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Abstract. The 0/1-Borsuk problem asks whether every subset of {0, 1}
can be partitioned into at most d 4+ 1 sets of smaller diameter. This is
known to be false in high dimensions (in particular for d > 561, due to
Kahn & Kalai, Nilli, and Raigorodskii), and yields the known counter-
examples to Borsuk’s problem posed in 1933.

Here we ask whether there might be counterexamples in low dimension
as well. We show that there is no counterexample to the 0/1-Borsuk con-
jecture in dimensions d < 9. (In contrast, the general Borsuk conjecture
is open even for d =4.)

Our study relates the 0/1-case of Borsuk’s problem to the coloring prob-
lem for the Hamming graphs, to the geometry of a Hamming code, as
well as to some upper bounds for the sizes of binary codes.

1 Introduction

The Borsuk conjecture is a puzzling problem: posed in 1933, in the famous paper
by K. Borsuk [6] that contained the “Borsuk-Ulam theorem,” it has resisted
all attempts of proof until in 1992 Kahn and Kalai [11] announced that the
conjecture is false, due to counterexamples in dimensions 1325 and higher. After
much subsequent work, we now know that the Borsuk conjecture is false in all
dimensions d > 560, and true in dimensions d < 3 — which leaves a remarkable
gap! How about dimension 4, say? This leads us to ask: “Must the counter-
examples be necessarily be so high-dimensional?”

It turns out that while the proofs in dimensions d < 3 depend on intricate
geometric arguments, all the counterexamples rely on purely combinatorial work
on sets of 0/1-vectors plus some linear algebra techniques. Thus we ask: “Must
0/1-counterexamples be necessarily be so high-dimensional?” This question leads
us to a lot of beautiful combinatorics, to graph coloring problems and optimal
codes, and finally to a partial answer: Perhaps they don’t have to be that high-
dimensional, but at least there are no counterexamples in dimensions d < 9.
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2 The 0/1-Borsuk Problem

Borsuk asked:

Borsuk’s problem: Is it true that every bounded subset S of R? can be de-
composed into d + 1 subsets,

S = S1USU...USg41,
all of which have smaller diameter than S?

The number of d+1 subsets cannot be reduced: d+1 sets are needed, for example,
if S is a regular simplex of dimension d (or just its vertex set), or a d-dimensional
ball (or just its boundary). In both cases, however, a partition into d + 1 parts
exists, and isn’t hard to find. (Only the part that a d-ball cannot be partitioned
into fewer than d + 1 parts of smaller diameter is non-trivial; it is equivalent to
the Borsuk-Ulam theorem, and was anticipated by Lyusternik and Shnirel’man
in 1930, three years before Borsuk’s paper.)

Borsuk’s conjecture was proved to be true for all sets S of dimension d < 3
(Perkal 1947; Eggleston 1955), and for smooth bodies S (Hadwiger 1946), but
the general case remained an open problem for a long time. See Griinbaum [8]
and Boltyanski, Martini & Soltan [5, §31] for surveys of Borsuk’s problem. On
the other end, the constructions of Kahn & Kalai were simplified, extended and
improved, so that with the efforts of Nilli [16], Raigorodskii [20, 21] and Weiibach
[24] we have counterexamples for all d > 560. (See [1] for a popular exposition.)
Thus, with all the work and effort that was put into the problem, we know now
that the answer is “yes” for d < 3 and “no” for d > 560.

Borsuk’s problem is hard enough for the special case where S is a finite
set (equivalently, if one considers convex polytopes conv(S), since the largest
distance in a polytope always occurs between two vertices). It is an interesting
question whether one can derive the general case from the polytope case.

An even more special case (but the one used to construct counterexamples!)
is the one when S is a set of 0/1-vectors, that is, where S C {0,1}¢ is a subset
of the vertices of the regular 0/1-cube. In that special case, it is now known that
Borsuk’s conjecture is false for d > 561, but true for d < 9. For the counter-
examples in high dimensions, we refer to the sources quoted above; our aim in
the following is to demonstrate the positive answer for the “0/1-Borsuk problem”
for d < 8, and to explore some of the combinatorics, graph theory and coding
theory connected with it.



0/1-Borsuk problem: For which d can every subset S C {0,1}? be decom-
posed into d + 1 subsets,

S = S1USU...USg41,
all of which have smaller diameter than S?

It is not true that d+ 1 subsets are even needed in each dimension: For example,
in dimension 2 it is easy to check that 2 subsets will always do. However, the
upper bound cannot be improved much.

Ezample 1. The subset S := {ey,...,eq} is the vertex set of a regular (d — 1)-
dimensional simplex of edge length /2. This set can be decomposed into d
subsets of smaller diameter, but not into fewer.

Ezample 2. A regular d-simplex with vertices in {0, 1}? exists if and only if there
is a Hadamard matrix of order d+ 1 (see [25]). For this d+ 1 is necessarily equal
to 1, to 2, or to a multiple of 4 (and it is conjectured that Hadamard matrices
exist for all multiples of 4). Thus in dimensions d such that a Hadamard matrix
of order d + 1 exists, we have an example of a subset S which needs d + 1 parts
for its decomposition. Our figure displays a corresponding set for d = 3.

N
N

In the following, we’ll treat the 0/1-Borsuk problem “case by case” in terms of
two parameters; the first one is the dimension d, the second one is the integer k,
with 1 < k < d, such that vk is the diameter of the set S C {0,1}? that we
consider. Equivalently — and this will be useful in a coding theory context —
the parameter just denotes the f;-diameter, or Hamming diameter, of the set:
for two 0/1-vectors @,y, the distance ||z — y||2 = Vk is given by the number
k = ||z — yl|1 of coordinates in which x and y differ (by £1).

Thus, for every d > 1 and 1 < k < d, we’ll be studying the following problem:

Borsuk(d, k): Ts it true that every subset S C {0,1}¢ of diameter vk can be
decomposed into d + 1 subsets,

S = S1USU...US g1,
all of which have smaller diameter than S?

In this formulation, the 0/1-Borsuk problem is true in dimension d if and only
if Borsuk(d, k) is true for all k € {1,...,d}.

At this point, it is an instructive exercise to work out the 0/1-Borsuk problem
for d < 3 — an exercise, however, that we leave to the interested reader.



3 Reformulation as a Coloring Problem

Assume that we are handed a particularly interesting set S C {0,1}¢ of diameter
V'k, or just an example for which we are told that it is particularly interesting,
and we are asked whether it satisfies Borsuk’s conjecture, what should we do?

It seems that the problem is difficult, just because it is equivalent to a coloring
problem, and coloring problems are difficult (in general), and we have not much
indication that this one happens to be an easy special case.

Definition 1. We shall say that a subset S C {0,1}¢ of (Euclidean) diameter
V'k has Hamming diameter k. It’s Borsuk graph is the graph By (S) with vertex
set S, and with an edge between vertices @,y € S if the distance between x
and y is the diameter of S (that is, if the Euclidean distance is Vk, and the
Hamming distance is k).

Now a partition of S into m subsets of smaller diameter is just the same thing
as a partition of the vertex set of By (S) into m stable subsets, that is, a coloring
the graph By (S) with m colors. This leads to the following “coloring version” of
the 0/1-Borsuk problem. (This reduction to a coloring problem can be done the
same way for the case of a general set S C R?, but it fails in the infinite case.)

Borsuk(d, k): Is it true that for every subset S C {0,1}¢ of Hamming diame-
ter k, the corresponding Borsuk graph has chromatic number

x(Bk(S)) < d+17
In this formulation, let’s discuss (and get rid of) a number of simple cases:

k=1: If k=1, then |S| =2, B1(S) = K, x(B1(S)) =2 < d+ 1. No problem.

k = 2: 0/1-configurations of Hamming diameter 2 are easily classified, modulo
0/1-equivalence (cf. [25]), where we consider two sets as equivalent if we can
transform one into the other using just symmetries of the 0/1-cube, that is,
by permutation and complementation of coordinates.
The result is that there is one special case: the 3-dimensional regular tetra-
hedron discussed and depicted above, whose Borsuk graph is a K4, and thus
the chromatic number is x(B2(S)) = x(K4) = 4 < d+ 1. Any configura-
tion that is not 0/1-equivalent to this one is 0/1-equivalent to a subset to
the configuration S = {0,ey,...,eq}, whose Borsuk graph is Kq + K1, a
clique plus an isolated vertex; we get for this case that x(B=2(S)) < d. Thus
Borsuk(d, k) holds for k£ < 2.

AN




k is odd: In this case By (S) is bipartite; we get a legal coloring by collecting the
0/1-vectors with odd coordinate sums, and the vertices with even coordinate
sums, into two distinct classes. Thus here we have x (B (S)) = 2. Our figure
shows such a case, where the points in S are the vertices of a 0/1-octahedron.

Thus we have dealt with the cases £ < 3; the case k = 4 is already harder, see
Section 9.2. Our next goal will be the situation where k is rather large (compared
with d); it turns out that the bounds we get there are more generally valid for
the “Hamming graphs,” which contain the Borsuk graphs as subgraphs.

4 Coloring Hamming Graphs

There are lots of different Borsuk graphs for any given d and k: but they are all
subgraphs of the following “Hamming graphs.”

Definition 2. The Hamming graph H,, has vertex set {0,1}%, and two of its
vertices are connected by an edge if and only if they have Hamming distance
exactly k (that is, Euclidean distance v/k.)

(We could have also used the notation By ({0,1}?) for Hg, but our convention
is that the subscript k in By (S) should denote the diameter of S.)

Lemma 1. For every 0/1-set S C {0,1}? of diameter k we have

X(Br(S)) < x(Hapk).
Proof. The Borsuk graph By (S) is an induced subgraph of Hg . O

In particular, this means that we have proved Borsuk(d, k) if we find out
that x(Hgx) < d+1. This holds for some parameters, while it is drastically false
for others, as we shall see — it fails even for some d with k = 2, where we have
already established that Borsuk(d, k) is correct.

The following is a look at the Hamming graphs (and their chromatic numbers)
for special parameters and examples.

k is odd: In this case Hgy, is bipartite, and thus x(Hgx) = 2, with the same
argument as used above for the Borsuk graphs.

k is even: In this case a vertex with odd coordinate sum, and a vertex with
even coordinate sum, cannot be connected by an edge. Thus the Hamming
graph Hg, is disconnected for even k. The two components induced on the



even vertices and on the odd vertices are isomorphic, and can be identified
with the graph

Hy yqkk—1y = Ha—1pUHg-15-1,

two of whose vertices are connected by an edge if their Hamming distance
is either k or k — 1. In particular, for k = 2 the graph H;_; (4 x—1) has an
edge between any two distinct vertices of distance at most 2, and may be
denoted by Hq_1, <2.

k is large: If vertices ¢,y € {0,1}? have distance k, then this means that they
differ in k& coordinates, and thus the first d — k 4+ 1 coordinates of « and of
y cannot be all the same. This implies that

T — (T1,...,T4 k1) € {0,1}4FF
is a legal coloring of Hy . The existence of this coloring implies that
X(Hap) < 20700

This bound is meaningful if d — k is small; it is sharp if d — k is very small.
(It corresponds to the “Singleton bound” in coding theory.)

k = d: As a special case for the Singleton Bound, for d = k we see that Hy 4 is
a matching (of chromatic number 2).

k = d — 1: The Singleton bound implies that the chromatic number of Hg 41
is at most 4. On the other hand, it is easy to see that for even d — 1 the
graph Hy q_1 is not bipartite. Furthermore, a result of Payan [17] states that
a “cubelike graph” such as Hg 41 cannot have chromatic number 3, so we
find that x(Hg,q—1) = 4 for odd d, and x(Hg,q—1) = 2 for even d.

5 Some Coding Theory Bounds are Used

The Hamming graphs Hy» have been studied extensively, also since they are
unions of two components that are isomorphic to Hq—1,<2. See for example [12]
and [7], and especially the discussion in [10, Sect. 9.7] (and the references quoted
there).

Let’s discuss upper and lower bounds for the chromatic numbers of these
graphs independently.

Lemma 2. (Linial, Meshulam & Tarsi [12]) For all d > 1,
x(Hgs) < 2Moga(d)]
where the upper bound can be read as “d rounded up to the next power of 2.”

Proof. Let d < 2™, then an explicit 2"-coloring can be given as follows. For each
coordinate i (1 < i < d), let b(i — 1) € {0,1}™ be the 0/1-vector of length m



obtained from the binary expansion of ¢ — 1, adding leading zeroes as necessary.
Then we color the vertices of Hq 2 by

c¢:{0,1}* — {0,1}"™,
x— Z b(i — 1),

i:wizl

where the sum is taken “component-wise,” modulo 2. Thus if two vectors x,y €
{0,1}¢ differ in exactly two coordinates i, j, then their colors ¢(x) and c(y) will
differ exactly by b(i — 1) +b(j — 1) (modulo 2), which is not zero since i # j. O

According to MacWilliams & Sloane [14, Part I, p. 523], “Probably the most
basic problem in coding theory is to find the largest code of a given length and
minimum distance,” that is, the evaluation and estimation of the quantities given
by the following definition.

Definition 3. For d > 1 and 1 < s < d, A(d, s) denotes the maximum number
of codewords in any binary code of length d and minimum distance s between
the codewords.

That is, A(d,s) is the largest size of a subset C C {0,1}¢ such that any two
elements of C' have Hamming distance at least s.

We refer to MacWilliams & Sloane [14, Chap. 17] for non-trivialities about these
quantities, and their relevance. An excellent source for the “linear programming
bounds” that are used to get non-trivial upper bounds (such as the ones used
below) is [3]. As an example, we trivially have A(d, 1) = 2¢, and A(d,d) = 2.

Lemma 3. Forallt > 1 and d > 2t, A(d,2t) = A(d—1,2t —1).

Proof. Indeed, if we take any (d,2t)-code, then the operation of “deleting the
last coordinate” yields a code of the same size (by ¢ > 1) and minimum distance
decreased by at most 1, and “adding a parity check-bit as a last coordinate” will
take us from a (d — 1,2t — 1)-code to a (d, 2t — 1)-code of the same size in which
furthermore all code words and hence all distances are even, and which is thus
a (d, 2t)-code. a

In particular, A(d,4) = A(d—1,3) holds for all d > 4. Now A(d—1,3) is “by
definition” also the largest size of an independent (“stable”) set in the graph
Hg_1,<2. Together with the fact that Hy» consists of two components that are
isomorphic to Hg_1,<2, this yields that the largest size of an independent set
in Hy o is exactly 2 A(d, 4).

At this point, we quote a result by Best & Brouwer [4] [3, p. 129] about
shortened Hamming codes, which implies that

A@Q™ —t,4) = 22"t for 0<t<3.

This result, translated back to graph theory, says that the independent sets in
the Hamming graphs Hy» = A(d,4) “aren’t that large.” Thus it provides a



lower bound on the chromatic numbers via the inequality

Vi

X(G) 2@

(where a(G) denotes the size of a largest independent set of vertices in G), which
is valid for every finite graph GG. Applied to G = Hy» for d = 2" —t, this yields

22"‘775
X(Hzmotp) 2 somemmnmy = 2™

Thus we get the following result, which says that the upper bound of Lemma 2
is sharp for some values of d.

Proposition 1. (Linial, Meshulam & Tarsi [12]) For alld > 1,
x(Hgs) < 2[osa(D]
with equality if d is of the form d =2, 2™ —1, 2™ — 2, or 2™ — 3.

In particular, y(Hy,z) = 2M1°82(D1 holds for all d < 8, and again for 13 < d < 16.
Of course this raises questions for the other values, in particular for d = 9. Let’s
increase the suspense a bit and postpone this question to Section 9.1.

6 A Hamming Code is Used

Payan [17] has proved that x(Hg,4) < 7 by exhibiting an explicit coloring. His
claim that “it is not very difficult to prove” that the chromatic number is indeed 7
can be confirmed by computer [22]. Thus Payan disproved an earlier conjecture
that “cube-like” graphs must necessarily have a chromatic number that is a
power of 2.

In the following we will discuss that/why the chromatic numbers of both
H; 4 and Hg 4 are 8 — and we want to do that “by hand” (rather than leave

it to a computer) since the geometry of the argument is so nice (due to Lex
Schrijver [23]).

Lemma 4. x(Hr74) = x(Hsa) = 8.

Proof. We start with the binary Hamming code H(3) C {0,1}7, which can be
described as follows: Number the points of a Fano plane

by 1,2,...,7, and take as the code words of your code the zero vector (corre-
sponding to the empty subset), the all-ones vector (corresponding to the whole



plane), the seven 0/1-vectors of weight 3 that correspond to the lines of the
Fano plane, and the seven 0/1-vectors of weight 4 that correspond to their com-
plements. Altogether this yields the 16 codewords of the Hamming code H(3),
about which the following facts are well-known and easily verified:

— H(3) is a linear code (sums of codewords modulo 2 are codewords),

— it is a perfect code of minimum distance 3 (that is, every 0/1-vector of length
7 is either a code word, or it has distance 1 from a codeword),

— the complements of codewords are codewords as well.

Now the eight even code words, of weights 0 and 4 (corresponding to the empty
set and to the complements of the lines in the Fano plane), all have distance 4
from each other, and thus we have found an 8-clique in H7 4. At the same time,
we can describe an 8-coloring of Hr 4 associated with this clique: for this we take
eight colors for the eight code words in the clique, and give the same color to all
the 0/1 vectors that have distance at most 1 either from the code word or from
its complement. In other words, all vectors of distances 0,1,6 or 7 from an even
code word get the same color, which yields a perfect 8-coloring.

To treat Hsg s, we use the extended Hamming code H(3) C {0, 1}®, which is
obtained by extending the code words of H(3) by parity check bits. The resulting
code is a linear code consisting of 16 code words, of minimum distance 4: indeed,
all words other than the zero word and the all-ones word have weight 4. (Ge-
ometrically, this code corresponds to a remarkable 8-dimensional regular cross
polytope of edge length v/4 = 2, whose vertices form a subset of the 0/1-cube.)
Now the clique in H7 4 consisted of the even code words, so it also determines
an 8-clique in Hg 4. But it also yields an 8-coloring: for this we give the same
color to all the 0/1-vectors that extend a vector of distance 0,1,6 or 7 from an
even code word in H(3). It is easily checked that no two vectors of Hamming
distance 4 are assigned the same color by this rule. O

7 Coloring Hamming Graphs, 111

Let’s collect the information that we have for the chromatic numbers of Hy j, for
d < 9in a table:

d~k | 1| 2 |3 |a]5 | 6 | 7]|8]09
1 2

2 2 2

3 2 1 2

4 2 4 2 | 2

5 2 8 2 | 4| 2

6 2 8 2 | 7| 2 2

7 2 8 2 | 8| 2 1

8 2 8 2 | 8| 2 | <38 2
9 2 | <16 | 2 2 | <16 2
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8 The 0/1-Borsuk problem in low dimensions

The following table combines the upper bounds achieved in Section 3 with our
knowledge about the chromatic numbers of Hamming graphs, which we have just
summarized. The entry for d and k gives the best upper bound available for the
maximal chromatic number of a Borsuk graph By (S) for a subset S C {0,1}? of
Hamming diameter k:

d~k || 1 ] 2] 3 | a5 ]6 | 7] 8]09
1 2

2 2 | 2

3 2 | 4| 2

4 2 [ 4 [ 2] 2

5 2 | 5 | 2] a2

6 2 |6 | 2| 7|22

7 2 | 7| 2| 8| 2|4

8 2 | s | 2| 8|28 /]2]:2
9 2 | 9 | 2 2 4 | 2

Theorem 1. The 0/1-Borsuk problem has a “yes” answer for all d < 9.

Proof. For d < 8, this follows from the fact that for d < 8 all the entries in the
above table are at most d + 1.

The case d = 9 was done by Petersen [18], and relies on explicit coloring
schemes that are rather complicated and will thus not be described or verified
here. O

9 Coloring Hamming Graphs, IIT

9.1 The Hamming graphs Hg 2 — Stefan Hougardy

We had postponed the (interesting) case d > 9 of the graphs Hy ». In particular,
for d = 9 we can use that A(8,3) = A(9,4) = 20 [3], which yields a lower bound
of f%] = 13 for the chromatic number of Hy 5.

On the other hand, several of the better coloring heuristics do find a 14-
coloring of Hy . Apparently this was first done by Hougardy in 1991, who got
it from an adaption of the Petford-Welsh [19] algorithm. This leaves us with a
rather narrow gap

13 < x(Hop) < 14

The question whether the chromatic number of Hy 5 is 13 or 14 is a combinatorial
covering problem: We are trying to cover the 28 = 256 even vertices in the 9-
cube by even (9,4)-codes. Hougardy [9] has found that there are only two non-
equivalent such codes of the maximal size 20, but many more of sizes 19 or 18.
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Now if a covering by 13 codes exist, then it must use at least 9 codes of size 20.
Do they fit together?

More generally, if we want to get beyond the basic OJ(LG‘) < x(G) lower bound
for the chromatic number, then we must find out more about the “geometry”
of the independent sets: these might be large enough, but they might not fit
together to give a coloring with few colors.

For the higher values of d = 10, 11,12, the available data are

A(9,4) = 20 13 < x(Hpp) < 14
A(10,4) = 40 13 < x(Hip2) < 16
72 < A(11,4) < 76 14 < x(Hi12) < 16
144 < A(12,4) < 152 14 < x(Hyz2) < 16
A(13,4) = 256 X(Hiz2) = 16

The upper bounds for A(11,4) and A(12,4) are due to Litsyn & Vardy [13]; it is
conjectured, however, that the lower bounds are tight [3, p. 128], which in turn
would give a lower bound of 15 for x(H;1,2) and x(Hiz2,2). But a gap remains in
either case ...

9.2 A lower bound for small diameter — Jon McCammond

Petersen [18] has shown that Borsuk(d,4) has a “yes” answer for all large
enough d. And in fact, McCammond [15] has proved that for every fixed k the
answer to Borsuk(d, k) is positive when d is large enough (with respect to k).

Even stronger, it follows from the arguments and bounds obtained in [15]
that Borsuk(d, k) is true whenever k < ¢y/logd, for some constant ¢ > 0. Thus,
for counterexamples k& can not be too small compared to d.

9.3 An upper bound for large diameter — Noga Alon

One can also show that for counterexamples to Borsuk(d, k) the difference d — k
can not be too small when compared to d. For this, the “Singleton bound” that
we had used in the case of very small d — k is far from optimal.

Proposition 2. (Alon [2])
If1 < d is such that a Hadamard matriz H, € {1, —1}¢ exists, then

X(Hd7 sa-v)) < 2L

Proof. For simplicity, we describe this proof for vertex coordinates in {1,—1}.
Let vy,...,v¢ € {1,—1}¢ be the columns of Hy, which form an orthogonal basis
by definition. Thus the points {+wvy,...,+wv,} C {1, —1} form the vertices of a
regular cross polytope of edge length v/2v/.

The points in {1, —1}* are now 2/-colored according to the closest point from
the set {£wvy,...,xve}. (In case of draws, decide arbitrarily.)
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If an arbitrary vector & € {1, -1} is expanded as & = Ele Aiv; in terms
($7'Ui>
(V:,0:)
absolute value [;| > =, that is, z has at least L(¢4+V/€) components in common

of the orthogonal basis vy, ..., v, then one of the coefficients A; = has

with the corresponding vector £v;. Thus two vectors in {1, —1}* that get the

same color have at least v/¢ components in common.
From this we derive that if two vectors Z,5 € {1,—1}% get the same color
(according to their first £ coordinates), then they agree in at least v/¢ coordinates.
a

The point set used in this proof corresponds to a well-known structure in the
0/1-cube. Namely, the corresponding set

Co ={3(1%v1),....5(1xwv)} C {0,1}¢
is a binary code of length ¢, minimum distance %E, consisting of 2¢ code words,

which form the vertices of a regular cross polytope of edge length ,/%(. It is

known as the (¢, 2¢, $+¢)-Hadamard code [14, Part I, p. 49].

In the special case £ = 8, this Hadamard code is equivalent to the extended
Hamming code H(3) that we had used for a different purpose in Section 6. Thus
we could have equivalently started the construction in Section 6 with the 8 x 8
Hadamard matrix instead of the Fano plane.

Together with the known existence results for Hadamard matrices (they are
conjectured to exist for all £ = 4k, and known to exist whenever 4k —1 is a prime
power), Proposition 2 shows that Borsuk(d, k) is true whenever d — k < ¢'v/d for
a constant ¢’ > 0, which for large d can be taken to be arbitrarily close to %\/5

The counterexamples to Borsuk’s conjecture due to Kahn & Kalai and the
variations of Nilli, Raigorodski and Wei3bach all have have k ~ %.
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