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t. The 0=1-Borsuk problem asks whether every subset of f0; 1gd
an be partitioned into at most d + 1 sets of smaller diameter. This isknown to be false in high dimensions (in parti
ular for d � 561, due toKahn & Kalai, Nilli, and Raigorodskii), and yields the known 
ounter-examples to Borsuk's problem posed in 1933.Here we ask whether there might be 
ounterexamples in low dimensionas well. We show that there is no 
ounterexample to the 0=1-Borsuk 
on-je
ture in dimensions d � 9. (In 
ontrast, the general Borsuk 
onje
tureis open even for d = 4.)Our study relates the 0=1-
ase of Borsuk's problem to the 
oloring prob-lem for the Hamming graphs, to the geometry of a Hamming 
ode, aswell as to some upper bounds for the sizes of binary 
odes.1 Introdu
tionThe Borsuk 
onje
ture is a puzzling problem: posed in 1933, in the famous paperby K. Borsuk [6℄ that 
ontained the \Borsuk-Ulam theorem," it has resistedall attempts of proof until in 1992 Kahn and Kalai [11℄ announ
ed that the
onje
ture is false, due to 
ounterexamples in dimensions 1325 and higher. Aftermu
h subsequent work, we now know that the Borsuk 
onje
ture is false in alldimensions d � 560, and true in dimensions d � 3 | whi
h leaves a remarkablegap! How about dimension 4, say? This leads us to ask: \Must the 
ounter-examples be ne
essarily be so high-dimensional?"It turns out that while the proofs in dimensions d � 3 depend on intri
ategeometri
 arguments, all the 
ounterexamples rely on purely 
ombinatorial workon sets of 0=1-ve
tors plus some linear algebra te
hniques. Thus we ask: \Must0=1-
ounterexamples be ne
essarily be so high-dimensional?" This question leadsus to a lot of beautiful 
ombinatori
s, to graph 
oloring problems and optimal
odes, and �nally to a partial answer: Perhaps they don't have to be that high-dimensional, but at least there are no 
ounterexamples in dimensions d � 9.? Supported by a DFG Gerhard-Hess-Fors
hungsf�orderungspreis (Zi 475/2-3).



2A
knowledgements. Please 
onsider this paper a survey: There is very little newin it, it's just making 
onne
tions between di�erent fa
ts, some of whi
h arepublished, and some of whi
h seem to be \well-known" (that is, well-known tothose who well know them). I am reporting also about some 
ontributions thatI was shown by Lex S
hrijver, Stefan Hougardy, Jon M
Cammond, and NogaAlon | thanks to them! I am also grateful to my `Diplomanden' J�urgen Petersen[18℄ and Frank S
hiller [22℄ for their 
ontributions, and for many dis
ussions.2 The 0/1-Borsuk ProblemBorsuk asked:Borsuk's problem: Is it true that every bounded subset S of Rd 
an be de-
omposed into d+ 1 subsets,S = S1 [ S2 [ : : : [ Sd+1;all of whi
h have smaller diameter than S?The number of d+1 subsets 
annot be redu
ed: d+1 sets are needed, for example,if S is a regular simplex of dimension d (or just its vertex set), or a d-dimensionalball (or just its boundary). In both 
ases, however, a partition into d + 1 partsexists, and isn't hard to �nd. (Only the part that a d-ball 
annot be partitionedinto fewer than d+ 1 parts of smaller diameter is non-trivial; it is equivalent tothe Borsuk-Ulam theorem, and was anti
ipated by Lyusternik and Shnirel'manin 1930, three years before Borsuk's paper.)Borsuk's 
onje
ture was proved to be true for all sets S of dimension d � 3(Perkal 1947; Eggleston 1955), and for smooth bodies S (Hadwiger 1946), butthe general 
ase remained an open problem for a long time. See Gr�unbaum [8℄and Boltyanski, Martini & Soltan [5, x31℄ for surveys of Borsuk's problem. Onthe other end, the 
onstru
tions of Kahn & Kalai were simpli�ed, extended andimproved, so that with the e�orts of Nilli [16℄, Raigorodskii [20, 21℄ and Wei�ba
h[24℄ we have 
ounterexamples for all d � 560. (See [1℄ for a popular exposition.)Thus, with all the work and e�ort that was put into the problem, we know nowthat the answer is \yes" for d � 3 and \no" for d � 560.Borsuk's problem is hard enough for the spe
ial 
ase where S is a �niteset (equivalently, if one 
onsiders 
onvex polytopes 
onv(S), sin
e the largestdistan
e in a polytope always o

urs between two verti
es). It is an interestingquestion whether one 
an derive the general 
ase from the polytope 
ase.An even more spe
ial 
ase (but the one used to 
onstru
t 
ounterexamples!)is the one when S is a set of 0=1-ve
tors, that is, where S � f0; 1gd is a subsetof the verti
es of the regular 0=1-
ube. In that spe
ial 
ase, it is now known thatBorsuk's 
onje
ture is false for d � 561, but true for d � 9. For the 
ounter-examples in high dimensions, we refer to the sour
es quoted above; our aim inthe following is to demonstrate the positive answer for the \0=1-Borsuk problem"for d � 8, and to explore some of the 
ombinatori
s, graph theory and 
odingtheory 
onne
ted with it.



30/1-Borsuk problem: For whi
h d 
an every subset S � f0; 1gd be de
om-posed into d+ 1 subsets,S = S1 [ S2 [ : : : [ Sd+1;all of whi
h have smaller diameter than S?It is not true that d+1 subsets are even needed in ea
h dimension: For example,in dimension 2 it is easy to 
he
k that 2 subsets will always do. However, theupper bound 
annot be improved mu
h.Example 1. The subset S := fe1; : : : ; edg is the vertex set of a regular (d � 1)-dimensional simplex of edge length p2. This set 
an be de
omposed into dsubsets of smaller diameter, but not into fewer.Example 2. A regular d-simplex with verti
es in f0; 1gd exists if and only if thereis a Hadamard matrix of order d+1 (see [25℄). For this d+1 is ne
essarily equalto 1, to 2, or to a multiple of 4 (and it is 
onje
tured that Hadamard matri
esexist for all multiples of 4). Thus in dimensions d su
h that a Hadamard matrixof order d+ 1 exists, we have an example of a subset S whi
h needs d+ 1 partsfor its de
omposition. Our �gure displays a 
orresponding set for d = 3.
In the following, we'll treat the 0=1-Borsuk problem \
ase by 
ase" in terms oftwo parameters; the �rst one is the dimension d, the se
ond one is the integer k,with 1 � k � d, su
h that pk is the diameter of the set S � f0; 1gd that we
onsider. Equivalently { and this will be useful in a 
oding theory 
ontext {the parameter just denotes the `1-diameter, or Hamming diameter, of the set:for two 0=1-ve
tors x;y, the distan
e kx � yk2 = pk is given by the numberk = kx� yk1 of 
oordinates in whi
h x and y di�er (by �1).Thus, for every d � 1 and 1 � k � d, we'll be studying the following problem:Borsuk(d; k): Is it true that every subset S � f0; 1gd of diameter pk 
an bede
omposed into d+ 1 subsets,S = S1 [ S2 [ : : : [ Sd+1;all of whi
h have smaller diameter than S?In this formulation, the 0=1-Borsuk problem is true in dimension d if and onlyif Borsuk(d; k) is true for all k 2 f1; : : : ; dg.At this point, it is an instru
tive exer
ise to work out the 0=1-Borsuk problemfor d � 3 { an exer
ise, however, that we leave to the interested reader.



43 Reformulation as a Coloring ProblemAssume that we are handed a parti
ularly interesting set S � f0; 1gd of diameterpk, or just an example for whi
h we are told that it is parti
ularly interesting,and we are asked whether it satis�es Borsuk's 
onje
ture, what should we do?It seems that the problem is diÆ
ult, just be
ause it is equivalent to a 
oloringproblem, and 
oloring problems are diÆ
ult (in general), and we have not mu
hindi
ation that this one happens to be an easy spe
ial 
ase.De�nition 1. We shall say that a subset S � f0; 1gd of (Eu
lidean) diameterpk has Hamming diameter k. It's Borsuk graph is the graph Bk(S) with vertexset S, and with an edge between verti
es x;y 2 S if the distan
e between xand y is the diameter of S (that is, if the Eu
lidean distan
e is pk, and theHamming distan
e is k).Now a partition of S into m subsets of smaller diameter is just the same thingas a partition of the vertex set of Bk(S) into m stable subsets, that is, a 
oloringthe graph Bk(S) with m 
olors. This leads to the following \
oloring version" ofthe 0=1-Borsuk problem. (This redu
tion to a 
oloring problem 
an be done thesame way for the 
ase of a general set S � Rd , but it fails in the in�nite 
ase.)Borsuk(d; k): Is it true that for every subset S � f0; 1gd of Hamming diame-ter k, the 
orresponding Borsuk graph has 
hromati
 number�(Bk(S)) � d+ 1 ?In this formulation, let's dis
uss (and get rid of) a number of simple 
ases:k = 1: If k = 1, then jSj = 2, B1(S) �= K2, �(B1(S)) = 2 � d+1. No problem.k = 2: 0=1-
on�gurations of Hamming diameter 2 are easily 
lassi�ed, modulo0=1-equivalen
e (
f. [25℄), where we 
onsider two sets as equivalent if we 
antransform one into the other using just symmetries of the 0=1-
ube, that is,by permutation and 
omplementation of 
oordinates.The result is that there is one spe
ial 
ase: the 3-dimensional regular tetra-hedron dis
ussed and depi
ted above, whose Borsuk graph is a K4, and thusthe 
hromati
 number is �(B2(S)) = �(K4) = 4 � d + 1. Any 
on�gura-tion that is not 0=1-equivalent to this one is 0=1-equivalent to a subset tothe 
on�guration S = f0; e1; : : : ; edg, whose Borsuk graph is Kd + K1, a
lique plus an isolated vertex; we get for this 
ase that �(B2(S)) � d. ThusBorsuk(d; k) holds for k � 2.



5k is odd: In this 
ase Bk(S) is bipartite; we get a legal 
oloring by 
olle
ting the0=1-ve
tors with odd 
oordinate sums, and the verti
es with even 
oordinatesums, into two distin
t 
lasses. Thus here we have �(Bk(S)) = 2. Our �gureshows su
h a 
ase, where the points in S are the verti
es of a 0=1-o
tahedron.
Thus we have dealt with the 
ases k � 3; the 
ase k = 4 is already harder, seeSe
tion 9.2. Our next goal will be the situation where k is rather large (
omparedwith d); it turns out that the bounds we get there are more generally valid forthe \Hamming graphs," whi
h 
ontain the Borsuk graphs as subgraphs.4 Coloring Hamming GraphsThere are lots of di�erent Borsuk graphs for any given d and k: but they are allsubgraphs of the following \Hamming graphs."De�nition 2. The Hamming graph Hd;k has vertex set f0; 1gd, and two of itsverti
es are 
onne
ted by an edge if and only if they have Hamming distan
eexa
tly k (that is, Eu
lidean distan
e pk.)(We 
ould have also used the notation Bk(f0; 1gd) for Hd;k, but our 
onventionis that the subs
ript k in Bk(S) should denote the diameter of S.)Lemma 1. For every 0=1-set S � f0; 1gd of diameter k we have�(Bk(S)) � �(Hd;k):Proof. The Borsuk graph Bk(S) is an indu
ed subgraph of Hd;k. utIn parti
ular, this means that we have proved Borsuk(d; k) if we �nd outthat �(Hd;k) � d+1. This holds for some parameters, while it is drasti
ally falsefor others, as we shall see { it fails even for some d with k = 2, where we havealready established that Borsuk(d; k) is 
orre
t.The following is a look at the Hamming graphs (and their 
hromati
 numbers)for spe
ial parameters and examples.k is odd: In this 
ase Hd;k is bipartite, and thus �(Hd;k) = 2, with the sameargument as used above for the Borsuk graphs.k is even: In this 
ase a vertex with odd 
oordinate sum, and a vertex witheven 
oordinate sum, 
annot be 
onne
ted by an edge. Thus the Hamminggraph Hd;k is dis
onne
ted for even k. The two 
omponents indu
ed on the



6 even verti
es and on the odd verti
es are isomorphi
, and 
an be identi�edwith the graph Hd�1;fk;k�1g = Hd�1;k [Hd�1;k�1;two of whose verti
es are 
onne
ted by an edge if their Hamming distan
eis either k or k � 1. In parti
ular, for k = 2 the graph Hd�1;fk;k�1g has anedge between any two distin
t verti
es of distan
e at most 2, and may bedenoted by Hd�1;�2.k is large: If verti
es x;y 2 f0; 1gd have distan
e k, then this means that theydi�er in k 
oordinates, and thus the �rst d � k + 1 
oordinates of x and ofy 
annot be all the same. This implies thatx 7�! (x1; : : : ; xd�k+1) 2 f0; 1gd�k+1is a legal 
oloring of Hd;k. The existen
e of this 
oloring implies that�(Hd;k) � 2d�k+1:This bound is meaningful if d� k is small; it is sharp if d� k is very small.(It 
orresponds to the \Singleton bound" in 
oding theory.)k = d: As a spe
ial 
ase for the Singleton Bound, for d = k we see that Hd;d isa mat
hing (of 
hromati
 number 2).k = d� 1: The Singleton bound implies that the 
hromati
 number of Hd;d�1is at most 4. On the other hand, it is easy to see that for even d � 1 thegraph Hd;d�1 is not bipartite. Furthermore, a result of Payan [17℄ states thata \
ubelike graph" su
h as Hd;d�1 
annot have 
hromati
 number 3, so we�nd that �(Hd;d�1) = 4 for odd d, and �(Hd;d�1) = 2 for even d.5 Some Coding Theory Bounds are UsedThe Hamming graphs Hd;2 have been studied extensively, also sin
e they areunions of two 
omponents that are isomorphi
 to Hd�1;�2. See for example [12℄and [7℄, and espe
ially the dis
ussion in [10, Se
t. 9.7℄ (and the referen
es quotedthere).Let's dis
uss upper and lower bounds for the 
hromati
 numbers of thesegraphs independently.Lemma 2. (Linial, Meshulam & Tarsi [12℄) For all d � 1,�(Hd;2) � 2dlog2(d)e;where the upper bound 
an be read as \d rounded up to the next power of 2."Proof. Let d � 2m, then an expli
it 2m-
oloring 
an be given as follows. For ea
h
oordinate i (1 � i � d), let b(i � 1) 2 f0; 1gm be the 0=1-ve
tor of length m



7obtained from the binary expansion of i� 1, adding leading zeroes as ne
essary.Then we 
olor the verti
es of Hd;2 by
 : f0; 1gd �! f0; 1gm;x 7�! Xi : xi=1 b(i� 1);where the sum is taken \
omponent-wise," modulo 2. Thus if two ve
tors x;y 2f0; 1gd di�er in exa
tly two 
oordinates i; j, then their 
olors 
(x) and 
(y) willdi�er exa
tly by b(i� 1)+ b(j� 1) (modulo 2), whi
h is not zero sin
e i 6= j. utA

ording to Ma
Williams & Sloane [14, Part II, p. 523℄, \Probably the mostbasi
 problem in 
oding theory is to �nd the largest 
ode of a given length andminimum distan
e," that is, the evaluation and estimation of the quantities givenby the following de�nition.De�nition 3. For d � 1 and 1 � s � d, A(d; s) denotes the maximum numberof 
odewords in any binary 
ode of length d and minimum distan
e s betweenthe 
odewords.That is, A(d; s) is the largest size of a subset C � f0; 1gd su
h that any twoelements of C have Hamming distan
e at least s.We refer to Ma
Williams & Sloane [14, Chap. 17℄ for non-trivialities about thesequantities, and their relevan
e. An ex
ellent sour
e for the \linear programmingbounds" that are used to get non-trivial upper bounds (su
h as the ones usedbelow) is [3℄. As an example, we trivially have A(d; 1) = 2d, and A(d; d) = 2.Lemma 3. For all t � 1 and d � 2t, A(d; 2t) = A(d � 1; 2t� 1).Proof. Indeed, if we take any (d; 2t)-
ode, then the operation of \deleting thelast 
oordinate" yields a 
ode of the same size (by t � 1) and minimum distan
ede
reased by at most 1, and \adding a parity 
he
k-bit as a last 
oordinate" willtake us from a (d� 1; 2t� 1)-
ode to a (d; 2t� 1)-
ode of the same size in whi
hfurthermore all 
ode words and hen
e all distan
es are even, and whi
h is thusa (d; 2t)-
ode. utIn parti
ular, A(d; 4) = A(d�1; 3) holds for all d � 4. Now A(d�1; 3) is \byde�nition" also the largest size of an independent (\stable") set in the graphHd�1;�2. Together with the fa
t that Hd;2 
onsists of two 
omponents that areisomorphi
 to Hd�1;�2, this yields that the largest size of an independent setin Hd;2 is exa
tly 2A(d; 4).At this point, we quote a result by Best & Brouwer [4℄ [3, p. 129℄ aboutshortened Hamming 
odes, whi
h implies thatA(2m � t; 4) = 22m�t�m�1 for 0 � t � 3:This result, translated ba
k to graph theory, says that the independent sets inthe Hamming graphs Hd;2 = A(d; 4) \aren't that large." Thus it provides a



8lower bound on the 
hromati
 numbers via the inequality�(G) � jV j�(G)(where �(G) denotes the size of a largest independent set of verti
es in G), whi
his valid for every �nite graph G. Applied to G = Hd;2 for d = 2m� t, this yields�(H2m�t;2) � 22m�t2 22m�t�m�1 = 2m:Thus we get the following result, whi
h says that the upper bound of Lemma 2is sharp for some values of d.Proposition 1. (Linial, Meshulam & Tarsi [12℄) For all d � 1,�(Hd;2) � 2dlog2(d)e;with equality if d is of the form d = 2m, 2m � 1, 2m � 2, or 2m � 3.In parti
ular, �(Hd;2) = 2dlog2(d)e holds for all d � 8, and again for 13 � d � 16.Of 
ourse this raises questions for the other values, in parti
ular for d = 9. Let'sin
rease the suspense a bit and postpone this question to Se
tion 9.1.6 A Hamming Code is UsedPayan [17℄ has proved that �(H6;4) � 7 by exhibiting an expli
it 
oloring. His
laim that \it is not very diÆ
ult to prove" that the 
hromati
 number is indeed 7
an be 
on�rmed by 
omputer [22℄. Thus Payan disproved an earlier 
onje
turethat \
ube-like" graphs must ne
essarily have a 
hromati
 number that is apower of 2.In the following we will dis
uss that/why the 
hromati
 numbers of bothH7;4 and H8;4 are 8 | and we want to do that \by hand" (rather than leaveit to a 
omputer) sin
e the geometry of the argument is so ni
e (due to LexS
hrijver [23℄).Lemma 4. �(H7;4) = �(H8;4) = 8.Proof. We start with the binary Hamming 
ode H(3) � f0; 1g7, whi
h 
an bedes
ribed as follows: Number the points of a Fano plane
by 1; 2; : : : ; 7, and take as the 
ode words of your 
ode the zero ve
tor (
orre-sponding to the empty subset), the all-ones ve
tor (
orresponding to the whole



9plane), the seven 0=1-ve
tors of weight 3 that 
orrespond to the lines of theFano plane, and the seven 0=1-ve
tors of weight 4 that 
orrespond to their 
om-plements. Altogether this yields the 16 
odewords of the Hamming 
ode H(3),about whi
h the following fa
ts are well-known and easily veri�ed:{ H(3) is a linear 
ode (sums of 
odewords modulo 2 are 
odewords),{ it is a perfe
t 
ode of minimum distan
e 3 (that is, every 0=1-ve
tor of length7 is either a 
ode word, or it has distan
e 1 from a 
odeword),{ the 
omplements of 
odewords are 
odewords as well.Now the eight even 
ode words, of weights 0 and 4 (
orresponding to the emptyset and to the 
omplements of the lines in the Fano plane), all have distan
e 4from ea
h other, and thus we have found an 8-
lique in H7;4. At the same time,we 
an des
ribe an 8-
oloring of H7;4 asso
iated with this 
lique: for this we takeeight 
olors for the eight 
ode words in the 
lique, and give the same 
olor to allthe 0=1 ve
tors that have distan
e at most 1 either from the 
ode word or fromits 
omplement. In other words, all ve
tors of distan
es 0; 1; 6 or 7 from an even
ode word get the same 
olor, whi
h yields a perfe
t 8-
oloring.To treat H8;4, we use the extended Hamming 
ode eH(3) � f0; 1g8, whi
h isobtained by extending the 
ode words of H(3) by parity 
he
k bits. The resulting
ode is a linear 
ode 
onsisting of 16 
ode words, of minimum distan
e 4: indeed,all words other than the zero word and the all-ones word have weight 4. (Ge-ometri
ally, this 
ode 
orresponds to a remarkable 8-dimensional regular 
rosspolytope of edge length p4 = 2, whose verti
es form a subset of the 0=1-
ube.)Now the 
lique in H7;4 
onsisted of the even 
ode words, so it also determinesan 8-
lique in H8;4. But it also yields an 8-
oloring: for this we give the same
olor to all the 0=1-ve
tors that extend a ve
tor of distan
e 0; 1; 6 or 7 from aneven 
ode word in H(3). It is easily 
he
ked that no two ve
tors of Hammingdistan
e 4 are assigned the same 
olor by this rule. ut7 Coloring Hamming Graphs, IIILet's 
olle
t the information that we have for the 
hromati
 numbers of Hd;k ford � 9 in a table:dr k 1 2 3 4 5 6 7 8 91 22 2 23 2 4 24 2 4 2 25 2 8 2 4 26 2 8 2 7 2 27 2 8 2 8 2 4 28 2 8 2 8 2 � 8 2 29 2 � 16 2 2 � 16 2 4 2



108 The 0/1-Borsuk problem in low dimensionsThe following table 
ombines the upper bounds a
hieved in Se
tion 3 with ourknowledge about the 
hromati
 numbers of Hamming graphs, whi
h we have justsummarized. The entry for d and k gives the best upper bound available for themaximal 
hromati
 number of a Borsuk graph Bk(S) for a subset S � f0; 1gd ofHamming diameter k:dr k 1 2 3 4 5 6 7 8 91 22 2 23 2 4 24 2 4 2 25 2 5 2 4 26 2 6 2 7 2 27 2 7 2 8 2 4 28 2 8 2 8 2 8 2 29 2 9 2 2 2 4 2Theorem 1. The 0=1-Borsuk problem has a \yes" answer for all d � 9.Proof. For d � 8, this follows from the fa
t that for d � 8 all the entries in theabove table are at most d+ 1.The 
ase d = 9 was done by Petersen [18℄, and relies on expli
it 
olorings
hemes that are rather 
ompli
ated and will thus not be des
ribed or veri�edhere. ut9 Coloring Hamming Graphs, III9.1 The Hamming graphs Hd;2 { Stefan HougardyWe had postponed the (interesting) 
ase d � 9 of the graphs Hd;2. In parti
ular,for d = 9 we 
an use that A(8; 3) = A(9; 4) = 20 [3℄, whi
h yields a lower boundof d 292�20e = 13 for the 
hromati
 number of H9;2.On the other hand, several of the better 
oloring heuristi
s do �nd a 14-
oloring of H9;2. Apparently this was �rst done by Hougardy in 1991, who gotit from an adaption of the Petford-Welsh [19℄ algorithm. This leaves us with arather narrow gap 13 � �(H9;2) � 14:The question whether the 
hromati
 number ofH9;2 is 13 or 14 is a 
ombinatorial
overing problem: We are trying to 
over the 28 = 256 even verti
es in the 9-
ube by even (9; 4)-
odes. Hougardy [9℄ has found that there are only two non-equivalent su
h 
odes of the maximal size 20, but many more of sizes 19 or 18.



11Now if a 
overing by 13 
odes exist, then it must use at least 9 
odes of size 20.Do they �t together?More generally, if we want to get beyond the basi
 jV j�(G) � �(G) lower boundfor the 
hromati
 number, then we must �nd out more about the \geometry"of the independent sets: these might be large enough, but they might not �ttogether to give a 
oloring with few 
olors.For the higher values of d = 10; 11; 12, the available data areA(9; 4) = 20 13 � �(H9;2) � 14A(10; 4) = 40 13 � �(H10;2) � 1672 � A(11; 4) � 76 14 � �(H11;2) � 16144 � A(12; 4) � 152 14 � �(H12;2) � 16A(13; 4) = 256 �(H13;2) = 16The upper bounds for A(11; 4) and A(12; 4) are due to Litsyn & Vardy [13℄; it is
onje
tured, however, that the lower bounds are tight [3, p. 128℄, whi
h in turnwould give a lower bound of 15 for �(H11;2) and �(H12;2). But a gap remains ineither 
ase . . .9.2 A lower bound for small diameter { Jon M
CammondPetersen [18℄ has shown that Borsuk(d; 4) has a \yes" answer for all largeenough d. And in fa
t, M
Cammond [15℄ has proved that for every �xed k theanswer to Borsuk(d; k) is positive when d is large enough (with respe
t to k).Even stronger, it follows from the arguments and bounds obtained in [15℄that Borsuk(d; k) is true whenever k � 
plog d, for some 
onstant 
 > 0. Thus,for 
ounterexamples k 
an not be too small 
ompared to d.9.3 An upper bound for large diameter { Noga AlonOne 
an also show that for 
ounterexamples to Borsuk(d; k) the di�eren
e d� k
an not be too small when 
ompared to d. For this, the \Singleton bound" thatwe had used in the 
ase of very small d� k is far from optimal.Proposition 2. (Alon [2℄)If l � d is su
h that a Hadamard matrix H` 2 f1;�1g` exists, then�(Hd;>d�p`) � 2`:Proof. For simpli
ity, we des
ribe this proof for vertex 
oordinates in f1;�1g.Let v1; : : : ;v` 2 f1;�1g` be the 
olumns of H`, whi
h form an orthogonal basisby de�nition. Thus the points f�v1; : : : ;�v`g � f1;�1g` form the verti
es of aregular 
ross polytope of edge length p2p`.The points in f1;�1g` are now 2`-
olored a

ording to the 
losest point fromthe set f�v1; : : : ;�v`g. (In 
ase of draws, de
ide arbitrarily.)



12 If an arbitrary ve
tor x 2 f1;�1g` is expanded as x = Pì=1 �ivi in termsof the orthogonal basis v1; : : : ;v`, then one of the 
oeÆ
ients �i = hx;viihvi;vii hasabsolute value j�ij � 1p` , that is, x has at least 12 (`+p`) 
omponents in 
ommonwith the 
orresponding ve
tor �vi. Thus two ve
tors in f1;�1g` that get thesame 
olor have at least p` 
omponents in 
ommon.From this we derive that if two ve
tors bx; by 2 f1;�1gd get the same 
olor(a

ording to their �rst ` 
oordinates), then they agree in at leastp` 
oordinates.utThe point set used in this proof 
orresponds to a well-known stru
ture in the0=1-
ube. Namely, the 
orresponding setC` := f 12 (1� v1); : : : ; 12 (1� v`)g � f0; 1g`is a binary 
ode of length `, minimum distan
e 12`, 
onsisting of 2` 
ode words,whi
h form the verti
es of a regular 
ross polytope of edge length q 12`. It isknown as the (`; 2`; 12`)-Hadamard 
ode [14, Part I, p. 49℄.In the spe
ial 
ase ` = 8, this Hadamard 
ode is equivalent to the extendedHamming 
ode eH(3) that we had used for a di�erent purpose in Se
tion 6. Thuswe 
ould have equivalently started the 
onstru
tion in Se
tion 6 with the 8� 8Hadamard matrix instead of the Fano plane.Together with the known existen
e results for Hadamard matri
es (they are
onje
tured to exist for all ` = 4k, and known to exist whenever 4k�1 is a primepower), Proposition 2 shows that Borsuk(d; k) is true whenever d�k � 
0pd fora 
onstant 
0 > 0, whi
h for large d 
an be taken to be arbitrarily 
lose to 12p2.The 
ounterexamples to Borsuk's 
onje
ture due to Kahn & Kalai and thevariations of Nilli, Raigorodski and Wei�ba
h all have have k � d2 .Referen
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