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Abstract Constructibility is a condition on pure simplicial com-
plexes that is weaker than shellability. In this paper we show that
non-constructible triangulations of the d-dimensional sphere exist for
every d > 3. This answers a question of Danaraj and Klee [10]; it also
strengthens a result of Lickorish [16] about non-shellable spheres.
Furthermore, we provide a hierarchy of combinatorial decompo-
sition properties that follow from the existence of a non-trivial knot
with “few edges” in a 3-sphere or 3-ball, and a similar hierarchy for
3-balls with a knotted spanning arc that consists of “few edges.”

1 Introduction

From the hierarchy of conditions on simplicial complexes given by
vertex decomposable = shellable = constructible,

that is,

not vertex decomposable <= non-shellable <= non-constructible,

(non-)shellability is probably the most intensively studied one [4]
[5]. All the boundary complexes of simplicial polytopes are shellable
[7] [23, Chap. 8], but not all of them are vertex decomposable [15,
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Sect. 6]. A mysterious fact about shellability is that there exist tri-
angulations of d-balls and also of d-spheres which are not shellable if
d > 3, though all triangulations of 2-balls and 2-spheres are shellable.
Non-shellable triangulations of balls are reviewed in [24].

An explicit construction of non-shellable triangulations of spheres
was given by Lickorish [16]. Lickorish’s result was that triangula-
tions of 3-spheres which contain a knotted triangle are not shellable,
provided that the knot is complicated enough. (Their (d — 3)-fold sus-
pensions give non-shellable triangulations of d-spheres for d > 3.)
In [16], the added condition of complexity on the knot could not be
deleted since for simple knots such as a single trefoil or the sum of
two trefoils, Lickorish’s technique fails and cannot determine whether
the corresponding triangulated spheres are shellable or not.

Constructibility, a concept from combinatorial topology [22] that
can be viewed as a relaxation of shellability, appears in different com-
binatorial contexts in [5], [10], [14], and [20]. In [13], two classes of
non-constructible triangulations of 3-balls were identified, but the ex-
istence of non-constructible triangulations of spheres was left open.
This problem dates back at least to the 1978 survey of Danaraj and
Klee [10, Sect. 4]. Here we answer this question:

Theorem 1 If a 3-ball or 3-sphere contains any knotted triangle,
then it is not constructible.

In particular, the above-mentioned triangulations of 3-spheres con-
sidered by Lickorish, where some triangle forms a trefoil or the sum
of two trefoil knots, are non-shellable.

We will show that also the existence of a non-trivial knot consist-
ing of 4 or 5 edges has “bad effects” on the decomposition properties
of a triangulated 3-sphere. The results and examples provided in this
paper may be summarized in the following remarkable hierarchy:

Theorem 2 A 3-ball with a knotted spanning arc consisting of
at most 2 edges s mot constructible,
{ 3 edges can be shellable, but not vertex decomposable,
4 edges can be vertex decomposable.

A 3-sphere or 3-ball with a knot consisting of
3 edges 1s not constructible,

{ 4 or 5 edges can be shellable, but not vertex decomposable,
6 edges can be vertexr decomposable.

Our results about non-shellable triangulated spheres are dual to
those of Armentrout [2] (see also [1]), who considers (shellability of)
the “cell partitionings” which also may be viewed as the dual block
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complexes of triangulations of 3-spheres. There is no obvious rela-
tion between Armentrout’s results and ours, since there is no direct
connection between the shellability of a triangulation and that of its
dual cell partition. (Otherwise Armentrout’s results would also imply
non-shellability of Lickorish’s spheres.) We think that our approach
has the virtue of being very simple exactly because we head for the
stronger property of non-constructibility. On the other hand, Armen-
trout’s very interesting paper [2] suggests an extension of Theorem 2
for number of edges vs. complexity of a knot or spanning arc, where
the complexity of the knot is measured in terms of its bridge num-
ber [2] [19]. Some results in this direction were achieved in [11].

2 Definitions and Notation

A simplicial complex is a finite set C of simplices (the faces of C)
in some Euclidean space R™ satisfying that (i) if o € C then all the
faces of o are members of C, and (ii) if o, 7 € C then o N7 is a face of
both o and 7. The 0-dimensional simplices in C are the vertices, the
1-dimensional simplices are the edges of C. The inclusion-maximal
faces are called facets. The dimension of C' is the largest dimension of
a facet. A d-complex is short for a d-dimensional simplicial complex.
If all the facets of C' have the same dimension, then C is pure. (In
particular, the simplicial complex which has only the empty set as
a face, is a pure complex of dimension —1, with a single facet.) For
a set of simplices C' C C, the simplicial complex C’ consists of the
simplices in C’ together with all their faces. The union |C| of the
simplices of C is called the underlying space of C. If |C| is homeo-
morphic to a manifold M, then C is a triangulation of M. If C' is
a triangulation of a d-ball or of a d-sphere, respectively, then C' will
be simply called a d-ball or a d-sphere. For any triangulation C of a
manifold, the boundary complex OC' is the collection of all simplices
of C which lie in the boundary of the manifold. A d-dimensional pure
simplicial complex is strongly connected if for any two of its facets F'
and F’, there is a sequence of facets F = F|, F,,...,F, = F' such
that F; N F;11 is a face of dimension d — 1, for 1 < ¢ < k- 1. If
a d-dimensional pure simplicial complex is strongly connected and
each (d —1)-dimensional face belongs to at most two facets, then it is
called a pseudomanifold. Every triangulation of a connected manifold
is a pseudomanifold.

A pure d-dimensional complex is shellable if its facets can be or-
dered Fy, Fs,. .., F; so that (U‘Z;ll F;) N Fj is a pure (d — 1)-complex
for 2 < 5 < t. This ordering of the facets is called a shelling.
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Constructibility of pure simplicial complexes is defined recursively
as follows:

(i) Every simplex (i. e., a complex with one single facet) is con-
structible.

(ii) A d-complex C which is not a simplex is constructible if and
only if it can be written as C' = C7 U Cy, where C and C, are
constructible d-complexes and C; N Cy is a constructible (d —1)-
complex.

If we restrict this definition such that Ce must be a simplex, then
we get a characterization of shellability; thus constructibility is a
relaxation of shellability.

For a simplicial complex C and a face o, starco is the simplicial
complex that contains all faces of facets of C that contain o, and
linkco is the subcomplex of those simplices of starco that do not
intersect o. For a simplex o and a vertex v ¢ o, the join v * o is a
simplex whose vertices are those of o plus the extra vertex v. The
join v x C' of a complex C' with a new vertex v is defined such that
v+« C ={vx7:7 € C}. The deletion C\v is the subcomplex of C
formed by all the faces of C' that do not contain the vertex v.

A pure d-complex C' is vertez decomposable if it is a simplex or
there is a vertex z such that

(i) linkcz is (d — 1)-dimensional and vertex decomposable, and
(ii) C\z is d-dimensional and vertex decomposable.

The vertex z is called a shedding vertez. Vertex decomposable simpli-
cial complexes were introduced and shown to be shellable by Provan
and Billera [18].

For a 3-ball, a spanning arc is a tame arc contained in the interior
of the ball except for its two endpoints lying on the boundary. When
joining the two endpoints by a second tame arc that is contained in
the boundary of the ball, one always gets a knot of the same type.
So one can say that a spanning arc is knotted if the spanning arc
together with any added arc contained in the boundary forms a non-
trivial knot embedded in the 3-ball. In fact, the same is also true if
the relative interior of the spanning arc is not fully contained in the
interior of the ball, provided that the spanning arc is contained in the
ball and the added arc does not intersect with it. So in this paper we
require of a spanning arc only that it is contained in the ball and that
both ends of it are on the boundary, and allow for the case that some
parts of the relative interior of the spanning arc are on the boundary.
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3 Non-constructible 3-balls and 3-spheres

In the following, we use the simple fact that if all the (d — 1)-dimen-
sional faces of a constructible d-complex C' are contained in at most
two facets, then C must be a d-ball or a d-sphere [22] [5, Th. 11.4].
Since pseudomanifolds satisfy the condition, we get that every con-
structible pseudomanifold is a d-ball or a d-sphere, and that

— if C' is a constructible d-sphere, then the complexes C; and Cy
in the definition of constructibility are constructible d-balls and
C1 N Cy is a constructible (d — 1)-sphere, and

— if C is a constructible d-ball, then C7 and C5 are constructible
d-balls and C; N Cy is a constructible (d — 1)-ball.

Lemma 1 If a triangulation C' of a 3-ball has a knotted spanning
arc which consists of at most two edges of C, then C is not
constructible. o

This lemma, is the crucial new observation of this paper. It extends
a lemma from [13], namely that if a triangulation C of a 3-ball has a
knotted spanning arc which consists of just one edge of C, then C' is
not constructible.

The fact that a ball C' with a knotted spanning arc consisting of
just one edge cannot be shellable is old, and can be traced back to
Furch’s 1924 paper [12] [23,24]. Furthermore, such balls exist:

Lemma 2 (Furch [12]) Triangulations C of the 3-dimensional
ball B3 with a knotted spanning arc that consists of a single edge
of C exist.

To obtain Furch’s “knotted hole ball,” one “drills a hole” into
a finely triangulated ball by removing tetrahedra along a knotted
spanning curve; if one stops drilling one step before destroying the
property of having a triangulated ball, then one arrives at a ball with
a knotted spanning edge. (See also [12], [21], [23,24].)

From any such ball with a knotted spanning edge one obtains a
triangulated 3-sphere that has a knot that consists of only three edges
— a knotted triangle, as needed below — by adding a cone over the
boundary, that is, by forming C' U (v * 9C) [16].
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Proof (of Lemma 1) We show by induction on the number of facets
of C' that in a constructible triangulation C of a 3-ball, a spanning
arc that consists of only two edges ab and be cannot be knotted. (We
may assume that the arc in question has exactly two edges, since an
arc consisting of a single edge can be extended by an edge on the
boundary. Recall for this that we allow parts of spanning arcs to lie
in the boundary of the ball.)

If C is a single simplex (tetrahedron), then the arc cannot be
knotted. Otherwise C' decomposes into two constructible complexes
C1 and C as in the definition of constructibility; both C; and Cs are
triangulated 3-balls. There are two cases to consider.

Case 1: The two edges ab and bc are both contained in C). They
form a spanning arc ab-bc of C, which by induction cannot be
knotted.

Case 2: One edge ab is contained in C and the other one bc is con-
tained in Cs. C is constructible, so by induction ab is an un-
knotted spanning arc of C'1, and similarly for the arc bc in Cs.

C
Ci ¢

C>
a

Now the fact that ab-bc is not knotted in C follows from a known
fact from combinatorial topology: if two unknotted ball pairs
meet in a common face, then their union an unknotted ball pair
(see [22, Lemma 19] or [17, Chap. 2]). O

The existence of a knotted spanning arc with &k edges, for any
k > 3, does not assure non-constructibility in general. The proof
technique of Lemma 1 breaks down for £ = 3: Our figure shows a
situation where a 3-ball contains a knotted spanning arc with £ = 3
edges, but neither C'; nor Cs necessarily contains a knotted spanning

arc with less than 4 edges. c

Cy Cs

In fact, we can construct a shellable 3-ball with a knotted spanning
arc consisting of 3 edges, as follows.
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Ezample 1 (A shellable 3-ball with a knotted spanning arc consisting
of 3 edges.) Let C; be a pile of 6 x 6 x 1 cubes in which each cube is
split into 6 tetrahedra. Then C := Cy U (b * (gray faces)) = C1 U (b
F1)U (b* Fy) U--- is a shellable 3-ball because C is shellable, and
the arc ab-bc-cd is a knotted spanning arc of the 3-ball as is indicated
in the upper figures.

C = (pile of cubes) U (bx F1)U (bx Fy) U ---

Now we can show the following result, which includes Theorem 1.

Theorem 3 In a constructible 3-ball or 3-sphere, every knot that
consists of three edges and three vertices (a “triangle”) is trivial.

Proof We use Lemma 1 and induction on the number of facets. The
case of a simplex C' is clear. Otherwise the complex C' can be di-
vided into two constructible complexes C; and C5. As noted in the
beginning of this section, both C; and Ce must be 3-balls. If one of
them contains all the three edges of a triangle x, then k is trivial by
induction. If not, then one of them, say C, has two edges ab and bc
of k, and the other one C5 has the third edge ca of . Now ab-bc is a
spanning arc of C and ca is a spanning arc of Cs, and both spanning
arcs are not knotted from Lemma 1. This implies that x is trivial
because the connected sum of two trivial knots is trivial. (This is
based on the following combinatorial topology fact: if two unknotted
ball pairs are joined by their boundary, then this yields an unknotted
sphere pair; see [22, Lemma 18].) O
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Corollary 1 If a triangulation of a 3-sphere contains any knotted
triangle, then it is not shellable.

Remark 1 Lickorish’s result was that if a triangulation C of a 3-
sphere contains a complicated knotted triangle, then C'\o is not col-
lapsible for any facet o of C, and the non-shellability of C' was a
corollary to this statement. The property “C'\o is not collapsible for
any facet ¢” is stronger than non-shellability, and to get this Lickor-
ish needed the condition that the knot must be complicated enough
(specifically, the fundamental group of the complement of the knot
may have no presentation with less than 4 generators), which is not
needed here.

The number “3” of edges of a knot in Theorem 3 is best possible,
as is shown in the following example.

Ezample 2 (A shellable 3-ball and 3-sphere with a knot consisting of
4 edges.) This example arises in the same line of construction as
Example 1. Let C be a pile of 8 X 6 x 1 cubes in which each cube
is split into 6 tetrahedra as before. Then the 3-ball Co = Cy U (b
(slashed faces)) U (d * (gray faces)) has a knot ab-bc-cd-da. This knot
ab-bc-cd-da is not trivial because ab-bc-cd is a non-trivial knotted
spanning arc. (It makes a trefoil knot.) Its shellability is easily seen
as in Example 1. To get a 3-sphere with a knot consisting of 4 edges,
we have only to take a cone over the boundary of Cs, that is, C' :=
Cy U (v * 0C3). The shelling of Cy can be trivially extended to that
of C because 0C5 is shellable since it is a 2-sphere.

==

S RS NS NSt N S
7 & ’

4 Removing a facet from a 3-sphere

The following result reduces the constructibility question from 3-
spheres to 3-balls. It leads to a different proof of Theorem 3 from
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Lemma 1, where we remove from a 3-sphere any facet that contains
an edge of the “knotted triangle.” No similar result for the case of
shellable 3-spheres seems to be available. (For a shellable 3-sphere, is
every facet the last facet of some shelling?)

Theorem 4 Let C be a triangulation of a 3-sphere and o any facet
of C. Then C is constructible if and only if C\o is constructible.

Proof The “if” part is trivial, so we show the “only if” part. Let C be
constructible. Then by definition there are two constructible 3-balls
C1 and C5 such that Cy U Cy = C, and C; N (5 is a constructible
2-sphere. We may assume that o is contained in Cs. If Co = &, then
we are done. Otherwise (5 is the union of two constructible 3-balls
C91 and Cyy that satisfy the conditions for constructibility. We may
assume that Cyy contains . We define C] := C1UCy; and C := Ca.
Then

(i) CY is a constructible 3-ball by definition.
(ii) C7NCY =0CH = dCq is constructible because it is a 2-sphere.
c

(iii) Cf = C1 Uy, where both C; and Cy; are constructible 3-balls
by definition. Their intersection C; N Co; = 0C51\(Ca1 N Cog) is
a constructible 2-ball, since removal of a 2-ball from a 2-sphere
always leaves a 2-ball, and all 2-balls are constructible. Thus
C] is a constructible 3-ball.

So C] and C) instead of C; and C9 satisfy the definition of con-
structibility. Continuing this argument, the number of facets of Cs
is reduced until Cy has only the one facet o, showing that C\o is
constructible. O

5 Non-constructible d-spheres

The following lemma produces non-constructible triangulations of the
d-sphere for all d > 3.

Lemma 3 (see Bjorner [3, Appendix]| [5, p. 1855])
All links of a constructible simplicial complex are constructible.
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Proof Let C be a constructible simplicial complex and 7 a face of C.
We use an induction on the number of facets of C. The case of a
simplex C' is trivial, so we write C' as a union of two constructible
complexes C; and Cy. If 7 is contained in only one of C; and Cj,
say in O}, then linkc7 = linke, 7 is constructible by induction. If 7
is contained in C7 N Cy, then

(i) (linkeT)NCy = linke, 7 =: Ly,

(ii) (linkeT) N Cy = linke, 7 =: Lo,
(ifi) Ly N Lo = (linke, 7) N (linke, 7) = linke, ncy 7, and
(iv) Ly U Ly = linker.

These observations imply by induction that linkc7 is constructible.
O

Corollary 2 All d-spheres S, d > 3, have non-constructible trian-
gulations.

Proof Let C be a non-constructible triangulation of a (d — 1)-sphere,
and let v; and vy be two vertices not contained in C. Then the sus-
pension YC := (v; * C) U (v2 x C) UC of C is a triangulation of the
d-sphere. It is not constructible by Lemma 3, since linkycv; = C.
O

Remark 2 The double suspension $2H¢ of any homology d-sphere
H? is homeomorphic to S92, according to Cannon [8]. Already Da-
naraj and Klee [10] pointed out that for H¢ % S? this yields examples
of non-PL, and hence non-shellable, spheres. (See Curtis and Zeeman
[9] for a related much earlier discussion.) For this we note the follow-
ing known [22] hierarchy for spheres (equivalently, for pseudomani-
folds without boundary):

shellable = constructible — PL,
that is,
non-shellable <= non-constructible <= not PL.

Thus Cannon’s theorem assures the existence of non-constructible
triangulations of d-spheres for d > 5, and Theorem 3 improves this
to d > 3 and also to PL cases.

Recently, Bjorner and Lutz [6] constructed triangulations of non-
PL d-spheres with 13 + d vertices, for d > 5. Their 18 vertex trian-
gulation of a non-PL 5-sphere currently seems to have the smallest
number of vertices known for a non-constructible sphere.
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6 Knots and vertex decomposability

In Example 1 we constructed an example of shellable 3-ball which has
a knotted spanning arc with 3 edges. The example, however, is not
vertex decomposable. This can be observed directly from the figure,
but we prove a more general fact: no 3-ball with a knotted spanning
arc that consists of only three edges is vertex decomposable.

Lemma 4 If o 3-ball C' has a knotted spanning arc consisting of at
most 3 edges, then C' is not vertex decomposable.

Proof First we observe that if z is a shedding vertex of a vertex
decomposable d-ball, then z lies in the boundary. Furthermore, every
vertex y adjacent to x is either in the interior of C, or the edge zy
is contained in the boundary of C. This is because the deletion C\z
must be a 3-ball, and the link of z is a 2-ball.

Again we use induction on the number of facets. If the spanning
arc is made of 1 or 2 edges, then it is not knotted by Lemma 1. So we
can assume that the spanning arc is made of 3 edges, where the first
and last edge do not lie in the boundary of the ball. Thus if the arc
is ab-bc-cd, the edges ab and cd lie in the interior of C'. In particular,
b and c¢ are not shedding vertices.

The vertex a also cannot be a shedding vertex: otherwise bc-cd is
a 2-edge knotted spanning arc in the 3-ball C'\a (to verify this we
use an argument as in the proof of Lemma 1), and thus C'\a is not
constructible (not even shellable) by Lemma 1. Similarly d cannot be
a shedding vertex.

Thus z must be taken to be different from {a, b, c,d}. In this case,
however, C\z has a knotted spanning arc with 3 edges and has a
smaller number of facets than C, contradicting the induction hy-
pothesis. 0O

The number “3” of edges in the knotted spanning arc is best possi-
ble, because there are vertex decomposable 3-balls that have a knot-
ted spanning arc with 4 edges.

Example 3 A vertex decomposable 3-ball with a knotted spanning
arc made of 4 edges.] In the figure of Example 1, C' = C; U (v *
(gray faces)), where v is a newly introduced vertex, has a knotted
spanning arc ab-bv-vc-cd with 4 edges. This 3-ball C’ is vertex de-
composable. (One can take v as the first shedding vertex.)

As in the case of constructibility in Section 3, from Lemma 4 we
get a result for knots in vertex decomposable 3-spheres resp. 3-balls.
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Theorem 5 If a 3-sphere or a 3-ball C' has a knot which consists of
at most 5 edges, then C is not vertex decomposable.

Proof We use Lemma 4 and induction on the number of facets.

If C is a simplex, the statement obviously holds. Let C' be vertex
decomposable, let x be a shedding vertex of C' and let k be a knot with
at most 5 edges. If z is a vertex of k, then C\z has a knotted spanning
arc with at most 3 edges, contradicting to Lemma 4. Otherwise C\z
has a knot x with at most 5 edges, contradicting to the induction
hypothesis. O

The number of edges in this theorem is again best possible, as is
shown in the following example.

Ezample J (A vertex decomposable 3-ball and 3-sphere with a knot
consisting of 6 edges.) In the figure of Example 2, C} = Cy U (v
(slashed faces)) U (w  (gray faces), where v and w are newly intro-
duced vertices, has a knot ab-bv-vc-cd-dw-wa with 6 edges, and this
3-ball is vertex decomposable. From this 3-ball, we can construct a
vertex decomposable 3-sphere by taking a cone over its boundary,
namely, C' = C) U (u x 9CY).

Thus we have established the complete hierarchy of Theorem 2.
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