
Vertex-Faet Inidenes of Unbounded PolyhedraMihael Joswig Volker Kaibel� Mar E. PfetshG�unter M. Ziegler�Dept. Mathematis, MA 7-1Tehnishe Universit�at Berlin10623 Berlin, Germanyfjoswig,kaibel,pfetsh,zieglerg�math.tu-berlin.deJune 29, 2000AbstratHow muh of the ombinatorial struture of a pointed polyhedron isontained in its vertex-faet inidenes? Not too muh, in general, aswe demonstrate by examples. However, one an tell from the inidenedata whether the polyhedron is bounded. In the ase of a polyhedronthat is simple and \simpliial," i.e., a d-dimensional polyhedron that hasd faets through eah vertex and d verties on eah faet, we derive fromthe struture of the vertex-faet inidene matrix that the polyhedron isneessarily bounded. In partiular, this yields a haraterization of thosepolyhedra that have irulants as vertex-faet inidene matries.1 IntrodutionEvery (proper) fae of a polytope (i.e., a bounded onvex polyhedron) is theonvex hull of the verties it ontains, and it is also the intersetion of the faetsthat ontain it. Thus, the ombinatorial struture of a polytope (i.e., its faelattie) is entirely determined by its (matrix of) vertex-faet inidenes. Suh avertex-faet inidene matrix is a useful enoding of the ombinatorial strutureof a polytope. The software pakage polymake [5, 6℄, for instane, representsthis matrix rather ompatly, in a setion alled VERTICES IN FACETS, while thefae lattie of a polytope is not stored, but generated \on demand" only if thisis really neessary, beause typially the entire fae lattie is \muh too large."But how about not neessarily bounded onvex polyhedra? The ombina-toris of unbounded polyhedra has reeived only little attention up to now (forsome exeptions see Klee [7℄, Billera & Lee [3℄, Barnette, Kleinshmidt & Lee[2℄, and Lee [8℄). One an, of ourse, redue the study of geometrially given un-bounded polyhedra to the situation of \a polytope with a distinguished fae (atin�nity)." But what if only the ombinatoris of verties versus faets is given,and not any data about the situation \at in�nity?" In other words, how muhan really be said/deteted/reonstruted if only a matrix of the vertex-faetinidenes is given?�Supported by a DFG Gerhard-Hess-Forshungsf�orderungspreis (Zi 475/2-3).1



As one observes easily from the example of polyhedral ones, in general theombinatorial struture of an unbounded polyhedron is not determined by itsvertex-faet inidenes. A d-dimensional one may have any possible ombi-natorial struture of a (d � 1)-dimensional polytope (via homogenization); butfrom its vertex-faet inidenes one an read o� only its number of faets. Thepoint is that, for unbounded polyhedra the ombinatorial information is basednot only on the vertex-faet inidenes, but also on the inidenes of extremalrays and faets. For ones, nearly the entire information is ontained in thelatter inidenes. The lattie-theoreti reason for suh ambiguities is that thefae lattie of an unbounded polyhedron is only o-atomi, but not atomi.One might, however, suspet that ones are (extreme) examples of ratherexoti unbounded polyhedra for whih one obviously does not have any haneto reonstrut the ombinatorial struture from their vertex-faet inidenes,while this might be possible for all \reasonable" polyhedra. For instane, aone is a quite degenerate polyhedron with respet to several riteria: (i) allits faets have the same set of verties, (ii) its set of verties does not havethe same dimension as the whole polyhedron, and (iii) it does not have anybounded faet. However, the �rst main point of this paper (in Setion 3) isthe onstrution of more onvining examples of unbounded polyhedra whosefae-latties annot be reonstruted from their vertex-faet inidene matries;they have the property that the sets of verties of faets are distint, and theyeven form an anti-hain in the Boolean lattie (a lutter); they have boundedfaets, and their sets of verties are full-dimensional.The seond main result (in Setion 4) will be that one an, however, detetfrom the vertex-faet matrix whether the polyhedron under onsideration isbounded or not.Thirdly (in Setion 5), we disuss the \unbounded version" of a very basilemma about polytopes. Indeed, Exerise 0.1 of [13℄ asks one to prove that anyd-polytope that is both simpliial (every faet has d verties) and simple (everyvertex is on d faets) must either be a simplex, or a polygon (d = 2). But howabout unbounded polyhedra? We prove that a polyhedron that is both simpleand simpliial (with the de�nitions as given here) annot be unbounded. As abyprodut, we obtain a haraterization of those polyhedra that have irulantvertex-faet inidene matries.In partiular, this paper answers a series of questions that arose in Amaldi,Pfetsh, and Trotter [1℄, where the struture of ertain independene systems isrelated to the ombinatoris of (possibly unbounded) polyhedra.2 Basi FatsLet P be a d-polyhedron (i.e., the intersetion of a �nite number of aÆne half-spaes with dim(P ) = d) with m faets and n verties. We will always assumethat P is pointed (i.e., it has at least one vertex) and that d � 1. In partiular,these onditions imply n � 1 and m � d � 1. For the basi de�nitions and fatsof polyhedral theory we refer to [13℄.A 0=1-matrix A = (afv) 2 f0; 1gm�n is a vertex-faet inidene matrix of Pif the verties and faets of P an be numbered by f1; : : : ; ng and f1; : : : ;mg,respetively, suh that afv = 1 if and only if the vertex with number v isontained in the faet with number f . 2



By P we denote any polytope whih is projetively equivalent to P . If P isunbounded, then there is a unique maximal element F1 (the far fae) among thefaes of P that are not images of faes of P under the projetive transformationmapping P to P . If P is bounded, then we de�ne F1 = ?. Figure 1 illustratesa three-dimensional example.
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5Figure 1: Left: 1-skeleton (i.e., 0- and 1-dimensional faes) of a 3-polyhedron P .The arrows indiate extremal rays, whih are assumed to be parallel. Right:Projetively transformed into P . The far fae F1 is the vertex 6.We denote by F (P ) the fae poset of P , i.e., the set of non-trivial faes ofP (exluding ? and P itself), ordered by inlusion. The fae poset F (P ) arisesfrom the fae poset F �P � by removing the far fae F1 (and all its faes). WhileF �P � is independent of the atual hoie of P , in general it depends on thegeometry of P , not only on its ombinatorial struture.The poset V (P ) = fvert(F ) j F non-trivial fae of Pg (where vert(F ) isthe set of verties of F ) will play an important role. It an be omputed fromany vertex-faet inidene matrix A 2 f0; 1gm�n of P , sine it is the set of allnon-empty intersetions of subsets of f1; : : : ; ng de�ned by subsets of the rowsof A. Figure 2 shows the three posets F (P ), F �P �, and V (P ) for the examplegiven in Figure 1.
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0 12 3 45Figure 2: Left: Fae poset of F �P� for the example given in Figure 1, wherethe solid part is F (P ). Right: The poset V (P ). In general, V (P ) is not graded(although it is in our example).Let the graph �P of P be the graph on the verties of P de�ned by thebounded one-dimensional faes of P (the edges), i.e., �P is the subgraph of thegraph of P that is indued by those verties of P that are not ontained in F1.Two verties of P are onneted by an edge of P if and only if there is a fae ofP whih ontains exatly these two verties. Moreover, we an ompute V (P )from any vertex-faet inidene matrix of P . In partiular, we an �nd �P fromthe vertex-faet inidenes of P .We will use the following fat, whih is a onsequene of the orretness of3



the Simplex-Algorithm for Linear Programming.Lemma 2.1 For every polyhedron P , the graph �P is onneted. Moreover, allfaes of P indue onneted subgraphs of �P .Let P be a pointed d-polyhedron (d � 1). Then, P is alled simple if everyvertex of P is ontained in preisely d faets (or, equivalently, if preisely dedges and extremal rays are inident to eah vertex), and P is alled simpliialif every faet of P has preisely d verties. These notions generalize the well-known notions simple and simpliial for polytopes. While this generalizationis standard for simple polyhedra, it is not ommon for simpliial polyhedra.Thus, it seems to be worth to mention that simpliial unbounded polyhedraform a non-trivial lass of polyhedra. For instane, by a modi�ation of theonstrution of a prism, one easily sees that every simpliial d-polytope anour as the far fae of a simpliial unbounded (d+ 1)-polyhedron.3 Reonstruting Polyhedra from Vertex-FaetInidenesIn this setion, we onsider onditions under whih it is possible to omputeF (P ) from the vertex-faet inidenes of an (unbounded) d-polyhedron P . Ob-viously, given any vertex-faet inidene matrix of a pointed d-polyhedron Pit is easy to deide whether d 2 f1; 2g. Furthermore, if d 2 f1; 2g, one animmediately read o� F (P ) from the vertex-faet inidenes. Thus, for the restof this setion we restrit our attention to d-polyhedra with d � 3.The example of ones shows that reonstruting F (P ) from the vertex-faet inidenes of a d-polyhedron P with d � 4 is impossible in general, evenif additionally the dimension d is spei�ed. Furthermore, the same exampledemonstrates that it is, in general, impossible to detet the dimension of a d-polyhedron from its vertex-faet inidenes for d � 3. However, for d = 3 thesedimensional ambiguities our for ones only.Proposition 3.1 Given a vertex-faet inidene matrix of a d-polyhedron Pwith d � 3, it is possible to deide whether d = 3 or d � 4, unless P is a onewith more than three faets.Proof. If P is a one with three faets (i.e., n = 1 and m = 3) then learlyd = 3 holds. If P is not a one, then it must have at least two verties. Thus(by Lemma 2.1) P has at least one edge (whih we an tell from the vertex-faetinidenes of P ). This edge is ontained in preisely two faets of P if d = 3;otherwise, it is ontained in more than two faets. �In dimensions larger than three, ones are not the only polyhedra for whihone annot tell the dimension from the vertex-faet inidenes. For instane,let Q be some d0-polytope and let C be a d00-dimensional polyhedral one withm � 4 faets. Then P = Q � C will be a (d0 + d00)-dimensional polyhedronwhose vertex-faet inidenes only depend on Q and m, while its dimension anbe any number between d0+3 and d0+m. In partiular, dimensional ambiguitiesalready our for 4-polyhedra not being ones.However, the artesian produts onstruted above are also \one-like" inthe sense that they do not have any bounded faet.4



Proposition 3.2 Given a vertex-faet inidene matrix of a d-polyhedron Pthat has a bounded faet, one an determine d. Furthermore, one an deidefrom the vertex-faet inidenes of P whether it has a bounded faet or not.Proof. If P has a bounded faet, then the maximum length of a hain in V (P )is d � 1, thus one an ompute d from V (P ) in this ase. Corollary 4.6 provesthe seond statement of the proposition. �Propositions 3.1 and 3.2 might suggest to ask if the entire ombinatorialstruture of a d-polyhedron an be reonstruted from its vertex-faet inidenesif d = 3 or if P has a bounded faet. However, the example given in Figure 3shows that both answers are \no". The ruial feature of the example is that one
Figure 3: An example of two ombinatorially di�erent 3-polyhedra with isomor-phi vertex-faet inidenes. The �gures indiate the 1-skeleta of the polyhedra.an reet the \lower" parts in the drawings without a�eting the vertex-faetinidenes while hanging the fae poset (e.g., in ontrast to the left polyhedronthe right one has two adjaent unbounded faets that have three verties eah).For three-dimensional polyhedra this is more or less the only kind of ambiguitythat an arise.Proposition 3.3 Given the vertex-faet inidenes of a 3-polyhedron P , forwhih �P is 2-onneted, one an determine F (P ).Proof. One an ompute �P from the vertex-faet inidenes of P , and thus,one �nds the graph of eah faet of P . If all these graphs of faets are yles thenP is bounded and the statement is lear. Otherwise, due to the 2-onnetednessof �P , there is a unique (up to reorientation) way to arrange the paths that arethe graphs of the unbounded faets of P as a yle. From this yle, it is easyto determine the inidenes of extremal rays and faets of P , whih then allowto reonstrut the entire ombinatorial struture of P . �In larger dimensions, however, it is not true that higher onnetedness of thegraph of a polyhedron is a suÆient ondition for the possibility to reonstrutits ombinatorial struture from its vertex-faet inidenes. Figure 4 showsShlegel-diagrams of (trunations of) two unbounded 4-polyhedra. These twopolyhedra have the same vertex-faet inidenes and a 3-onneted graph, al-though their fae posets are di�erent (e.g., the right polyhedron has an extremalray more than the left one)1.1The data of these polyhedra as well as explanations on their onstrution an be foundin the EG-Models arhive at: http://www-sfb288.math.tu-berlin.de/eg-models/models/polytopes/2000.05.001/ preview.html 5



Figure 4: Shlegel diagrams (produed using polymake [5, 6℄ and javaview [10,9℄) illustrating two 4-polyhedra P1 and P2 that have the same vertex-faet in-idenes, but di�erent fae posets.The examples illustrated in Figures 3 and 4 show that \one-like" polyhe-dra are not the only ones that annot be reonstruted from their vertex-faetinidenes (even not in dimensions three and four). The polyhedra in both ex-amples are quite di�erent from ones; eah of them has a full-dimensional vertexset, bounded faets, and the property that no two faets have the same vertexset. Furthermore, in the four-dimensional example, the vertex sets of the faetseven form an anti-hain (as promised in the introdution).Nevertheless, any ambiguities in reonstruting the fae poset of an un-bounded polyhedron from its vertex-faet inidenes arise from some degenerayof P .Theorem 3.4 Given the vertex-faet inidenes of a simple polyhedron P , onean determine F (P ).Proof. Let v be a vertex of a simple d-polyhedron P and let F1; : : : ; Fd be thefaets of P that ontain v. Then the edges and extremal rays ontaining v arepreisely \i2f1;:::;dgnfi0gFi (i0 = 1; : : : ; d) :Sine we an ompute the edges of P from a vertex-faet inidene matrix, wean thus also dedue (ombinatorially) the extremal rays of P and the infor-mation whih ray is ontained in whih faets. From that, we an dedue theentire fae poset of P . �Again, the example of ones shows that without dimension information onean (in general) not deide from the vertex-faet inidenes of a polyhedron ifit is simple.All algorithms desribed in this setion an be implemented suh that theirrunning time is bounded by a polynomial in jV (P ) j.To summarize the results in this setion: we presented large lasses of (un-bounded) polyhedra for whih the ombinatorial strutures an be reonstrutedfrom their vertex-faet inidenes as well as several examples of polyhedra, forwhih this is not possible. Unfortunately, these results do not yield a hara-terization of the lass of those polyhedra that allow suh reonstrutions.6



4 Deteting BoundednessIn this setion, we show that one an deide from the vertex-faet inidenes ofa pointed polyhedron P whether it is bounded or not. It turns out that thisonly depends on the Euler harateristi of (the order omplex of) V (P ). Thus,it an be read o� from the M�obius funtion of V (P ).We reall some basi fats from topologial ombinatoris (see Bj�orner [4℄).Let � be a �nite poset. The order omplex �(�) of � is the �nite simpliialomplex of all hains in �. We will use terminology from topology in the ontextof �nite posets suh as �. Throughout, this is meant to refer to jj�(�)jj (i.e.,any geometri realization of �(�), endowed with its standard topology).It is well-known that the order omplex �(F (P )) of a bounded d-polytope Pis isomorphi (as a simpliial omplex) to the baryentri subdivision of theboundary �P of P . In partiular, the topologial type of V (P ) is well-knownin this ase.Lemma 4.1 If P is a d-polytope, then F (P ) is homeomorphi to the (d � 1)-sphere.If P is an unbounded (pointed) polyhedron, then we an onsider F (P ) asthe sub-poset of F �P � that onsists of all faes of P that are not ontained inF1. Thus, we will identify �(F (P )) with the sub-omplex of �(F �P �) thatis indued by all hains fFg, where F is a fae of P with F 6� F1.Lemma 4.2 If P is an unbounded (pointed) polyhedron, then F (P ) is on-tratible.Proof. By Lemma 4.1, jj�(F �P �)jj is homeomorphi to a sphere. The induedsubomplexes A = �(F (P )) and B = �(F (F1)) over all verties (i.e., one-element hains of F �P �) of �(F �P �). Using baryentri oordinates, it is seenthat jj�(F �P �)jjnjjBjj retrats onto jjAjj. Thus, jjAjj has the same homotopy-typeas jj�(F �P�)jj n jjBjj, where the latter is a simpliial sphere minus an induedball. Hene, F (P ) is ontratible. �The two lemmas allow one to distinguish between the fae posets of boundedand unbounded polyhedra. Of ourse, there are simpler ways to deide whethera fae poset belongs to a bounded or to an unbounded polyhedron (e.g., hek-ing if every rank one element is a join). However, in general we annot reon-strut the fae poset of a polyhedron P from its vertex-faet inidenes (seeSetion 3). Instead, we need riteria allowing to distinguish between boundedand unbounded polyhedra that an be omputed from V (P ). It turns out thatthe topologial riteria provided by Lemmas 4.1 and 4.2 an be exploited forthis.Consider the poset maps � : F (P )! V (P ), mapping a fae F of a pointedpolyhedron P to vert(F ), and  : V (P ) ! F (P ), mapping the vertex set S ofa fae to the minimal fae ontaining S. Both � and  are order preserving.Moreover, �( (S)) = S and  (�(F )) � F .Lemma 4.3 Let P be a pointed polyhedron. Then the fae poset F (P ) ishomotopy-equivalent to the poset V (P ).7



Proof. Setting f(F ) =  (�(F )) de�nes an order preserving map from F (P )into itself suh that eah fae F is omparable with its image f(F ). From theOrder Homotopy Theorem [4, Corollary 10.12℄, we infer that F (P ) is homotopy-equivalent to the image f(F (P )). In fat, f(f(F )) = f(F ), and hene f(F (P ))is a strong deformation retrat of F (P ). This proves the lemma, sine  is aposet isomorphism from V (P ) onto  (V (P )) = f(F (P )). �The redued Euler harateristi of (the order omplex of) a poset � isdenoted by e�(�), i.e., e�(�) = DXi=�1(�1)ifi(�(�))(where fi(�(�)) is the number of i-faes of �(�), and D is the dimensionof �(�)). The following result in partiular shows that a polytope and anunbounded polyhedron annot have isomorphi vertex-faet inidenes.Theorem 4.4 Let P be a pointed polyhedron. Then P is bounded if and onlyif e�(V (P )) 6= 0.Proof. The redued Euler harateristi of a (d � 1)-sphere equals (�1)d�1,while the redued Euler harateristi of a ontratible spae vanishes. Thusthe laim follows from Lemma 4.1, Lemma 4.2, and Lemma 4.3. �As an example onsider the ase where the unbounded polyhedron P hasa fae F whih ontains all verties of P . Then �(V (P )) is a one over F(in the sense of simpliial topology); in partiular, it is ontratible and thuse�(V (P )) = 0.The redued Euler harateristi of the poset V (P ) an be omputed ef-�iently as follows. By adjoining an arti�ial top element 1̂ and an arti�ialbottom element 0̂, the poset V (P ) beomes a lattie V̂ (P ). Note that we ad-join 1̂ also in the ase where V (P ) already has a top element orresponding toa fae ontaining all verties of P .For every element S 2 V̂ (P ) we de�ne the M�obius funtion, see Rota [11℄and Stanley [12℄, �(S) = 8<:1 if S = 0̂ ;� XS0(S �(S0) otherwise :TheM�obius number �(V (P )) = �(1̂) of V (P ) an be omputed in time boundedpolynomially in jV (P ) j. Sine it is well-known (see Stanley [12, 3.8.6℄) that�(V (P )) = e�(V (P )) ; (1)this proves the following omplexity result.Corollary 4.5 There is an algorithm that deides for every vertex-faet ini-dene matrix of a polyhedron P if P is bounded. Its running time is bounded bya polynomial in jV (P ) j.Atually, Theorem 4.4 allows to deide even more from the vertex-faetinidenes of a polyhedron P . One we have omputed V (P ) we learly an8



also determine V̂ (F ) for every faet F of P (sine we know vert(F ) for everyfaet F of P ). This is the interval between 0̂ and vert(F ) in the lattie V̂ (P ),where we have to add an additional top element 1̂ if there is some other faetF 0 of P ontaining vert(F ).Corollary 4.6 There is an algorithm that tells from a vertex-faet inidenematrix of a polyhedron P whih faets of P are bounded. Its running time isbounded by a polynomial in jV (P ) j.5 Simple and Simpliial PolyhedraIt is a well-known fat [13, Exer. 0.1℄ that a d-polytope whih is both simple andsimpliial is a simplex or a polygon. Both properties (simpliity as well as sim-pliiality) an be viewed as properties of vertex-faet inidenes (see Setion 2).In this setion, we generalize the known result on polytopes to not neessarilybounded d-polyhedra with d � 2.Theorem 5.1 For d � 2, every simple and simpliial d-polyhedron is a simplexor a polygon. In other words, unbounded simple and simpliial polyhedra do notexist.Our proof of Theorem 5.1 is organized into two parts. The �rst part showsthat the graph �P of a simple and simpliial polyhedron P is either a ompletegraph or a yle. In the seond part, we further dedue that a simple andsimpliial polyhedron has a irulant vertex-faet inidene matrix. The proofof Theorem 5.1 is then ompleted by showing that no unbounded d-polyhedron(with d � 2) an have a irulant vertex-faet inidene matrix. Furthermore,Propositions 5.8 and 5.10 yield haraterizations of those polyhedra that haveirulant vertex-faet inidene matries.5.1 Graphs of Simple and Simpliial PolyhedraThroughout this setion, let P be a pointed simple and simpliial d-polyhedronwith n verties and d � 2. Double ounting yields that P must also have nfaets. In partiular, we have n > d (sine otherwise P would be a one, whihis simple and simpliial only for d = 1). We denote by VP = vert(P ) the set ofverties of P . For S � VP let �(S) be the set of all faets of P that ontain S.Reall that (sine P is simple) two verties v and w of P form an edge if andonly if j�(fv; wg)j = d� 1.Lemma 5.2 Two di�erent faets of P annot have the same set of verties.Proof. Suppose that there are two faets F1 and F2 of P (F1 6= F2) withvert(F1) = vert(F2) =: S. Sine n > d, and sine �P is onneted, there mustbe a vertex v =2 S that is a neighbor of some vertex w 2 S. Hene, we havej�(fv; wg)j = d�1. Beause of j�(fwg)j = d and F1; F2 2 �(fwg) � �(fv; wg)this implies F1 2 �(fv; wg) or F2 2 �(fv; wg), whih in both ases yields aontradition to v 62 S. �For S � VP , de�ne 
(S) to be the set of those faets of P that have non-empty intersetion with S. 9



Lemma 5.3 Let S � VP with jSj > 0. Then j
(S)j � minfn; d+ jSj � 1g.Proof. If j
(S)j = n, then the laim obviously is orret. Therefore, assumej
(S)j < n. Sine �P is onneted, the verties in VP n S = fz1; : : : ; zrg (r =n � jSj) an be ordered suh that zi+1 is adjaent to some vertex of Si = S [fz1; : : : ; zig for eah i 2 f0; : : : ; r�1g (additionally, de�ne Sr = S[fz1; : : : ; zrg).Clearly j
(Si)j � j
(Si�1)j+1, sine vertex zi has d� 1 faets in ommon withsome vertex in Si�1.De�ne l to be the last i, suh that j
(Si)j = j
(Si�1)j+ 1, i.e., l is the lastindex, where we enounter a new faet (l is well-de�ned due to j
(S)j < n).Sine this faet must ontain d� 1 verties from VP nSl, we have r� l � d� 1,whih yields n� l � d+ jSj � 1.Furthermore, we have j
(S)j+ l � n, sine Sl intersets all faets. It followsj
(S)j � n� l � d+ jSj � 1. �For S � VP let �P (S) be the subgraph of �P indued by S.Lemma 5.4 Let S � VP with 0 < jSj � d, suh that �P (S) is onneted. Thenj�(S)j = d� jSj+ 1 holds.Proof. Sine �P (S) is a onneted subgraph of the onneted graph �P (whihhas n > d verties), there is a hain ; ( S1 ( S2 ( : : : ( Sd with SjSj = S,suh that jSij = i and �P (Si) is onneted for all i.For every 1 < i � d, the vertex v with Si n Si�1 = fvg is onneted to somevertex w 2 Si�1. From j�(fwg) n�(fvg)j = 1 we infer j�(Si�1) n�(fvg)j � 1,and thus, j�(Si)j � j�(Si�1)j�1. Together with j�(S1)j = d (sine P is simple)and j�(Sd)j � 1 (by Lemma 5.2), this implies j�(Si)j = d�i+1 for all 1 � i � d.� The next three lemmas show that �P has a very speial struture.Lemma 5.5 If �P ontains a yle C of size k > d, then �P is the yle C ora omplete graph on n = d+ 1 nodes.Proof. Let C = (v0; : : : ; vk�1; v0) be a yle of size k > d in �P . In thefollowing, all indies are taken modulo k. For 0 � i � k � 1 de�ne the set Ci =fvi; : : : ; vi+d�1g of size d. Clearly, �P (Ci) is onneted, and, by Lemma 5.4,there exists exatly one faet Fi with �(Ci) = fFig. Due to k > d, the faetsF0; : : : ; Fk�1 are pairwise distint. This means that �(fvig) = fFi�d+1; : : : ; Fig(sine P is simple) and vert(Fi) = Ci (sine P is simpliial). Hene, every vertexthat is adjaent to one of the nodes v0; : : : ; vk�1 must be ontained in at leastone (more preisely, in d� 1 > 0) of the faets F0; : : : ; Fk�1, and thus it lies infv0; : : : ; vk�1g.Sine �P is onneted, this means that n = k. For n = d+1 this immediatelyyields that �P is a omplete graph on n = d+ 1 nodes, while for n > d+ 1 one�nds that �P is the yle C (sine, in this ase, j�(fvig) \�(fvjg)j = d � 1 ifand only if j � i� 1 mod k). �Lemma 5.6 If �P ontains a yle of length k � d, then �P is a ompletegraph on n = d+ 1 nodes. 10



Proof. Let eC = (v0; : : : ; vk�1; v0) be a yle in �P of size k � d. For eahi 2 f0; : : : ; k�1g de�ne eCi = fv0; : : : ; vig. Taking all indies modulo k, we havej�(fvi; vi+1g)j = d� 1 for eah i, and hene, there are faets Fi and Gi with�(fvig) n�(fvi+1g) = fFig and �(fvi+1g) n�(fvig) = fGig :It follows that �( eCk�1) = �( eC0) n fF0; : : : ; Fk�1g : (2)If �P is not omplete, then n > d + 1 holds, and we infer from Lemma 5.3that j
( eC2)j � d + 2, whih implies G0; G1 62 �( eC0) (with G0 6= G1). Due tofF0; : : : ; Fk�1g = fG0; : : : ; Gk�1g, Equation (2) impliesj�( eCk�1)j � j�( eC0)j � (k � 2) = d� k + 2 ;ontraditing Lemma 5.4. �By the above two lemmas, �P annot ontain any yles, unless it is ompleteor a yle itself. Thus, we are left with the ase of �P not ontaining any ylesat all.Lemma 5.7 �P is not a tree.Proof. Assume �P is a tree. Let v 2 VP be a leaf of �P with u being theunique vertex of �P adjaent to v. Due to j�(fvg) n�(fv; ug)j = 1, there is onefaet that indues a subgraph of �P in whih v is isolated. This, however, is aontradition to Lemma 2.1. �Altogether this proves the following.Proposition 5.8 Let P be a simple and simpliial d-polyhedron (d � 2) with nverties. Then �P is an n-yle or a omplete graph on n = d+ 1 nodes.It is worth to mention that one an generalize Proposition 5.8 in the followingway. Let A be a 0=1-matrix of size n�n with row and olumn sums d. De�ne agraph �A on the olumns of A, suh that two olumns are adjaent if and onlyif they have exatly d� 1 ones in ommon rows. Then, by the same argumentsas above, one an show that the onnetedness of �A already implies that �A isa yle or a omplete graph. The only di�erene in the proof arises in Lemma5.7. Here one has to prove additionally that, for eah row, the subgraph of �Athat is indued by the ones in that row is onneted (if �A is onneted).5.2 Cirulant MatriesWe will now exploit Proposition 5.8 to show that every simple and simpliialpolyhedron has a very speial vertex-faet inidene matrix.Let n; d be integers satisfying 1 � d � n. The (n; d)-irulant M(n; d) is then� n-matrix with 0=1 entries whose oeÆients mij (i; j 2 f0; : : : ; n � 1g) arede�ned as follows:mij = (1 if j 2 fi; i+ 1 mod n; : : : ; i+ d� 1 mod ng0 otherwise 11



For d � 1, the (d + 1; d)-irulant is an inidene matrix of the d-simplex,and for n � 3, the (n; 2)-irulant is an inidene matrix of the (2-dimensional)n-gon.Proposition 5.9 A polyhedron P is simple and simpliial if and only if it has airulant M(n; d) as a vertex-faet inidene matrix. In this ase, dim(P ) = d.Proof. For the \if"-diretion of the proof, let P be a polyhedron with a vertex-faet inidene matrix M(n; d) (1 � d � n). The ases d = 1 (implying n 2f1; 2g) as well as d = n (implying d = n = 1) are trivial. Therefore, let2 � d < n. Obviously, it suÆes to show dim(P ) = d. To eah row i 2f0; : : : ; n� 1g of M(n; d) there orresponds a faet Fi of P . For 0 � j � d� 1de�ne Gj = F0 \ � � � \ Fj . Clearly, Gj � Gj+1 holds for 0 � j < d � 1. Dueto vert(Gj) = vert(F0) \ � � � \ vert(Fj) it follows vert(Gj) ) vert(Gj+1) andtherefore Gj ) Gj+1. Now F0 = G0 ) G1 ) � � � ) Gd�1 is a (dereasing) hainof length d � 1 in the fae poset of P . Hene we have dimP � d. Sine eahvertex must be ontained in at least dimP faets it follows that dimP � d(beause eah vertex of P is ontained in preisely d faets).Conversely, let P be a simple and simpliial d-polyhedron (d � 1) with nverties. The ase d = 1 is heked easily. Thus, assume d � 2. By Propo-sition 5.8, �P either is a omplete graph on n = d + 1 nodes or it is a yle.In the �rst ase, every vertex-faet inidene matrix of P is the omplementof a permutation matrix, whih an be transformed to M(n; d) by a suitablepermutation of its rows. In the seond ase, onsider any vertex-faet inidenematrix A of P , where the olumns are assumed to be ordered aording to theyle �P . Call two positions (i; j) and (i; k) in A = (afv) (f; v 2 f0; : : : ; n� 1g)mates if k � j + 1 (mod n) and aij = aik = 1. Walking around the yle �P ,we �nd that the total number of mates in A is preisely n(d� 1) (beause everyedge is ontained in preisely d� 1 faets). But then, sine every row of A hasonly d ones (beause P is simpliial), it follows that in eah row the ones mustappear onseutively (modulo n). Denote by s(i) the starting position of theblok of ones in row i. Beause there are no equal rows in A (by Lemma 5.2)we dedue that s de�nes a permutation of the rows of A whih tells us how totransform A to M(n; d). �The following result �nishes the proof of Theorem 5.1 (via Proposition 5.9).Proposition 5.10 If a polyhedron P has M(n; d) (2 � d < n) as a vertex-faetinidene matrix, then n = d+ 1 (P is a d-simplex) or d = 2 (P is an n-gon).Proof. If n = d + 1, then M(n; d) is a vertex-faet inidene matrix of a d-simplex. Hene, by Theorem 4.4, P annot be unbounded, and thus it must bea d-simplex as well. Therefore, in the following we will assume n > d+ 1.Let us �rst treat the ase d+1 < n < 2d� 1. Consider the faets F and F 0orresponding to rows 0 and n�d+1, respetively. If we identify the verties ofP with the olumn indies f0; : : : ; n� 1g of M(n; d), then the vertex set of thefae G = F \F 0 is f0g[fn�d+1; : : : ; d�1g, where fn�d+1; : : : ; d�1g 6= ?(due to n < 2d � 1). By Propositions 5.9 and 5.8, �P is an n-yle (due ton > d+1). Sine neither vertex 1 nor vertex n�1, whih are the only neighborsof 0 in �P , are ontained in G, we onlude that the subgraph of �P induedby G is disonneted, whih is a ontradition to Lemma 2.1.12
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