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tHow mu
h of the 
ombinatorial stru
ture of a pointed polyhedron is
ontained in its vertex-fa
et in
iden
es? Not too mu
h, in general, aswe demonstrate by examples. However, one 
an tell from the in
iden
edata whether the polyhedron is bounded. In the 
ase of a polyhedronthat is simple and \simpli
ial," i.e., a d-dimensional polyhedron that hasd fa
ets through ea
h vertex and d verti
es on ea
h fa
et, we derive fromthe stru
ture of the vertex-fa
et in
iden
e matrix that the polyhedron isne
essarily bounded. In parti
ular, this yields a 
hara
terization of thosepolyhedra that have 
ir
ulants as vertex-fa
et in
iden
e matri
es.1 Introdu
tionEvery (proper) fa
e of a polytope (i.e., a bounded 
onvex polyhedron) is the
onvex hull of the verti
es it 
ontains, and it is also the interse
tion of the fa
etsthat 
ontain it. Thus, the 
ombinatorial stru
ture of a polytope (i.e., its fa
elatti
e) is entirely determined by its (matrix of) vertex-fa
et in
iden
es. Su
h avertex-fa
et in
iden
e matrix is a useful en
oding of the 
ombinatorial stru
tureof a polytope. The software pa
kage polymake [5, 6℄, for instan
e, representsthis matrix rather 
ompa
tly, in a se
tion 
alled VERTICES IN FACETS, while thefa
e latti
e of a polytope is not stored, but generated \on demand" only if thisis really ne
essary, be
ause typi
ally the entire fa
e latti
e is \mu
h too large."But how about not ne
essarily bounded 
onvex polyhedra? The 
ombina-tori
s of unbounded polyhedra has re
eived only little attention up to now (forsome ex
eptions see Klee [7℄, Billera & Lee [3℄, Barnette, Kleins
hmidt & Lee[2℄, and Lee [8℄). One 
an, of 
ourse, redu
e the study of geometri
ally given un-bounded polyhedra to the situation of \a polytope with a distinguished fa
e (atin�nity)." But what if only the 
ombinatori
s of verti
es versus fa
ets is given,and not any data about the situation \at in�nity?" In other words, how mu
h
an really be said/dete
ted/re
onstru
ted if only a matrix of the vertex-fa
etin
iden
es is given?�Supported by a DFG Gerhard-Hess-Fors
hungsf�orderungspreis (Zi 475/2-3).1



As one observes easily from the example of polyhedral 
ones, in general the
ombinatorial stru
ture of an unbounded polyhedron is not determined by itsvertex-fa
et in
iden
es. A d-dimensional 
one may have any possible 
ombi-natorial stru
ture of a (d � 1)-dimensional polytope (via homogenization); butfrom its vertex-fa
et in
iden
es one 
an read o� only its number of fa
ets. Thepoint is that, for unbounded polyhedra the 
ombinatorial information is basednot only on the vertex-fa
et in
iden
es, but also on the in
iden
es of extremalrays and fa
ets. For 
ones, nearly the entire information is 
ontained in thelatter in
iden
es. The latti
e-theoreti
 reason for su
h ambiguities is that thefa
e latti
e of an unbounded polyhedron is only 
o-atomi
, but not atomi
.One might, however, suspe
t that 
ones are (extreme) examples of ratherexoti
 unbounded polyhedra for whi
h one obviously does not have any 
han
eto re
onstru
t the 
ombinatorial stru
ture from their vertex-fa
et in
iden
es,while this might be possible for all \reasonable" polyhedra. For instan
e, a
one is a quite degenerate polyhedron with respe
t to several 
riteria: (i) allits fa
ets have the same set of verti
es, (ii) its set of verti
es does not havethe same dimension as the whole polyhedron, and (iii) it does not have anybounded fa
et. However, the �rst main point of this paper (in Se
tion 3) isthe 
onstru
tion of more 
onvin
ing examples of unbounded polyhedra whosefa
e-latti
es 
annot be re
onstru
ted from their vertex-fa
et in
iden
e matri
es;they have the property that the sets of verti
es of fa
ets are distin
t, and theyeven form an anti-
hain in the Boolean latti
e (a 
lutter); they have boundedfa
ets, and their sets of verti
es are full-dimensional.The se
ond main result (in Se
tion 4) will be that one 
an, however, dete
tfrom the vertex-fa
et matrix whether the polyhedron under 
onsideration isbounded or not.Thirdly (in Se
tion 5), we dis
uss the \unbounded version" of a very basi
lemma about polytopes. Indeed, Exer
ise 0.1 of [13℄ asks one to prove that anyd-polytope that is both simpli
ial (every fa
et has d verti
es) and simple (everyvertex is on d fa
ets) must either be a simplex, or a polygon (d = 2). But howabout unbounded polyhedra? We prove that a polyhedron that is both simpleand simpli
ial (with the de�nitions as given here) 
annot be unbounded. As abyprodu
t, we obtain a 
hara
terization of those polyhedra that have 
ir
ulantvertex-fa
et in
iden
e matri
es.In parti
ular, this paper answers a series of questions that arose in Amaldi,Pfets
h, and Trotter [1℄, where the stru
ture of 
ertain independen
e systems isrelated to the 
ombinatori
s of (possibly unbounded) polyhedra.2 Basi
 Fa
tsLet P be a d-polyhedron (i.e., the interse
tion of a �nite number of aÆne half-spa
es with dim(P ) = d) with m fa
ets and n verti
es. We will always assumethat P is pointed (i.e., it has at least one vertex) and that d � 1. In parti
ular,these 
onditions imply n � 1 and m � d � 1. For the basi
 de�nitions and fa
tsof polyhedral theory we refer to [13℄.A 0=1-matrix A = (afv) 2 f0; 1gm�n is a vertex-fa
et in
iden
e matrix of Pif the verti
es and fa
ets of P 
an be numbered by f1; : : : ; ng and f1; : : : ;mg,respe
tively, su
h that afv = 1 if and only if the vertex with number v is
ontained in the fa
et with number f . 2



By P we denote any polytope whi
h is proje
tively equivalent to P . If P isunbounded, then there is a unique maximal element F1 (the far fa
e) among thefa
es of P that are not images of fa
es of P under the proje
tive transformationmapping P to P . If P is bounded, then we de�ne F1 = ?. Figure 1 illustratesa three-dimensional example.
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5Figure 1: Left: 1-skeleton (i.e., 0- and 1-dimensional fa
es) of a 3-polyhedron P .The arrows indi
ate extremal rays, whi
h are assumed to be parallel. Right:Proje
tively transformed into P . The far fa
e F1 is the vertex 6.We denote by F (P ) the fa
e poset of P , i.e., the set of non-trivial fa
es ofP (ex
luding ? and P itself), ordered by in
lusion. The fa
e poset F (P ) arisesfrom the fa
e poset F �P � by removing the far fa
e F1 (and all its fa
es). WhileF �P � is independent of the a
tual 
hoi
e of P , in general it depends on thegeometry of P , not only on its 
ombinatorial stru
ture.The poset V (P ) = fvert(F ) j F non-trivial fa
e of Pg (where vert(F ) isthe set of verti
es of F ) will play an important role. It 
an be 
omputed fromany vertex-fa
et in
iden
e matrix A 2 f0; 1gm�n of P , sin
e it is the set of allnon-empty interse
tions of subsets of f1; : : : ; ng de�ned by subsets of the rowsof A. Figure 2 shows the three posets F (P ), F �P �, and V (P ) for the examplegiven in Figure 1.
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0 12 3 45Figure 2: Left: Fa
e poset of F �P� for the example given in Figure 1, wherethe solid part is F (P ). Right: The poset V (P ). In general, V (P ) is not graded(although it is in our example).Let the graph �P of P be the graph on the verti
es of P de�ned by thebounded one-dimensional fa
es of P (the edges), i.e., �P is the subgraph of thegraph of P that is indu
ed by those verti
es of P that are not 
ontained in F1.Two verti
es of P are 
onne
ted by an edge of P if and only if there is a fa
e ofP whi
h 
ontains exa
tly these two verti
es. Moreover, we 
an 
ompute V (P )from any vertex-fa
et in
iden
e matrix of P . In parti
ular, we 
an �nd �P fromthe vertex-fa
et in
iden
es of P .We will use the following fa
t, whi
h is a 
onsequen
e of the 
orre
tness of3



the Simplex-Algorithm for Linear Programming.Lemma 2.1 For every polyhedron P , the graph �P is 
onne
ted. Moreover, allfa
es of P indu
e 
onne
ted subgraphs of �P .Let P be a pointed d-polyhedron (d � 1). Then, P is 
alled simple if everyvertex of P is 
ontained in pre
isely d fa
ets (or, equivalently, if pre
isely dedges and extremal rays are in
ident to ea
h vertex), and P is 
alled simpli
ialif every fa
et of P has pre
isely d verti
es. These notions generalize the well-known notions simple and simpli
ial for polytopes. While this generalizationis standard for simple polyhedra, it is not 
ommon for simpli
ial polyhedra.Thus, it seems to be worth to mention that simpli
ial unbounded polyhedraform a non-trivial 
lass of polyhedra. For instan
e, by a modi�
ation of the
onstru
tion of a prism, one easily sees that every simpli
ial d-polytope 
ano

ur as the far fa
e of a simpli
ial unbounded (d+ 1)-polyhedron.3 Re
onstru
ting Polyhedra from Vertex-Fa
etIn
iden
esIn this se
tion, we 
onsider 
onditions under whi
h it is possible to 
omputeF (P ) from the vertex-fa
et in
iden
es of an (unbounded) d-polyhedron P . Ob-viously, given any vertex-fa
et in
iden
e matrix of a pointed d-polyhedron Pit is easy to de
ide whether d 2 f1; 2g. Furthermore, if d 2 f1; 2g, one 
animmediately read o� F (P ) from the vertex-fa
et in
iden
es. Thus, for the restof this se
tion we restri
t our attention to d-polyhedra with d � 3.The example of 
ones shows that re
onstru
ting F (P ) from the vertex-fa
et in
iden
es of a d-polyhedron P with d � 4 is impossible in general, evenif additionally the dimension d is spe
i�ed. Furthermore, the same exampledemonstrates that it is, in general, impossible to dete
t the dimension of a d-polyhedron from its vertex-fa
et in
iden
es for d � 3. However, for d = 3 thesedimensional ambiguities o

ur for 
ones only.Proposition 3.1 Given a vertex-fa
et in
iden
e matrix of a d-polyhedron Pwith d � 3, it is possible to de
ide whether d = 3 or d � 4, unless P is a 
onewith more than three fa
ets.Proof. If P is a 
one with three fa
ets (i.e., n = 1 and m = 3) then 
learlyd = 3 holds. If P is not a 
one, then it must have at least two verti
es. Thus(by Lemma 2.1) P has at least one edge (whi
h we 
an tell from the vertex-fa
etin
iden
es of P ). This edge is 
ontained in pre
isely two fa
ets of P if d = 3;otherwise, it is 
ontained in more than two fa
ets. �In dimensions larger than three, 
ones are not the only polyhedra for whi
hone 
annot tell the dimension from the vertex-fa
et in
iden
es. For instan
e,let Q be some d0-polytope and let C be a d00-dimensional polyhedral 
one withm � 4 fa
ets. Then P = Q � C will be a (d0 + d00)-dimensional polyhedronwhose vertex-fa
et in
iden
es only depend on Q and m, while its dimension 
anbe any number between d0+3 and d0+m. In parti
ular, dimensional ambiguitiesalready o

ur for 4-polyhedra not being 
ones.However, the 
artesian produ
ts 
onstru
ted above are also \
one-like" inthe sense that they do not have any bounded fa
et.4



Proposition 3.2 Given a vertex-fa
et in
iden
e matrix of a d-polyhedron Pthat has a bounded fa
et, one 
an determine d. Furthermore, one 
an de
idefrom the vertex-fa
et in
iden
es of P whether it has a bounded fa
et or not.Proof. If P has a bounded fa
et, then the maximum length of a 
hain in V (P )is d � 1, thus one 
an 
ompute d from V (P ) in this 
ase. Corollary 4.6 provesthe se
ond statement of the proposition. �Propositions 3.1 and 3.2 might suggest to ask if the entire 
ombinatorialstru
ture of a d-polyhedron 
an be re
onstru
ted from its vertex-fa
et in
iden
esif d = 3 or if P has a bounded fa
et. However, the example given in Figure 3shows that both answers are \no". The 
ru
ial feature of the example is that one
Figure 3: An example of two 
ombinatorially di�erent 3-polyhedra with isomor-phi
 vertex-fa
et in
iden
es. The �gures indi
ate the 1-skeleta of the polyhedra.
an re
e
t the \lower" parts in the drawings without a�e
ting the vertex-fa
etin
iden
es while 
hanging the fa
e poset (e.g., in 
ontrast to the left polyhedronthe right one has two adja
ent unbounded fa
ets that have three verti
es ea
h).For three-dimensional polyhedra this is more or less the only kind of ambiguitythat 
an arise.Proposition 3.3 Given the vertex-fa
et in
iden
es of a 3-polyhedron P , forwhi
h �P is 2-
onne
ted, one 
an determine F (P ).Proof. One 
an 
ompute �P from the vertex-fa
et in
iden
es of P , and thus,one �nds the graph of ea
h fa
et of P . If all these graphs of fa
ets are 
y
les thenP is bounded and the statement is 
lear. Otherwise, due to the 2-
onne
tednessof �P , there is a unique (up to reorientation) way to arrange the paths that arethe graphs of the unbounded fa
ets of P as a 
y
le. From this 
y
le, it is easyto determine the in
iden
es of extremal rays and fa
ets of P , whi
h then allowto re
onstru
t the entire 
ombinatorial stru
ture of P . �In larger dimensions, however, it is not true that higher 
onne
tedness of thegraph of a polyhedron is a suÆ
ient 
ondition for the possibility to re
onstru
tits 
ombinatorial stru
ture from its vertex-fa
et in
iden
es. Figure 4 showsS
hlegel-diagrams of (trun
ations of) two unbounded 4-polyhedra. These twopolyhedra have the same vertex-fa
et in
iden
es and a 3-
onne
ted graph, al-though their fa
e posets are di�erent (e.g., the right polyhedron has an extremalray more than the left one)1.1The data of these polyhedra as well as explanations on their 
onstru
tion 
an be foundin the EG-Models ar
hive at: http://www-sfb288.math.tu-berlin.de/eg-models/models/polytopes/2000.05.001/ preview.html 5



Figure 4: S
hlegel diagrams (produ
ed using polymake [5, 6℄ and javaview [10,9℄) illustrating two 4-polyhedra P1 and P2 that have the same vertex-fa
et in-
iden
es, but di�erent fa
e posets.The examples illustrated in Figures 3 and 4 show that \
one-like" polyhe-dra are not the only ones that 
annot be re
onstru
ted from their vertex-fa
etin
iden
es (even not in dimensions three and four). The polyhedra in both ex-amples are quite di�erent from 
ones; ea
h of them has a full-dimensional vertexset, bounded fa
ets, and the property that no two fa
ets have the same vertexset. Furthermore, in the four-dimensional example, the vertex sets of the fa
etseven form an anti-
hain (as promised in the introdu
tion).Nevertheless, any ambiguities in re
onstru
ting the fa
e poset of an un-bounded polyhedron from its vertex-fa
et in
iden
es arise from some degenera
yof P .Theorem 3.4 Given the vertex-fa
et in
iden
es of a simple polyhedron P , one
an determine F (P ).Proof. Let v be a vertex of a simple d-polyhedron P and let F1; : : : ; Fd be thefa
ets of P that 
ontain v. Then the edges and extremal rays 
ontaining v arepre
isely \i2f1;:::;dgnfi0gFi (i0 = 1; : : : ; d) :Sin
e we 
an 
ompute the edges of P from a vertex-fa
et in
iden
e matrix, we
an thus also dedu
e (
ombinatorially) the extremal rays of P and the infor-mation whi
h ray is 
ontained in whi
h fa
ets. From that, we 
an dedu
e theentire fa
e poset of P . �Again, the example of 
ones shows that without dimension information one
an (in general) not de
ide from the vertex-fa
et in
iden
es of a polyhedron ifit is simple.All algorithms des
ribed in this se
tion 
an be implemented su
h that theirrunning time is bounded by a polynomial in jV (P ) j.To summarize the results in this se
tion: we presented large 
lasses of (un-bounded) polyhedra for whi
h the 
ombinatorial stru
tures 
an be re
onstru
tedfrom their vertex-fa
et in
iden
es as well as several examples of polyhedra, forwhi
h this is not possible. Unfortunately, these results do not yield a 
hara
-terization of the 
lass of those polyhedra that allow su
h re
onstru
tions.6



4 Dete
ting BoundednessIn this se
tion, we show that one 
an de
ide from the vertex-fa
et in
iden
es ofa pointed polyhedron P whether it is bounded or not. It turns out that thisonly depends on the Euler 
hara
teristi
 of (the order 
omplex of) V (P ). Thus,it 
an be read o� from the M�obius fun
tion of V (P ).We re
all some basi
 fa
ts from topologi
al 
ombinatori
s (see Bj�orner [4℄).Let � be a �nite poset. The order 
omplex �(�) of � is the �nite simpli
ial
omplex of all 
hains in �. We will use terminology from topology in the 
ontextof �nite posets su
h as �. Throughout, this is meant to refer to jj�(�)jj (i.e.,any geometri
 realization of �(�), endowed with its standard topology).It is well-known that the order 
omplex �(F (P )) of a bounded d-polytope Pis isomorphi
 (as a simpli
ial 
omplex) to the bary
entri
 subdivision of theboundary �P of P . In parti
ular, the topologi
al type of V (P ) is well-knownin this 
ase.Lemma 4.1 If P is a d-polytope, then F (P ) is homeomorphi
 to the (d � 1)-sphere.If P is an unbounded (pointed) polyhedron, then we 
an 
onsider F (P ) asthe sub-poset of F �P � that 
onsists of all fa
es of P that are not 
ontained inF1. Thus, we will identify �(F (P )) with the sub-
omplex of �(F �P �) thatis indu
ed by all 
hains fFg, where F is a fa
e of P with F 6� F1.Lemma 4.2 If P is an unbounded (pointed) polyhedron, then F (P ) is 
on-tra
tible.Proof. By Lemma 4.1, jj�(F �P �)jj is homeomorphi
 to a sphere. The indu
edsub
omplexes A = �(F (P )) and B = �(F (F1)) 
over all verti
es (i.e., one-element 
hains of F �P �) of �(F �P �). Using bary
entri
 
oordinates, it is seenthat jj�(F �P �)jjnjjBjj retra
ts onto jjAjj. Thus, jjAjj has the same homotopy-typeas jj�(F �P�)jj n jjBjj, where the latter is a simpli
ial sphere minus an indu
edball. Hen
e, F (P ) is 
ontra
tible. �The two lemmas allow one to distinguish between the fa
e posets of boundedand unbounded polyhedra. Of 
ourse, there are simpler ways to de
ide whethera fa
e poset belongs to a bounded or to an unbounded polyhedron (e.g., 
he
k-ing if every rank one element is a join). However, in general we 
annot re
on-stru
t the fa
e poset of a polyhedron P from its vertex-fa
et in
iden
es (seeSe
tion 3). Instead, we need 
riteria allowing to distinguish between boundedand unbounded polyhedra that 
an be 
omputed from V (P ). It turns out thatthe topologi
al 
riteria provided by Lemmas 4.1 and 4.2 
an be exploited forthis.Consider the poset maps � : F (P )! V (P ), mapping a fa
e F of a pointedpolyhedron P to vert(F ), and  : V (P ) ! F (P ), mapping the vertex set S ofa fa
e to the minimal fa
e 
ontaining S. Both � and  are order preserving.Moreover, �( (S)) = S and  (�(F )) � F .Lemma 4.3 Let P be a pointed polyhedron. Then the fa
e poset F (P ) ishomotopy-equivalent to the poset V (P ).7



Proof. Setting f(F ) =  (�(F )) de�nes an order preserving map from F (P )into itself su
h that ea
h fa
e F is 
omparable with its image f(F ). From theOrder Homotopy Theorem [4, Corollary 10.12℄, we infer that F (P ) is homotopy-equivalent to the image f(F (P )). In fa
t, f(f(F )) = f(F ), and hen
e f(F (P ))is a strong deformation retra
t of F (P ). This proves the lemma, sin
e  is aposet isomorphism from V (P ) onto  (V (P )) = f(F (P )). �The redu
ed Euler 
hara
teristi
 of (the order 
omplex of) a poset � isdenoted by e�(�), i.e., e�(�) = DXi=�1(�1)ifi(�(�))(where fi(�(�)) is the number of i-fa
es of �(�), and D is the dimensionof �(�)). The following result in parti
ular shows that a polytope and anunbounded polyhedron 
annot have isomorphi
 vertex-fa
et in
iden
es.Theorem 4.4 Let P be a pointed polyhedron. Then P is bounded if and onlyif e�(V (P )) 6= 0.Proof. The redu
ed Euler 
hara
teristi
 of a (d � 1)-sphere equals (�1)d�1,while the redu
ed Euler 
hara
teristi
 of a 
ontra
tible spa
e vanishes. Thusthe 
laim follows from Lemma 4.1, Lemma 4.2, and Lemma 4.3. �As an example 
onsider the 
ase where the unbounded polyhedron P hasa fa
e F whi
h 
ontains all verti
es of P . Then �(V (P )) is a 
one over F(in the sense of simpli
ial topology); in parti
ular, it is 
ontra
tible and thuse�(V (P )) = 0.The redu
ed Euler 
hara
teristi
 of the poset V (P ) 
an be 
omputed ef-�
iently as follows. By adjoining an arti�
ial top element 1̂ and an arti�
ialbottom element 0̂, the poset V (P ) be
omes a latti
e V̂ (P ). Note that we ad-join 1̂ also in the 
ase where V (P ) already has a top element 
orresponding toa fa
e 
ontaining all verti
es of P .For every element S 2 V̂ (P ) we de�ne the M�obius fun
tion, see Rota [11℄and Stanley [12℄, �(S) = 8<:1 if S = 0̂ ;� XS0(S �(S0) otherwise :TheM�obius number �(V (P )) = �(1̂) of V (P ) 
an be 
omputed in time boundedpolynomially in jV (P ) j. Sin
e it is well-known (see Stanley [12, 3.8.6℄) that�(V (P )) = e�(V (P )) ; (1)this proves the following 
omplexity result.Corollary 4.5 There is an algorithm that de
ides for every vertex-fa
et in
i-den
e matrix of a polyhedron P if P is bounded. Its running time is bounded bya polynomial in jV (P ) j.A
tually, Theorem 4.4 allows to de
ide even more from the vertex-fa
etin
iden
es of a polyhedron P . On
e we have 
omputed V (P ) we 
learly 
an8



also determine V̂ (F ) for every fa
et F of P (sin
e we know vert(F ) for everyfa
et F of P ). This is the interval between 0̂ and vert(F ) in the latti
e V̂ (P ),where we have to add an additional top element 1̂ if there is some other fa
etF 0 of P 
ontaining vert(F ).Corollary 4.6 There is an algorithm that tells from a vertex-fa
et in
iden
ematrix of a polyhedron P whi
h fa
ets of P are bounded. Its running time isbounded by a polynomial in jV (P ) j.5 Simple and Simpli
ial PolyhedraIt is a well-known fa
t [13, Exer
. 0.1℄ that a d-polytope whi
h is both simple andsimpli
ial is a simplex or a polygon. Both properties (simpli
ity as well as sim-pli
iality) 
an be viewed as properties of vertex-fa
et in
iden
es (see Se
tion 2).In this se
tion, we generalize the known result on polytopes to not ne
essarilybounded d-polyhedra with d � 2.Theorem 5.1 For d � 2, every simple and simpli
ial d-polyhedron is a simplexor a polygon. In other words, unbounded simple and simpli
ial polyhedra do notexist.Our proof of Theorem 5.1 is organized into two parts. The �rst part showsthat the graph �P of a simple and simpli
ial polyhedron P is either a 
ompletegraph or a 
y
le. In the se
ond part, we further dedu
e that a simple andsimpli
ial polyhedron has a 
ir
ulant vertex-fa
et in
iden
e matrix. The proofof Theorem 5.1 is then 
ompleted by showing that no unbounded d-polyhedron(with d � 2) 
an have a 
ir
ulant vertex-fa
et in
iden
e matrix. Furthermore,Propositions 5.8 and 5.10 yield 
hara
terizations of those polyhedra that have
ir
ulant vertex-fa
et in
iden
e matri
es.5.1 Graphs of Simple and Simpli
ial PolyhedraThroughout this se
tion, let P be a pointed simple and simpli
ial d-polyhedronwith n verti
es and d � 2. Double 
ounting yields that P must also have nfa
ets. In parti
ular, we have n > d (sin
e otherwise P would be a 
one, whi
his simple and simpli
ial only for d = 1). We denote by VP = vert(P ) the set ofverti
es of P . For S � VP let �(S) be the set of all fa
ets of P that 
ontain S.Re
all that (sin
e P is simple) two verti
es v and w of P form an edge if andonly if j�(fv; wg)j = d� 1.Lemma 5.2 Two di�erent fa
ets of P 
annot have the same set of verti
es.Proof. Suppose that there are two fa
ets F1 and F2 of P (F1 6= F2) withvert(F1) = vert(F2) =: S. Sin
e n > d, and sin
e �P is 
onne
ted, there mustbe a vertex v =2 S that is a neighbor of some vertex w 2 S. Hen
e, we havej�(fv; wg)j = d�1. Be
ause of j�(fwg)j = d and F1; F2 2 �(fwg) � �(fv; wg)this implies F1 2 �(fv; wg) or F2 2 �(fv; wg), whi
h in both 
ases yields a
ontradi
tion to v 62 S. �For S � VP , de�ne 
(S) to be the set of those fa
ets of P that have non-empty interse
tion with S. 9



Lemma 5.3 Let S � VP with jSj > 0. Then j
(S)j � minfn; d+ jSj � 1g.Proof. If j
(S)j = n, then the 
laim obviously is 
orre
t. Therefore, assumej
(S)j < n. Sin
e �P is 
onne
ted, the verti
es in VP n S = fz1; : : : ; zrg (r =n � jSj) 
an be ordered su
h that zi+1 is adja
ent to some vertex of Si = S [fz1; : : : ; zig for ea
h i 2 f0; : : : ; r�1g (additionally, de�ne Sr = S[fz1; : : : ; zrg).Clearly j
(Si)j � j
(Si�1)j+1, sin
e vertex zi has d� 1 fa
ets in 
ommon withsome vertex in Si�1.De�ne l to be the last i, su
h that j
(Si)j = j
(Si�1)j+ 1, i.e., l is the lastindex, where we en
ounter a new fa
et (l is well-de�ned due to j
(S)j < n).Sin
e this fa
et must 
ontain d� 1 verti
es from VP nSl, we have r� l � d� 1,whi
h yields n� l � d+ jSj � 1.Furthermore, we have j
(S)j+ l � n, sin
e Sl interse
ts all fa
ets. It followsj
(S)j � n� l � d+ jSj � 1. �For S � VP let �P (S) be the subgraph of �P indu
ed by S.Lemma 5.4 Let S � VP with 0 < jSj � d, su
h that �P (S) is 
onne
ted. Thenj�(S)j = d� jSj+ 1 holds.Proof. Sin
e �P (S) is a 
onne
ted subgraph of the 
onne
ted graph �P (whi
hhas n > d verti
es), there is a 
hain ; ( S1 ( S2 ( : : : ( Sd with SjSj = S,su
h that jSij = i and �P (Si) is 
onne
ted for all i.For every 1 < i � d, the vertex v with Si n Si�1 = fvg is 
onne
ted to somevertex w 2 Si�1. From j�(fwg) n�(fvg)j = 1 we infer j�(Si�1) n�(fvg)j � 1,and thus, j�(Si)j � j�(Si�1)j�1. Together with j�(S1)j = d (sin
e P is simple)and j�(Sd)j � 1 (by Lemma 5.2), this implies j�(Si)j = d�i+1 for all 1 � i � d.� The next three lemmas show that �P has a very spe
ial stru
ture.Lemma 5.5 If �P 
ontains a 
y
le C of size k > d, then �P is the 
y
le C ora 
omplete graph on n = d+ 1 nodes.Proof. Let C = (v0; : : : ; vk�1; v0) be a 
y
le of size k > d in �P . In thefollowing, all indi
es are taken modulo k. For 0 � i � k � 1 de�ne the set Ci =fvi; : : : ; vi+d�1g of size d. Clearly, �P (Ci) is 
onne
ted, and, by Lemma 5.4,there exists exa
tly one fa
et Fi with �(Ci) = fFig. Due to k > d, the fa
etsF0; : : : ; Fk�1 are pairwise distin
t. This means that �(fvig) = fFi�d+1; : : : ; Fig(sin
e P is simple) and vert(Fi) = Ci (sin
e P is simpli
ial). Hen
e, every vertexthat is adja
ent to one of the nodes v0; : : : ; vk�1 must be 
ontained in at leastone (more pre
isely, in d� 1 > 0) of the fa
ets F0; : : : ; Fk�1, and thus it lies infv0; : : : ; vk�1g.Sin
e �P is 
onne
ted, this means that n = k. For n = d+1 this immediatelyyields that �P is a 
omplete graph on n = d+ 1 nodes, while for n > d+ 1 one�nds that �P is the 
y
le C (sin
e, in this 
ase, j�(fvig) \�(fvjg)j = d � 1 ifand only if j � i� 1 mod k). �Lemma 5.6 If �P 
ontains a 
y
le of length k � d, then �P is a 
ompletegraph on n = d+ 1 nodes. 10



Proof. Let eC = (v0; : : : ; vk�1; v0) be a 
y
le in �P of size k � d. For ea
hi 2 f0; : : : ; k�1g de�ne eCi = fv0; : : : ; vig. Taking all indi
es modulo k, we havej�(fvi; vi+1g)j = d� 1 for ea
h i, and hen
e, there are fa
ets Fi and Gi with�(fvig) n�(fvi+1g) = fFig and �(fvi+1g) n�(fvig) = fGig :It follows that �( eCk�1) = �( eC0) n fF0; : : : ; Fk�1g : (2)If �P is not 
omplete, then n > d + 1 holds, and we infer from Lemma 5.3that j
( eC2)j � d + 2, whi
h implies G0; G1 62 �( eC0) (with G0 6= G1). Due tofF0; : : : ; Fk�1g = fG0; : : : ; Gk�1g, Equation (2) impliesj�( eCk�1)j � j�( eC0)j � (k � 2) = d� k + 2 ;
ontradi
ting Lemma 5.4. �By the above two lemmas, �P 
annot 
ontain any 
y
les, unless it is 
ompleteor a 
y
le itself. Thus, we are left with the 
ase of �P not 
ontaining any 
y
lesat all.Lemma 5.7 �P is not a tree.Proof. Assume �P is a tree. Let v 2 VP be a leaf of �P with u being theunique vertex of �P adja
ent to v. Due to j�(fvg) n�(fv; ug)j = 1, there is onefa
et that indu
es a subgraph of �P in whi
h v is isolated. This, however, is a
ontradi
tion to Lemma 2.1. �Altogether this proves the following.Proposition 5.8 Let P be a simple and simpli
ial d-polyhedron (d � 2) with nverti
es. Then �P is an n-
y
le or a 
omplete graph on n = d+ 1 nodes.It is worth to mention that one 
an generalize Proposition 5.8 in the followingway. Let A be a 0=1-matrix of size n�n with row and 
olumn sums d. De�ne agraph �A on the 
olumns of A, su
h that two 
olumns are adja
ent if and onlyif they have exa
tly d� 1 ones in 
ommon rows. Then, by the same argumentsas above, one 
an show that the 
onne
tedness of �A already implies that �A isa 
y
le or a 
omplete graph. The only di�eren
e in the proof arises in Lemma5.7. Here one has to prove additionally that, for ea
h row, the subgraph of �Athat is indu
ed by the ones in that row is 
onne
ted (if �A is 
onne
ted).5.2 Cir
ulant Matri
esWe will now exploit Proposition 5.8 to show that every simple and simpli
ialpolyhedron has a very spe
ial vertex-fa
et in
iden
e matrix.Let n; d be integers satisfying 1 � d � n. The (n; d)-
ir
ulant M(n; d) is then� n-matrix with 0=1 entries whose 
oeÆ
ients mij (i; j 2 f0; : : : ; n � 1g) arede�ned as follows:mij = (1 if j 2 fi; i+ 1 mod n; : : : ; i+ d� 1 mod ng0 otherwise 11



For d � 1, the (d + 1; d)-
ir
ulant is an in
iden
e matrix of the d-simplex,and for n � 3, the (n; 2)-
ir
ulant is an in
iden
e matrix of the (2-dimensional)n-gon.Proposition 5.9 A polyhedron P is simple and simpli
ial if and only if it has a
ir
ulant M(n; d) as a vertex-fa
et in
iden
e matrix. In this 
ase, dim(P ) = d.Proof. For the \if"-dire
tion of the proof, let P be a polyhedron with a vertex-fa
et in
iden
e matrix M(n; d) (1 � d � n). The 
ases d = 1 (implying n 2f1; 2g) as well as d = n (implying d = n = 1) are trivial. Therefore, let2 � d < n. Obviously, it suÆ
es to show dim(P ) = d. To ea
h row i 2f0; : : : ; n� 1g of M(n; d) there 
orresponds a fa
et Fi of P . For 0 � j � d� 1de�ne Gj = F0 \ � � � \ Fj . Clearly, Gj � Gj+1 holds for 0 � j < d � 1. Dueto vert(Gj) = vert(F0) \ � � � \ vert(Fj) it follows vert(Gj) ) vert(Gj+1) andtherefore Gj ) Gj+1. Now F0 = G0 ) G1 ) � � � ) Gd�1 is a (de
reasing) 
hainof length d � 1 in the fa
e poset of P . Hen
e we have dimP � d. Sin
e ea
hvertex must be 
ontained in at least dimP fa
ets it follows that dimP � d(be
ause ea
h vertex of P is 
ontained in pre
isely d fa
ets).Conversely, let P be a simple and simpli
ial d-polyhedron (d � 1) with nverti
es. The 
ase d = 1 is 
he
ked easily. Thus, assume d � 2. By Propo-sition 5.8, �P either is a 
omplete graph on n = d + 1 nodes or it is a 
y
le.In the �rst 
ase, every vertex-fa
et in
iden
e matrix of P is the 
omplementof a permutation matrix, whi
h 
an be transformed to M(n; d) by a suitablepermutation of its rows. In the se
ond 
ase, 
onsider any vertex-fa
et in
iden
ematrix A of P , where the 
olumns are assumed to be ordered a

ording to the
y
le �P . Call two positions (i; j) and (i; k) in A = (afv) (f; v 2 f0; : : : ; n� 1g)mates if k � j + 1 (mod n) and aij = aik = 1. Walking around the 
y
le �P ,we �nd that the total number of mates in A is pre
isely n(d� 1) (be
ause everyedge is 
ontained in pre
isely d� 1 fa
ets). But then, sin
e every row of A hasonly d ones (be
ause P is simpli
ial), it follows that in ea
h row the ones mustappear 
onse
utively (modulo n). Denote by s(i) the starting position of theblo
k of ones in row i. Be
ause there are no equal rows in A (by Lemma 5.2)we dedu
e that s de�nes a permutation of the rows of A whi
h tells us how totransform A to M(n; d). �The following result �nishes the proof of Theorem 5.1 (via Proposition 5.9).Proposition 5.10 If a polyhedron P has M(n; d) (2 � d < n) as a vertex-fa
etin
iden
e matrix, then n = d+ 1 (P is a d-simplex) or d = 2 (P is an n-gon).Proof. If n = d + 1, then M(n; d) is a vertex-fa
et in
iden
e matrix of a d-simplex. Hen
e, by Theorem 4.4, P 
annot be unbounded, and thus it must bea d-simplex as well. Therefore, in the following we will assume n > d+ 1.Let us �rst treat the 
ase d+1 < n < 2d� 1. Consider the fa
ets F and F 0
orresponding to rows 0 and n�d+1, respe
tively. If we identify the verti
es ofP with the 
olumn indi
es f0; : : : ; n� 1g of M(n; d), then the vertex set of thefa
e G = F \F 0 is f0g[fn�d+1; : : : ; d�1g, where fn�d+1; : : : ; d�1g 6= ?(due to n < 2d � 1). By Propositions 5.9 and 5.8, �P is an n-
y
le (due ton > d+1). Sin
e neither vertex 1 nor vertex n�1, whi
h are the only neighborsof 0 in �P , are 
ontained in G, we 
on
lude that the subgraph of �P indu
edby G is dis
onne
ted, whi
h is a 
ontradi
tion to Lemma 2.1.12



Hen
e, we 
an assume n � 2d� 1. This impliesV (P ) = ffi; : : : ; i+ s� 1g j i 2 f0; : : : ; n� 1g; s 2 f1; : : : ; dgg(where, again, all indi
es are to be taken modulo n), i.e., V (P ) 
onsists of all(
y
li
) intervals of f0; : : : ; n� 1g with at least one and at most d elements. Wewill 
ompute the M�obius fun
tion � (see Se
tion 4) on the latti
e V̂ (P ) (whi
harises by adding arti�
ial top and bottom elements 1̂ and 0̂ to V (P )). For ea
hs 2 f1; : : : ; dg let �(s) = �(f0; : : : ; s� 1g). Obviously, for every F 2 V (P ) withjF j = s we have �(F ) = �(s). In parti
ular, one readily dedu
es �(1) = �1and �(2) = �(1 + 2 � (�1)) = 1. For 3 � s � d we then infer (by indu
tion)�(s) = �(1 + s � (�1) + (s� 1) � (+1)) = 0. Thus, we �nally 
al
ulate�(V (P )) = �(1̂) = �(1 + n � (�1) + n � (+1)) = �1 ;whi
h by (1) and Theorem 4.4 implies that P is bounded (and, hen
e, an n-gon).(Alternatively, one 
ould derive from the Nerve Lemma [4, Theorem 10.7℄that V (P ) is homotopy-equivalent to a 
ir
le for n � 2d� 1, and thus, P mustbe a polygon.) �Referen
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