principle, since it is easy to see that for every
n and d there are only finitely many combinatorial types. But how many are
they?

Let’s first look for explicit answers, for small n and d. The case d = 2 is
not really interesting: For every n > 2 there is exactly one combinatorial type,
the convex n-gon. For d = 3 the situation already becomes more complicated:
For n = 4 we have the tetrahedron, for n = 5 one gets the square pyramid
and the bi-pyramid over a triangle, for n = 6 there are seven combinatorial
types, and for n = 7, 8, 9, 10 one has found that there are 34, 257, 2606, resp.
32300 combinatorial types. More enlightening than these exact values (which
have been computed up to n = 17), the asymptotics for this have been derived
in a very fruitful interaction between polytope theory and graph theory. The
translation into graph theoretical problems is done via a classical theorem of
Steinitz: The combinatorial type of a 3-polytope is given by an arbitrary simple,
planar, 3-connected graph. Tutte, Bender and others have produced beautiful
formulas for the numbers of “rooted maps,” and from these obtained sharp
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asymptotics for the numbers of combinatorial types. For example,

N ( f0 = n + 1, f2 = m + 1) ∼ 1

972mn(m + n)

(
2m

n + 3

)(
2n

m + 3

)

is an excellent approximation for the number of distinct types of 3-polytopes
with n + 1 vertices and m + 1 facets, due to Bender and Wormald (1988). So
much for small dimensions: In “small co-dimensions” one can also get explicit
answers. Indeed, for small n−d linear algebra comes to the rescue, and provides
the method of Gale diagrams (developed by Perles [23]); from this one gets that

for n = d + 1 there is just the d-simplex, for n = d + 2 there are exactly 	 d2

4 

combinatorial types of polytopes; even for n = d + 3, with the help of Gale
diagrams one can completely enumerate the combinatorial types of polytopes.
But for n = d + 4 things become really interesting: This is the “threshold
for counter-examples.” In dimension d = 4 this is the case n = 8, where
Altshuler and Steinberg (1985) have produced a complete classification of all
the combinatorial types of 4-dimensional polytopes with 8 vertices: there are
exactly 1294 combinatorial types.

figure 8
The seven 3-polytopes with 6 vertices.

This result is based on massive computer work, but also on interesting
theoretical foundations. One of them is the theory of oriented matroids [9] [11],
which provides one with a combinatorial description of the type of a polytope
together with its “internal structure.” This is the combinatorial basis for an
enumeration, and from this basis one has to decide whether a type that has been
generated is “realizable” or not. This realizability problem for types of polytopes
and for oriented matroids is difficult and still provides many challenges, in
particular in the “non-uniform” case, when the polytope is neither simple nor
simplicial. It is a consequence of Richter-Gebert’s universality theorem for 4-
polytopes [31] that the problem of realizability of spheres as polytopes is in fact
computationally difficult – it is equivalent to the existential theory of the reals
(ETR), the problem to decide whether a system of real polynomial equations
and inequalities has a solution. Nevertheless, the oriented matroid approach to
the realizability problem for polytopes – pioneered by Bokowski – has been
very successful [12].

“How many combinatorial types of d-dimensional polytopes with n vertices
are there, if n and d are large?” We can’t expect exact answers, but we can try
to get the asymptotics right. Again, the theory of oriented matroids, and its
“magnifying glass” obtained by taking the internal structure of polytopes into
account, provides one with rather sharp and slightly surprising answers. The
main result is, to quote the title of a paper by Goodman and Pollack (1986),
that “There are asymptotically far fewer polytopes than we thought.” The result
is interesting, the method to get it is interesting as well: The main point is that
the combinatorial type of a polytope is determined if we know the signs of
all the determinants spanned by the (d + 1)-tuples of vertices of the polytope.
Thus the combinatorial type of a polytope corresponds to one or several strata
in the stratification of R

dn given by the
( n

d+1

)
determinant functions. There are

classical theorems by Oleinik, Petrovky, Warren, Milnor and Thom which give
bounds on the numbers of these strata. From this Alon (1986) derived that the
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14 G. M. Ziegler

total number of polytopes with n vertices (of any dimension!) is bounded by

2n3+O(n2),

where O(n2)denotes a function that grows at most quadratically in n. Why is this
result surprising? Because it implies that there are so many more “combinatorial
types” of simplicial spheres that cannot be realized as polytopes. Indeed, Kalai
(1988) has found a very simple construction of such simplicial spheres, as
follows: One starts with a cyclic (d + 1)-polytope with enough vertices and
combinatorially constructs lots of different d-dimensional balls in its boundary.
These balls of dimension d are proved to be shellable, and their boundaries are
thus piecewise-linear simplicial spheres. Thus one obtains that there are more
than

22n/3

different types of simplicial spheres with n vertices, most of which are thus not
realizable. This gap may make one wonder also about generalization of results
such as the g-Theorem: If we know that it is true for simplical polytopes, how
much basis do we really have to think that the same statement might be true for
the so much larger class of simplicial spheres?

7. Algorithms

“Given a polytope . . . ” may mean many different things. For example, it may
mean that you are given the vertices of a polytope as in the case of 0/1-polytopes:
Then one usually wants to compute the facets, that is, a complete list of facet-
defining linear inequalities. It may also mean that one is given a list of inequal-
ities, not necessarily facet-defining, as in the case of linear programs. Then one
might ask for “the highest vertex,” as a linear programming problem would do,
or less modestly for a complete list of the vertices of the polytope or polyhedron.
It turns out that the two computational problems “given the vertices, compute
all the facets” and “given the facets, compute all the vertices” are essentially
equivalent, and known as the convex hull problem. Once we have the vertices
and the facets of a polytope, we can compute “the rest”: We can remove redun-
dancies, compute the vertex-facet incidences, and from these derive all the other
combinatorial properties, such as the graph, the diameter, f -vectors, pictures,
etc. Thus the convex hull problem is a key computational problem, to be solved.
It turns up whenever one is trying to “compute examples,” and thus has been
posed and studied from different directions and for various types of problems.

Theoretically, the problem “is solved” if one considers the dimension d as
fixed: Then, given the vertices one can compute the facets (or vice versa) in
a time that is proportional to the number n	d/2
, which is proportional to the
maximal number of facets/vertices that one could get as the output (Chazelle
1993). However, if one does not consider the dimension d as fixed, then we don’t
have a polynomial time algorithm. We know that the answer of a convex hull
problem may be extremely large, indeed exponentially large in the size of the
input: So what we want is an algorithm that would produce the facets/vertices
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of the output one by one, in a computation time “per output element” that is
polynomial in n and d. But none of the many interesting algorithms that have
been proposed and analyzed for the convex hull problem will really guarantee
this, as was demonstrated by Avis, Bremner & Seidel [4]. Even worse (in fact,
equivalently) we do not have a “verification algorithm” that would in polynomial
time answer the following question: “Given all the vertices and a list of facets,
tell me whether the list of facets is complete!” If we had a method to solve
this problem efficiently, then we could use this as a subroutine to construct an
output-polynomial algorithm for the convex hull problem.

One reason, I think, why we can’t really solve the convex hull problem, is
that we do not really understand the complexity of polytopes, even in constant
dimension. This is not a problem in dimensions 2 or 3: Here we do understand
the complexity, and we can efficiently solve the convex hull problem, which
is in particular important because of applications in computational geometry,
computer graphics, robot motion control, etc. But as soon as the dimension is
4, we don’t really know how “complex” things can be. So, if you have a 4-
polytope with n vertices and m facets, how many vertex-facet incidences can it
have? How many edges and 2-faces can there be then? In other words, are the
ratios

intricacy(P) := f03

f0 + f3
and fatness(P) := f1 + f2

f0 + f3

really bounded for 4-polytopes P? This is the question about “intricate” and
“fat-lattice” 4-polytopes [4].

In practice, we do however have a number of algorithms and a number of
efficient implementations at hand “that work.” Thus, for “reasonably sized”
examples of polytopes, we can compute them and study them. So we have the
polymake software framework of Gawrilow & Joswig [21, 22], which allows
one to work with examples on the computer. polymake will help to generate
examples, and – provided it can solve the convex hull problem – it can compute
parameters, analyze properties, and (last, not least) produce pictures. Thus, I
believe that a new imperative of polytope theory is: Experiment!

The ability to construct, enumerate, compute and visualize examples on a
computer has definitely changed polytope theory. It has led to examples illus-
trating old questions, to solutions of some of these, and to new questions, some
simple, some simple-sounding, some being just proven or destroyed while I was
writing these lines. The field of discrete geometry is very much alive.
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pp. 1–44

References to additional papers referred to in this article are available at
http://www.math.tu-berlin.de/˜ziegler/

Page: 17 job: ziegler Engquist/Schmid (eds.) Mathematics Unlimited – 2001 and Beyond date: 25-Sep-2000


