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ON COHOMOLOGY ALGEBRAS
OF COMPLEX SUBSPACE ARRANGEMENTS

EVA MARIA FEICHTNER AND GUNTER M. ZIEGLER

ABSTRACT. The integer cohomology algebra of the complement of a complex
subspace arrangement with geometric intersection lattice is completely deter-
mined by the combinatorial data of the arrangement. We give a combinatorial
presentation of the cohomology algebra in the spirit of the Orlik-Solomon result
on the cohomology algebras of complex hyperplane arrangements. Our meth-
ods are elementary: we work with simplicial models for the complements that
are induced by combinatorial stratifications of complex space. We describe
simplicial cochains that generate the cohomology. Among them we distin-
guish a linear basis, study cup product multiplication, and derive an algebra
presentation in terms of generators and relations.

1. INTRODUCTION

Subspace arrangements have attracted interest from topological, algebraic, as
well as from combinatorial points of view. It is the interplay of methods from
seemingly distant areas that makes the theory of subspace arrangements a vivid and
appealing field of research (see the recent surveys by BJORNER [Bj3, Bj4]). In the
present paper we are concerned with the interaction of topological and combinatorial
structure of complex subspace arrangements.

Let A = {Uy,...,U,} be a complex subspace arrangement, that is, a finite set
of complex linear subspaces in C?. Two topological spaces are naturally associated
to the arrangement, the singularity link V4 := |JANS?¢~1, and the complement
M(A) := C?*\ J.A. Their homotopy types, homology groups, cohomology algebras,
etc. are among the topological invariants of the arrangement. On the other hand,
there are combinatorial data associated to the arrangement — the intersection
lattice £(A), defined as the poset of intersections among subspaces in A ordered by
reverse inclusion, and the codimension function codime : £(A) — N, which assigns
to every element in £(A) the complex codimension of the respective subspace of C?.

It is of interest to see the extent in which the topological invariants of an ar-
rangement are determined by the combinatorial data. Specifically, we ask here:

o Is the cohomology algebra of the complement of a (complex) subspace ar-
rangement determined by the intersection lattice together with the codimension
function?
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o Can one give an explicit algebra presentation in terms of generators and rela-
tions?

o Can the generators be represented by explicit combinatorial /geometric cocycles,
and can the relations be verified in terms of these?

A positive answer to this last question should reveal an explicit correspondence
between the topological and the combinatorial structure of an arrangement.

All three questions have satisfactory, positive answers for complex hyperplane
arrangements: In a classical paper from 1980, ORLIK & SoLOMON [OS] showed
that the cohomology algebra of the complement is completely determined by the
combinatorial data of an arrangement. They gave a presentation of the cohomology
algebra in generators and relations that depends only on combinatorial data. (In
the hyperplane case, the codimgc -function is determined by £.) For their proof they
used BRIESKORN’s [Bn] description of the cohomology algebra in terms of explicit
de Rham classes, relying on Lefschetz type arguments from algebraic geometry.
Later, an elementary reproof by BJORNER & ZIEGLER [BZ] complemented the
Orlik-Solomon result, and provided a positive answer to the third question. Our
present investigations are based on [BZ], and we will thus comment on this work in
some detail.

The results on cohomology algebras of complements of complex subspace ar-
rangements are less complete: The linear structure was clarified by GORESKY &
MACPHERSON [GM, PartIII]. Recently, DE CONCINI & PROCESI [DP] showed that
the rational cohomology algebras of complex subspace arrangements are completely
determined by the combinatorial data of the arrangements. They provide rational
models for the complements, i.e., differential graded algebras whose cohomology
algebras are isomorphic to the rational cohomology algebras of the arrangements.
Regarding a description of the algebras in combinatorial terms, their result is far
from explicit. The De Concini-Procesi model has been considerably simplified by
YUuzvINsKY [Y], who conjectures a natural integral version of his model to be an in-
tegral model for the complements of complex subspace arrangements [Y, Conj. 6.6].

In the present paper we concentrate on complex subspace arrangements with
geometric intersection lattices (in the sense of matroid theory [CR] [Ox]): We call
them geometric arrangements for brevity. We will describe the integer cohomology
algebras of their complements in the spirit of the Orlik-Solomon result for hyper-
plane arrangements, striving for an elementary and geometrically elucidating proof.
We provide an outline of our work in the following.

Our investigations are based on BJORNER & ZIEGLER [BZ] in the hyperplane
case. We adjust their approach to the study of subspace arrangements: When
carefully choosing an appropriate hyperplane arrangement, the induced combina-
torial stratification of complex space [BZ, Sect. 2] yields cellular models for the link
and the complement of a given subspace arrangement. These models are regular
CW complexes whose face posets have simple combinatorial descriptions. We study
the complement of an arrangement through the barycentric subdivision of its cel-
lular model, thus working within simplicial cohomology theory (Section 2). In the
case of arrangements with boolean intersection lattices, boolean arrangements for
brevity, we particularly refine our models by a specific choice of inducing hyperplane
arrangements (Section 3).

We give explicit descriptions of certain simplicial cocycles on the complements of
boolean arrangements — a definition that plays a key role also beyond the boolean
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case (Section 4). Restriction from the complements of boolean subarrangements
transfers these cocycles to complements of general geometric arrangements. We
distinguish a linear basis of the cohomology algebra among the resulting cohomology
classes (Section 5).

Several choices are involved in the definition of our cocycles. We spend most of
Section 6 to show that when varying these choices the corresponding cohomology
classes are affected at most by a sign change, which we can control. Thus, for
distinguished cohomology classes we have a variety of explicit representing cocycles
at hand. This allows us to study cup product multiplication and linear relations
among the proposed generators of the cohomology algebra. Combined with the
linear basis obtained in Section 5, this results in a combinatorial presentation of
the integer cohomology algebra in terms of generators and relations (Section 7,
Theorem 7.3).

We close our investigations with some remarks on the specialization of our re-
sult to complex hyperplane arrangements and on an extension to real (mod2)-
arrangements — arrangements of real linear subspaces for which all intersections
have even codimensions (Theorem 7.5).

Acknowledgments. Sergey Yuzvinsky [Y] independently obtained a combi-
natorial presentation for the cohomology algebras of geometric subspace arrange-
ments, using his integral models for the complements of complex subspace arrange-
ments. We thank Dmitry Kozlov for carefully reading an early version of this
paper and for detecting a crucial error which led us to the “right” combinatorial
stratifications in the boolean case.

2. COMBINATORIAL STRATIFICATIONS

Combinatorial stratifications for complex hyperplane arrangements were intro-
duced in [BZ]. They yield a complete encoding of the arrangement’s topology into
combinatorial data. Here we review the basic construction and then adjust it to
the study of complex subspace arrangements.

Define a sign function s : C — {0,+,—, 4,7} on the complex plane:

i ify >0,
j ify <0,
s(z+iy) = + ify=0and z >0,
— ify=0and z <0,
0 ify=z=0.
Let H={Hy,...,H,} be an arrangement of complex linear hyperplanes in C?.
Assume that # is essential, that is, (H = {0}, and that the hyperplanes are given
by complex linear forms ¢; : C¢ — C with H; =ker?; for i = 1,...,n. To each

point in C? we assign a complex sign vector that encodes its relative position to
the complex hyperplanes of the arrangement:

SH - (Cd — {07+7_7i7j}n
z o (s(li(2),.-.,5(€n(2))).
The non-empty sets s, ' (X), formed by all the points in C? that sz maps to the
same sign vector X, for X € {0,+, —,4,7}", are relative-open convex polyhedral

cones. The resulting partition of C? is called the combinatorial stratification of C¢
induced by the arrangement 7. Restriction of this stratification to the unit sphere
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S24=1C ¢ yields a regular CW decomposition 'y, of S??~1. TIts face poset Py
(extended by a minimal element) is given by

Py = (su(C),9),

where “<” denotes the componentwise order of the sign vectors in sz (C?) C
{0,+, —,4,j}" that is induced by the following partial order of signs:

g J
+ _

0
This poset is the (augmented) face poset of the regular CW decomposition of St
induced by {0} when considered as a “hyperplane” in C':

J N

[

: 0
The hyperplanes in H as well as all of their intersections are unions of strata of

the combinatorial stratification. Thus the singularity link V3, := [JH N S?¢1isa
subcomplex i3 of 'y, and its augmented face poset Pini(3) is an order ideal
of Py. The complement of Pinys) in Py is the reversed face poset of a regular
CW complex that is a strong deformation retract of (and thus homotopy equivalent
to) the complement M(H) :=C*\ |JH.

Thus the combinatorial stratification of C? induced by a hyperplane arrangement
leads to cellular models for both the link and the complement of the arrangement.
Now we adjust the approach to the study of subspace arrangements.

Let A={U,...,U,} be an arrangement of complex linear subspaces in C?.
Call an essential arrangement of complex linear hyperplanes X ={H; ; : 1 <i <mn,
1 <j<t}in C! a compler frame of hyperplanes for A if ﬂ;zl H; ;j=U; for
i = 1,...,n. Any hyperplane arrangement which contains a complex frame of
hyperplanes for A induces a combinatorial stratification of C? that leads to cellular
models for the link and the complement of the subspace arrangement A.

We will assume that the subspaces of an arrangement A= {Uy,... ,U,} in C?
are linearly ordered by the natural order on their index set [n]:={1,... ,n}, unless
stated otherwise. We often consider subsets {i1,...,i;} of the index set; we then
use the notation {1, ... ,i}< toindicate that i; < ... < iy according to the natural
order induced from [n]. Moreover, we assume that the hyperplanes in a complex
frame H={H;; : 1 <i <n,1 <j <t} for A are ordered lexicographically
with respect to their index pairs (7, j) and that hyperplanes in any subarrangement
of a complex frame are endowed with the order inherited from the order of the
frame. We denote the subarrangement {H;1,...,H; } of H that corresponds to
the subspace U; with H; for i = 1,... ,n. The hyperplanes in a complex frame
need not necessarily be distinct.

To describe the position of a cell § in I'y; with respect to a subarrangement,
we use the following: By #(H) we denote the sign vector entry for # with respect
to the hyperplane H in H. For a sequence of hyperplanes Ho = (Hy,...,Hy)
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in 1 we abbreviate the sequence of sign vector entries (6(Hy),...,0(H)) with
6(H,,...,Hy), or even shorter with 6(Hp).

Our setting in the following will consist of a complex subspace arrangement
A={U,,...,U,} such that the subspaces in A are pairwise distinct and inclusion
maximal, together with a hyperplane arrangement G that contains a complex frame
H=H,U...UH, for A. If we were concerned about economical cell decomposi-
tions, then we should require that G = H is a minimal complex frame, that is, a
complex frame with |H;| = codimc U; for i = 1,... ,n. However, the present set-up
simplifies inductive proofs.

The condition on G ensures that the cells in I'g that are contained in the link
of A form a subcomplex T'jjn(4) of ['g — a combinatorial cell decomposition for
the link of the subspace arrangement. The cells in [y 4 are easily characterized
in terms of their sign vectors (we switch freely between cells of the decomposition
and their encoding in sign vectors):

0 € Diinay <= 0(Hi) =(0,...,0) forsome i€ {1,...,n}.

We denote the (augmented) face poset of ['iyi(a) by Plink(4)-

The strata in C* defined by G are relative-open polyhedral cones, which implies

that I'g is a PL decomposition of the unit sphere [BZ, Thm. 2.6]. Thus, the following
applies to I'g:
Lemma 2.1. [BZ, Prop. 3.1] Let P be the face poset of a PL reqular CW decom-
position ' of a sphere. Let Py be a lower ideal in P, the face poset of a subcomplex
Lo in . Then (P\Fy)°P, the poset P\Py under reversed order, is the face poset of
a reqular CW complex that is a strong deformation retract of |I'|\|To|.

We conclude that

Pepicay = (Pg\Pinka) )"

is the face poset of a regular CW complex ['cpy(4) that is homotopy equivalent to
ITG[\|Tlink(4)| — a cellular model for the complement of the arrangement. In fact,
Lepica) is a subcomplex of the dual block complex (cf. [Mu, §64]) of I'g which,
because of I'g being PL, is itself a cell complex. I'cpj(4) is formed by cells dual to
those cells of I'g that lie in the complement of A:

0°? € Lopiay <= O0(Hi) #(0,...,0) forall i=1,... ,n.

From the cellular model for the complement we obtain a simplicial model by
barycentric subdivision, that is, by considering the order complex of Fpj(4):

A(Pepiqay) = sdTepiay ~ M(A).

This model is convenient since we can picture simplices in A(Pepia)) =
A(Pg\Piink(a)) as chains of cells in I'g\I'jini4) ordered by inclusion, and thus
there is no need to switch to dual cells. Furthermore, we prefer a simplicial model
for the computation of cup products.

Simplicial cocycles on A(Pg\Pinik(4)) Will be constructed as sums of elemen-
tary cochains, that is, of cochains that evaluate to 1 on one specified simplex of
A(Pg\ Piink(4)) and yield 0 on all others. To specify a simplex in A(Pg\ Piink(a))
means to specify a chain of cells in I'g\I'jjp(4) ordered by inclusion. We introduce
notation for this purpose.
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Definition 2.2. Let (Hy,...,Hy) be a sequence of hyperplanes in G. A chain of
cells 8 : 9 < ... < 9Pk in I'g is elementary ascending along (Hy,. .., Hy) if

for1<r<kand 0<s<2k-1
- - 0 if s<2r—2,

9 (H,) = + if s=2r—2,
i if s>2r—2.

More explicitly, the following pattern must occur in the sign vectors for the cells
in 6:

H, H, Hs H, ... Hj
g2k—1) A A S S |
g(2k=2) A T Y R
o) i i 0 0 ... 0
e i + 0 0 ... 0
o i 0 0 0 ... 0
7IC + 0 0 0 ... 0

Elementary ascending chains are the building blocks for the following:

Definition 2.3. Let F;=(F;1,...,Fiq,), t=1,...,m, be sequences of hyper-
planes, all contained in the arrangement G. A chain of cells # : ® < ... <
f2 X4 —m) in T'g is ascending along (Fi,...,Fp) if
0O(F) = (+,0,...,0) for t=1,...,m,
and if for each t, 1 <t < m, the chain
t—1
PLOT < D) < < PO for D(t) :=2(> dj) —t
j=1
is elementary ascending along (Fy1,... ,Fta,)-

We again illustrate this definition with picturing sign vector entries for an ascending
chain.

Fl,l Fl,g Fl,d1 Fg,l Fg,z F27d2 ...... Fm,l Fm,g Fm,d
gP(m)+2dm) i i i
7 0 0
gL m)+1) + 0 ... 0
é(9(2>+2d2) id ..
7 0o ... 0
gL @+1) A | + 0 ... 0
i 0 ... 0
7IC + 0 ... 0 + 0 ... 0 + 0 ... 0

Ascending chains will play a crucial role for the construction of cocycles on
A(Pg\Pink(4))-
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3. STRATIFICATIONS FOR BOOLEAN ARRANGEMENTS

The next two sections concern boolean arrangements: We use special complex
frames and their induced stratifications for the construction of explicit simplicial
cocycles. These cocycles will then be transferred to general geometric subspace
arrangements.

An arrangement A= {Uj,...,U,} of complex linear subspaces in C? is boolean
if its intersection lattice is a boolean algebra B, on n elements, that is, if the 2™
intersections Us := [;cg U; for S C [n] are pairwise distinct.

Definition 3.1. Let A = {Uy,...,U,} be a boolean arrangement in C?. Choose
vectors u; with u; € ([, U;j)\U; for i =1,... ,n, and set

Vi := spang (U; U {u;}) .
Then Aa :={V1,...,V,} is a framing arrangement for A.

The choice of the vectors u; is possible if (and only if!) we deal with a boolean
arrangement.

Proposition 3.2. Let Axn = {Vi,...,V,} be a framing arrangement for the
boolean arrangement A = {Ui,...,U,} in C%. Then

dim¢ Vs — dimec Us = |S] for S C[n].

Proof. The statement is obvious for |S| = 0,1. For S = {iy,... ,ix}, k > 1, consider
the following sequence of inclusions:

Upy,n...nU;,, C VynUn...NnU;_, NU;,

C VynVin...nViy ,NUy < Vin...nV,.

By the very construction of the subspaces V; from the subspaces Uj;, the difference
in dimension is exactly 1 for each of the inclusions. [J

Definition 3.3. Let A = {Uy,...,U,} be a boolean arrangement in C? with
framing arrangement Aax = {Vi,...,V,,}, and let X = H; U ... U H, with
Hi={Hi1,... ,His },ti€Nfori=1,...,n, be a complex frame for Aa. Choose
hyperplanes H; o in C? with H;oNV; = U;, and set

H=HU...UH, with H;:= {Hio}UH,

fori=1,...,n. Then Hisa strong complez frame for the boolean arrangement A
with respect to the framing arrangement Aa.

In the setting of Definition 3.3, let S ={i1, ... ,it}< C[n] be a non-empty (ordered)
subset of the index set of .A. We select hyperplanes from H;, U...UH,;,, a complex
frame for the subarrangement Aa s = {V;i}ics of Aa: Choose subsets }'f; C Hy;
for j =1,...,k by considering the hyperplanes in H;, U...U®H,;, one by one under
reversed linear order, and take H;, ; € H;; to belong to .7-';5; if it does mot contain
the intersection of all previously chosen hyperplanes:

Foo=A{Hyp €My Hijy 2 () Hiju) 0 (Vg N0 Vi )}, G =1,... k.
u>t

Our selection ensures that the }'5, j =1,... k, are pairwise disjoint sets of hy-
perplanes. To stress that they come along with a natural order inherited from the
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order on the hyperplanes of the strong complex frame, we refer to them as sequences
of hyperplanes.

Definition 3.4. Let A = {Uy,...,U,} be a boolean arrangement in C¢ with fram-
ing arrangement An = {V1,...,V,}, and H = HyU. . .UH,, a strong complex frame
for A with respect to Aa. For @ # S = {i1,... ,ir}< C [n] choose sequences of
hyperplanes .7-'5, j=1,... k, in the complex frame H for A as described above,
and set

Fio=A{Hi,0}UF,  for j=1,... k.
We call (]—N"f’:, e ,]—N'fk) the characteristic sequences of hyperplanes for the index
set S with respect to the strong complex frame H for A.

By definition, the following identities hold for the intersections of characteristic
sequences of hyperplanes:

k
ﬂﬁi‘j:Uirﬂ---ﬁU,' for r=1,... k.
J=r

Using Proposition 3.2, we deduce that
|}~'f;| = codimc (V;; N...NV;,) — codime (V3 .,
= codim¢ (Us; N...NUy,) — codime (U;

N...NnV,)+1

i N..NU) for j=1,... k.

In particular, the union of the f;f is a boolean hyperplane arrangement intersecting

in Us = [;cg Ui — an inclusion minimal complex frame of Us, contained in ﬁil U
U HG

For a subspace arrangement A = {Uy,... ,U,} in C? denote the arrangement
obtained by deletion of U,,, A\{Un} = {U1,... ,Up—1}, by A’, and the arrangement
obtained by restriction to Uy, Ajy, = {U1 NUy,... ,Up_1 NU,} CC?, by A”. In
the literature, A" is commonly considered as an arrangement in U,, but we need
to consider it as an arrangement in C?. Throughout this paper, both deletions and
restrictions will exclusively be performed with respect to the last subspace of an
arrangement. We agree to refer to these special operations when talking about the
deletion and the restriction of A.

For any boolean arrangement both its deletion and its restriction are boolean
arrangements. We need that the concepts introduced in this section are compat-
ible with deletion and restriction on boolean arrangements: Consider a boolean
arrangement A = {Uj,...,U,} with framing arrangement An = {V1,...,V,},
defined by choice of u;(A) € ((;; Uj)\U; for i = 1,... ,n, and a strong complex
frame H = ﬁl U...u ﬁn with respect to Aa.

For A', A\ ={W1,...,V,_1}is aframing arrangement, and H' = H,U. ..UM,y
a strong complex frame with respect to A’\. Framing arrangements and strong
complex frames for all subarrangements of 4 can be obtained this way.

We choose
ui(A”) = ui(A) € ((YUNU: € () UynUN\U:NT,), i=1,...,n-1,
J#i J#i,n
and we thus obtain a framing arrangement A\ = {V/',... V) |} for A" with
V! .= spang (U; N Uy, {u;}) = V;NU, for i=1,... ,n—1. We define a complex



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 9

frame H" for A’} by setting H):=H; U H,, for i = 1,...,n—1. Extending HI to
H! := {H;o} UH/ yields a strong complex frame H" = H} U...UH!"_, for A"
with respect to AA.

Thus if G contains a strong complex frame H for A, then it also contains strong
complex frames for the deletion and the restriction of A, namely H' and H" as
defined above. It simultaneously induces stratifications of C? that are suitable for
the study of A, A" and A"”. We close this section with a comparison of characteristic
sequences of hyperplanes in the respective strong complex frames. The proof is
straightforward and thus omitted.

Proposition 3.5. Let A = {Uy,...,U,} be a boolean arrangement in C¢, H =
7-71 u...u 7-ln a strong complex frame with respect to a framing arrangement An.
Consider the induced framing arrangements and strong complex frames for the dele-
tion and the restriction of A as described above. Then the characteristic sequences
of hyperplanes in the respective frames with index set S = {i1,... ,ip}< C[n—1] are
given by

(i) 7?5(/1') = 7?5(/1) for j=1,... k,
@ u FP ) for =k,
]—N'-SU{H}(A) for j <k.

5

(i) FEA") =

4. COCYCLES FOR BOOLEAN ARRANGEMENTS

Now we combine the prerequisites of Sections 2 and 3 to construct certain
cochains on the simplicial models for the complements of boolean arrangements.

Definition 4.1. Let A = {Uy,...,U,} be a boolean subspace arrangement in C?,
Ha strong complex frame for A with respect to a framing arrangement Aa, and G
a hyperplane arrangement that contains H.

Each non-empty index set S = {i1,...,ir}< C [n] corresponds to a sub-
space Ug := ﬂie sU; of C%. We define a simplicial cochain ¢® of dimension
2 codime Us — |S] on the simplicial model A(Pg\Pink(.4)) for the complement of A:

CS = 6|5| E ",
T

Here the sum is over all chains of cells 7 in ['g\I'jink(4) that are ascending along

the characteristic sequences of hyperplanes (F5, ... ,F7) chosen from #, while 7*
denotes the elementary cochain that corresponds to the chain 7, and the coefficients
are given by

_ 1 for |S| =0,1(mod 4)
éls| —1 for |S|=2,3(mod 4).
Proposition 4.2. For ) # S C [n], the cochain ¢ is a cocycle on A(Pg\Pini(a))-

Proof. Let lg := 2codimc Us — |S| denote the dimension of the cochain 5. We
evaluate 6¢° on (I5+2)-element chains of cells § : §(®) < ... < s+ in Lo \Dlink(4)-
Denote by 6; the ({5 + 1)-element chain obtained from 6 by deletion of the (j+1)-st
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cell for j =0,...,ls+ 1. Then
ls+1
6c7(0) = ¢°(08) = Z (1) c5(8;).
7=0
A non-zero contribution occurs among the ¢ (6;) if and only if 8 is a 1-cell extension
of an (Is +1)-element chain 7 in I'g\[jink(4) that is ascending along (]—N"f’:, e ,ffk)
With respect to the characteristic sequences of hyperplanes for S, the chain n has
the pattern displayed after Definition 2.3. Thus the pattern of 8, which extends that
of 77 by an extra sign vector, either has duplicates on FJ U. . U}N'lsk , or it extends by a
sign vector that has zero entries with respect to one of the characteristic sequences.
In the first case, for two consecutive cells in @ the sign vector entries coincide
with respect to ]-N"f’z u.. Uflsk and hence two consecutive 1-element deletions ;, 6+1
are ascending along (F5, ... ,ffk ). The cochain ¢° evaluates to 1 with opposite
signs on these deletions, whereas no other 1-element deletion of 8 gives a non-trivial
contribution under ¢. Hence, d¢° evaluates to zero on 6.
In the second case (%) (]—if;) = (0,...,0) for some j € {1,...,k}. As initial
cell of the ascending chain 7, 9(1)(.7-'5 U...UZF)=(0,...,0) and the same holds
for 6(©). Hence

k
0 C Hion ([ FL) = H;

r=j

5,0 N (V;] Nn...nV; )
By our construction of strong complex frames, H;, o NV;;, = U;,. This implies that
60 C Ui, , in contradiction to # being a chain of cells in I'g\jini(4)- 0

Remark 4.3. For the final argument in the preceding proof the use of a strong
complex frame of hyperplanes is essential: If one takes an arbitrary complex frame
in the definition of ¢%, then the cochain ¢° is not necessarily a cocycle!

Remark 4.4. The definition of the cocycle ¢® is designed to be compatible with
“taking subarrangements”: Consider the subarrangement Ar := {U;};cr of A,
S CT Cnl; aframing arrangement and a strong complex frame for .4, are obtained
by taking subarrangements of the corresponding arrangements for A (compare Sec-
tion 3). Obviously, characteristic sequences in the respective strong complex frames
coincide for index sets S CT'. Let ¢, ¢ denote the standard cochains defined on
the simplicial models A(Pg\ Pink(ay)) A(Pg\Pink(a)) according to Definition 4.1.
By their explicit description in terms of elementary cochains we see that ciT maps
to ci when restricted to A(Pg\Rink(4)):

(%) = s
where i : A(Pg\Pink(4)) — A(Pg\Pink(4r)) denotes the inclusion. In the sequel
we will extensively use restrictions of cocycles from the complements of subarrange-
ments to the complement of an initial arrangement.

Our definition of the cocycles ¢ depends heavily on the simplicial model. More
precisely, it depends on the strong complex frame for A, on the hyperplane arrange-
ment G that induces the stratification, and on the order of the index set S that so
far we assumed to be ascending. In the following we will see that these dependen-
cies have very little effect on the cohomology classes which are represented by the
cocycles ¢ (cf. Propositions 4.5, 6.1, and 6.6).
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In the next proposition we fix a strong complex frame H for A, and we verify that
the cohomology class [¢°] represented by the cocycle ¢® is independent of the choice
of a hyperplane arrangement G if it only contains H. This is the only point where
we deal with different models for the complement of an arrangement at the same
time. We therefore recall that the realization of the simplicial model |A(Peyia4))l,
homeomorphic to |I'¢pi(4), is a deformation retract of |I'g|\|['jink(.4)|, and hence of
M(A)NS??=1 Tt is in the latter space that we have to compare cohomology classes
which are defined with respect to different stratifications.

Proposition 4.5. Let G C G' be arrangements of complex hyperplanes, both con-
taining a strong complex frame H for the boolean subspace arrangement A. The
reqular cell complex U'g: induced by G' is a subdivision of the complex I'g induced
by G. Denote the respective simplicial models for the complement by A(Pepi(a),g)
and A(Pepia),g)- Let

r' M(A)ﬁS‘M*l = [Tg\Thinkay,g'l —  [APepica),g)l
ro: MA) NS = D6 \IThnkay,gl  — 1APepica),0)l

be the deformation retractions from the complement of A in S>¢~1 to the respective
realizations of the simplicial models. Then

r([eg]) = r*([eg])

where cg, cg,, for 0 # S C [n], denote the standard cocycles that are defined in the
respective models, both with respect to the strong complex frame H.

Proof. In any combinatorial stratification of C? that is appropriate for a study
of A, the realization of A(F,p(4)) is the barycentric subdivision of the subcom-
plex I'cpi4) of the dual cell complex of I'. It coincides with a subcomplex of the
barycentric subdivision of the original cell complex, namely with the realization
of A(P\Pink(4)). For picturing simplices in A(Pepi(4)), we will therefore reverse
the order on P.,4) and work as before with chains of cells in F\Flink( A) ordered
by inclusion. The realization of such a simplex in the barycentric subdivision of I'
is identified with the simplex that is described by the chain of dual cells in the
barycentric subdivision of cp(4)-

There is a poset map f : Pg'\ Pinka) — Pg\Plink(4) defined on the sign vectors
of cells in I'gr\[jini(a) by “forgetting” the sign entries with respect to hyperplanes
in G'\G. On cochain level for respective order complexes, it maps cg to cg, for
0 #S C[n]. Let

z:’: |A(Pg \Pinkay)l — T\ |Tink(ay,g/| = M(A) N 5241
i JA(Pg\Pinka))l — Tg\ITinkay,gl = M(A) N S

denote inclusions and consider the diagram

|A(Pg\Pink(a))] —— Lo/ |\ Think(a),|
I
| M(A)
I

|A(Pg\Piink(a))l —— Tg\ITiink(a),g] -
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We will show that this diagram commutes up to homotopy. For this, define a carrier
C from |A(Pg/\Bink(4))| into M(A) by

C(00 <... <Dy = f(O@D)

for chains of cells (¥ < ... < (4 in I'g:\Ijinia), where f(6(9)) denotes the closure
of the cell f(8(%) in Lg\Dlink(4)- The inclusion 4’ is carried by C' since

i (109 < ... <8D]) C 0@ C FOD)

for 6 < ... < 0@ in Tg/\Tjinkca). Here f(8(?9) is the cell of lowest dimension
in I'g that contains #(?) in its subdivision induced by the hyperplanes in G'\G. Also,
io f is carried by C since obviously

i(1F0) <... < f(6D)]) C f(61D)
fOf 0(0) <. . < H(d) in Fg/ \Flink(A)'
The Carrier Lemma [Mu, §13], [Bj2, (10.1)] implies that i’ ~ i f. In particular,
i'* = f*i*, and for the retractions, which are cohomology inverses of the inclusions,
we have r* = r'* f*. We conclude that r'*([cg]) = r'"* f*([cg]) = r*([c3])

for f £ S C [n]. U

We will see later that for any boolean arrangement the proposed cocycles ¢,
) # S C [n], represent a linear basis for the cohomology of the complement (cf.
Theorem 5.2 in the broader context of geometric arrangements). Here we verify
this claim for the smallest instance, an arrangement given by one single subspace
in C¢. The proof isolates the geometric essence of our investigations and justifies
our definition of the cochains ¢° via ascending chains.

Proposition 4.6. Let U be a complex subspace of codimension m in C?, and
let G be a complex hyperplane arrangement in C? that contains a (strong) com-
plex frame H = {H,,... H,,} for U. Then, the cocycle cV :=ct'} defined on
A(Pg\Pink({vy)) according to Definition 4.1 represents a generating cohomology

class for H*(M({U})).

Proof. In view of Proposition 4.5, we may assume that G contains a complex frame
for the orthogonal complement U+ of U in C¢. The cells of I'g that lie in U+
form a subcomplex FgWL in I'g. In particular, |FgWL| is a deformation retract
of [Lg|\|Tlink({v})|, and the order complex of its face poset A(Pgwl ) is a simplicial
model for the complement of U in C¢.

Likewise, A(PgrUl) is a simplicial model for the complement of the 0-subspace
in U' that is induced by the restriction of the arrangement G to U+. Referring
again to Proposition 4.5 we work with the simplicial model A(PHW ) obtained by
coarsening the stratification of U~ to the one induced by the complex frame Hips
for {0} in UL, It follows from the proof of Proposition 4.5 that an isomorphism
between the cohomology algebras of these simplicial models is induced by the poset
map f : PgmL — P’H’-UJ_7 where f is defined on sign vectors of cells in I‘gmL by
“forgetting” the sign entries that correspond to hyperplanes in Gy \Hye .

Since Hy 1 is a boolean hyperplane arrangement, the face poset PH[U , of I‘HrU L
equals {0, +, —,4,5}™\{0}, where {0, +, —, 4,4} has the partial order given in Sec-
tion 2. The order complex A(PH"UL) is homeomorphic to a sphere; hence, any
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elementary cochain that corresponds to a maximal chain in PH[U | represents a
generating cohomology class in H *(A(PH[UL )). We choose the maximal chain 6

which is elementary ascending along the sequence (Hy NU*,... , H,, NU*) and
work with [6*] as a generator for H*(A(PHWL )). The isomorphism f* maps [6*] to

a generator of f]*(A(Pg[UL ). In terms of elementary cochains, f*(6*) = Y. 77,

. which are elementary

where the sum is over all 2m-element chains of cells in Fgl_U
ascending along (H; NU*,... H, NU™).

We finally get back to our initial simplicial model A(Pg\ Pjink(uy)) for the com-
plement of U: The inclusion of face posets i : Pg[UL — Pg\ Piink({vy) induces an
isomorphism between the cohomology algebras of the respective order complexes.

Any simplicial cocycle on A(Pg\Pink({v})) that restricts to f*(6*) on A(Pg,.)

represents a generating cohomology class in Ef*(A(Pg\Plink({U}))). Comparing ex-
plicit descriptions in terms of elementary cochains, ¢V restricts to f#(#*) and hence
represents a generating cohomology class in H*(M({U})). U

Remark 4.7. The preceding proof shows that for defining a generating cocycle of
a subspace complement, i.e., a generator for H*(M({U})), in the spirit of Def-
inition 4.1 any “dense” ascending pattern of sign vector entries with respect to
(Hy,...,Hp) could be used. Our convention is compatible with that of [BZ] for
the hyperplane case.

5. LINEAR BASES FOR THE COHOMOLOGY OF
GEOMETRIC ARRANGEMENTS

Now we extend our investigations to complex subspace arrangements which have
a geometric intersection lattice. First we comment on the choice of appropriate
combinatorial stratifications. Working with the induced simplicial models for ar-
rangement complements, we transfer the simplicial cocycles introduced in Section 4
to geometric arrangements by restriction from the complements of boolean subar-
rangements. Among the cocycles thus obtained we distinguish the representatives
of a linear basis for the cohomology of a geometric arrangement.

In order to fix combinatorial terminology, recall that a finite lattice £ is geomet-
ric if it is semimodular and all elements are joins of atoms (elements of rank 1)
[CR, Chap. 2] [Ox, Sect. 1.7]. For a set of atoms S in £, rank (\/ S) < |S|; S is inde-
pendent if equality holds, otherwise it is dependent. A maximal independent set is
a basis of £; a minimal dependent set is a circuit. The collection of all non-empty
independent sets forms a simplicial complex — the matroid complex Z(L) [Bjl,
Sect. 7.3]. We denote the collection of its facets, the maximal independent sets
in £, by B(L£). Assume that the atoms in £ are given a linear order. A circuit
in £ minus its smallest element is called a broken circuit. The subcomplex of Z(£)
formed by all non-empty sets of atoms that do not contain a broken circuit is called
the broken circuit complex BC(L). See [Bj1, Bry] for additional information.

Let A = {Uy,...,U,} be an arrangement of complex subspaces in C? with
geometric intersection lattice £ = L(A) — we call A a geometric arrangement for
brevity. We identify the atoms in £ with the elements of the index set of subspaces
in A, and thus define the subarrangement Ag := {U; };cs for any set of atoms S in L.
Observe that Ag is itself a geometric arrangement with intersection lattice £(Ags),
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the join sublattice of £ generated by the atoms contained in S. Moreover, Ag is
boolean if and only if the index set S is independent in L.

To obtain a combinatorial stratification of C¢ that is suitable for the study of
the arrangement A, choose a framing arrangement Ap A and a strong complex
frame #(Ap) for each maximal boolean subarrangement Ag, B € B(L). Fix a hy-
perplane arrangement G in C? that contains the strong complex frames 7-[(AB)
for all B € B(L). In the sequel, we work with the induced simplicial model
A(Pg\ Piini(a)) for the complement of A.

Definition 5.1. Let A = {U;,...,U,} be an arrangement of complex subspaces
in C? with geometric intersection lattice £=L(.A). Assume that the set of bases
B(L) is linearly ordered by reversed lexicographic order.

For S={i1,...,ix}< €Z(L), let B(S) be the minimal basis in £ that con-
tains S, and let ciB(S) denote the cocycle defined on the simplicial model
A(Pg\Pink(Ags))) for M(Ap(s)) according to Definition 4.1. Define a cocy-
cle ¢¥ € C?eodimeUs=ISI(A(Pg\Piyk(a))) by restriction of the cocycle ciB(S) to
A(Pg \-Plink(A))7

s oS
¢ = ln(CAB(S)),

where i : A(Pg\Pink(a)) — A(Pg\-Plink(.AB(s))) denotes the natural inclusion.

S is a cocycle by definition. In

As a restriction of a cocycle, the cochain ¢
terms of elementary cochains, it can be written as ¢ = gls) Y., 7", where
the sum is over all chains of cells 7 in [g\Djink4) that are ascending along
(.7?;5; (AB(s)) - - - ,ffk (AB(s))) — the characteristic sequences of hyperplanes chosen

from the strong complex frame 7-[(AB(5)) for the boolean subarrangement Aps)

of A.

Theorem 5.2. Let A = {Uy,...,Uy} be an arrangement of complex subspaces
in C¢ with geometric intersection lattice L = L(A). Then the set of cohomology
classes

{[c°]:SeBC(L)}
is a Z-linear basis for the reduced cohomology of the complement of A.

Proof. The proof is by induction on the number of subspaces in 4. The induction
start is covered by Proposition 4.6 where we verified that [ct'}] is a cohomology
generator for an arrangement A = {Us} consisting of one single subspace.

For the induction step, let A = {Uy,...,U,} be a geometric arrangement in C?
on n subspaces with intersection lattice £ = £(.A). Both the deletion A" := A\{U, }
and the restriction A" = {U; NU,,...,U,—1 NU,} are geometric arrangements.

Their intersection lattices are £ := L(A'), the join sublattice generated by the
atoms 1,... ,n—1in £(A), and £" := L(A"), the interval [U,, 1] in £(A). Observe
that A’ is an arrangement of exactly n—1 subspaces, whereas A" is an arrangement
of at most n—1 subspaces.

On the combinatorial side, we use the recursive construction of the broken circuit
complex of £ from the broken circuit complexes of £ and £ due to Brylawski [Bry]:

BC(L) = BC(L) U {{n}} U {SU{n}: SeBCL)}. ()
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On the topological side, our inductive proof relies on a cohomological Mayer-Vietoris
sequence that involves the complements of the arrangement A, of its deletion A’,
of its restriction A", and of a single subspace. We view the complement of A as the
intersection of the complement of A’ with the complement of the single subspace U,

M(A) = M(A) N M{U}) -
As the union of these spaces we obtain the complement of the restriction A",
MAYUM{U,}) = M(A").

The Mayer-Vietoris sequence in reduced cohomology [Br, Ch.V, Thm. 8.3] for the
union of the spaces M(A") and M({U,}) is
S B M) @ B MU S B M) S B (A7) S
where the maps i}, j = 1,... ,4, are induced by inclusions.
We have to make sure that the stratification of C? by the hyperplane arrange-
ment G that we chose with respect to the arrangement A is also suitable for the
study of the arrangements A" and A":

Lemma 5.3. For a geometric arrangement A = {Uy,...,U,} in C%, let G be
a hyperplane arrangement that contains a strong complex frame ﬁ(AB) for each
mazimal boolean subarrangement Ap in A, B € B(L). Then G contains strong
complex frames for all mazimal boolean subarrangements of both the deletion and
of the restriction of A.

Proof. Maximal boolean subarrangements of the deletion A’ are either maximal
in A or they are deletions of maximal boolean subarrangements in 4. Maximal
boolean subarrangements in the restriction A" are restrictions of maximal boolean
subarrangements in 4. By our discussion in Section 3, the hyperplane arrange-
ment G thus contains the needed strong frames. [

Thus, G simultaneously induces simplicial models for the complements of the
geometric arrangements 4, A" and A", and also for the arrangement consisting
of the single subspace U,. We will use the same notation for inclusions between
these simplicial models as introduced above for the inclusions between the actual
complements.

By induction, the cocycles ¢, € C*(A(Pg\Pink(a))) for S € BC(L') represent a
linear basis for H*(M(A')). The characteristic sequences of hyperplanes that occur
in the description of ci, in terms of elementary cochains are chosen from the strong
complex frame 7—~l(A’BU (s)) for the maximal boolean subarrangement Afp o) in A".
Recall that B/ (S) denotes the reversed lexicographically minimal basis in £' that
contains S.

Consider S as an element in BC(L). If rank £ = rank £', any basis of £ that
is not a basis of £’ contains n and hence is reversed lexicographically larger than
B.:(S). We conclude that Bz (S) = Be/(S). If rank £ < rank £', any basis of £
contains n and their linear order is determined by elements from [n — 1], hence
B (S) = Br:(S) U{n}. _

Thus, ’H(A’BL,(S)) either coincides with H(Ap,(s)) or it is the deletion of

ﬁ(ABﬂ(S)). We refer the latter case to Proposition 3.5(i), and conclude that the
characteristic sequences of hyperplanes for S in A’ coincide with those for S in A.
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We obtain ci from ci, by restriction, as one sees from the explicit description of
these cochains:
i(c%) = ¢  for SeBC(L).
We define a cocycle ¢V~ on A(Pg\ Pink({u,1)) that represents a generator for
H*(M{U,})) (cf. Proposition 4.6) with respect to the strong complex frame used
for the definition of ciln} on A(Pg\Pink(4))- Thus, ciln} is obtained from cU» by
restriction:
ig(cU") = ciln}.

By induction, the cocycles ¢, € C*(A(Pg\Pink(ar)) for S € BC(L") represent a
linear basis for H*(M(A")). The characteristic sequences of hyperplanes for S
in A" are chosen from the strong complex frame H(A%  (g)) for the maximal
boolean subarrangement A%L”(S) in A". With SU {n} € BC(L) according to (x),
we can compare minimal bases in £, resp. £ that contain S, resp. S U {n}: Since
all bases in £ that contain SU{n} in particular contain n, their order is determined
by elements in [n—1], hence B (S U {n}) = Br#(S) U {n}. Thus, A} g is the
restriction of the boolean subarrangement Ap,.(sun}) in A. We conclude that
ﬁ(A%L”(S)) is the restriction of the strong complex frame ﬁ(ABﬁ(SU{n})) from

which characteristic sequences of hyperplanes are chosen for the definition of ciu{"}.

Here is the crucial step of our proof.

Lemma 5.4. The connecting homomorphism in the cohomological Mayer-Vietoris
sequence for M(A") U M({U,}) is surjective,

([ = [5] for SeBC(L).

This lemma implies that the Mayer-Vietoris sequence decomposes into short exact
sequences:

0 — H{(M(A)) & HH(M{U,Y)) — HY(M(A) 25 HH(M(A")) — 0.

Moreover, H *(M(A™)) is free abelian by induction hypothesis, hence the sequences
split. In particular, a linear basis for H*(M(A)) is represented by the cocycles

S = it () for S € BC(L')
= ()

SO e (67 ([¢%]) for S € BC(L).
Observe that the index sets combine to the broken circuit complex of £ by its
recursive construction (x), thus the above list proves Theorem 5.2.

Proof of Lemma 5.4. For S = {i1,...,ix}< € BC(L") consider the boolean
subarrangement B := Ap,(sufn}) in A. We study the cohomological Mayer-
Vietoris sequence for the union of the spaces M(B’) and M ({U,}). The inclusion
i: M(A") — M(B") induces a map of Mayer-Vietoris sequences:

— B'(M(B) & H(M({U}) ——— B'M(B)) —E B (M(B") —

liFM(A’)EBid* lz* li*

— HYMA)) & B M{UY) —— BMA) —2s BH(MA")) —
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Let cgu{n} and Cgu denote the standard cocycles on the simplicial models
A(Pg\Pink(s)), resp. A(Pg\Pink(s1)), defined with respect to the strong complex
frame H(B) = ﬁ(-ABL(SU{n})); resp. its restriction H"(B). As discussed above,
ciu{n} and ci,, are defined with respect to these strong complex frames as well.
By definition,
S wir S .
(7] = i ([eg™™ ) and [ ] = (e ]).

It suffices to show that

* S n
Ok ([en ™) = [efn ] (+%)
by naturality of the Mayer-Vietoris sequence we then conclude that
* S n * ek S n Sk Ok S n 3
S ([27M]) = ot ([ ™)) = it o5 ([ ]) = " ([ed]) = [eSn]-

Thus we concentrate on the connecting homomorphism 63 in the Mayer-Vietoris
sequence for the boolean arrangement B. Now all the cocycles involved are defined
with respect to one single strong complex frame, namely #(B). The connecting
homomorphism & : H*(M(B)) — H*t'(M(B")) can be described as

0p([e]) = [(i5,i5) *odo (i —i5) ' ()] for [c] € H'(M(B)),
resulting from the following diagram of cochain complexes with exact rows:

(i,

CHIM(B") B, ot (M(B) @ O M({UL) ——
Ta
L CHMBY) e CHMUTLY) T et ).

We sketch how to trace the representing cocycle clsgu{n} € C*(M(B)) through this
diagram. Details can be found in [Fe, Thm. 1.5.2].

Recall the description of Cgu{n} as a sum of elementary cochains:

Su{n} _ *
CB = 6|5|+1 Z T,
T

where the sum is over all (Is + 1)-element chains, s := 2 codimcUgsyg,y — |S] — 1,
in I'g\Ijink(p) Which are ascending along
F=Su{n =~SU{n i~
(FB), . F ), F 0 B)).
The cocycle cgu can be described as cg,, = g5 2, 7", where the sum is
over all (Is + 2)-element chains of cells in Fg\Flink(Bu) that are ascending along

(}N'f; (B"),... ,}N'fk (B")); by Proposition 3.5(i) the latter sequences coincide with

(Fa M B). .. FTB) U FR T B)).
Step 1. We propose a cochain (p,0) € C!'s (M(B')) @ C's (M({U,})) as inverse

image of cgu{n} under zg - zg

ls—2m,+1

S ._ *
plimEs ), D T

T t=0



18 EVA MARIA FEICHTNER AND GUNTER M. ZIEGLER

where the first sum is over all (Is + 1)-element chains 7 : 79 < ... < 7(s) in
FQ\Flink(B) which are ascending along

(F M B). . FB), FRB),
and the chain 73 is obtained from 7 by altering the first ¢ cells in one sign vector co-
ordinate: Tt(j) (Hp,o) =0forj=0,...,t—1. We emphasize that 7y coincides with 7,
and that 7542, +1 has the following sign pattern with respect to ﬁfU{”}(B):

7 (FEN(B)) = (0,...,0) for j=0,...,ls—2m,,
and on the rest of the cells, Tl(sl“i gilmn’ﬂl) <...< Tl(gli)Zmn 41, the chain is elementary

ascending along the hyperplanes in 7y ~t" (B).
For ¢t >0, there are cells in 7; that are not contained in I'g\I'jni(s); restric-
tion maps the corresponding elementary cochains to zero. Hence iﬁl(ps) =
x _ Su{n}
E\SH-I ZT To = CB .

Step 2. We now describe the image of p° under the coboundary operator §. We
propose the following cochain in C!st1(M(B")):

5(p%) = e ZZ 7,

where the first sum is over all (Is + 1)-element chains in [g\I'inis) which are
ascending along

(F2B), . Fo 0 B), FIHB)),
and the second sum is over (Ig + 2)-element chains 7 in Fg\Flink(Br) which are
obtained from 7 by altering the relative positions of the first [g—2m,,+1 cells with
respect to the hyperplane Hy, o, namely to 7 @) (Hno)=0,5=0,...,ls—2my,, and
inserting a cell o after 7 (s =2m=) with

o (FUUNBY) = (iy..., i) for r=1,...,k,
o (FB) = (0,...,0).
We emphasize the two main features of chains 7 in I'g\Iini(s):

(i) The deletion of the cell 7 (s =2mn+1) results in a chain 7j4 9,41 as described
in Step 1.
(@) The chains 7 are ascending along
(F By, F P B) U FEU(B)) .

We leave the verification of the description for §(p°) to the reader. As in the
proof of Proposition 4.2 one can show that non-trivial contributions in 6p%(8) =
Z;S’:El(—l)j p°(6;) can be paired such that they cancel, unless 6 is one of the
chains 7 described above. For those, dp® evaluates to (—1)!s =2mntle g = g(g).
Step 3. We finally assert that

(lgali) (Clsg”) = ((SPS,O) )
which is immediately seen from the explicit descriptions of the cochains involved.
Thus, [cgu{n}] maps under &} as claimed. []
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6. REPRESENTATIVES FOR GENERATING COHOMOLOGY CLASSES

Our next aim is to understand multiplication and to derive relations among the
cohomology classes that are represented by the cocycles of Definition 5.1. In this
section we obtain more flexibility in their construction. As a first step we analyze
the simplicial model for the complement of a boolean arrangement that is induced
by a hyperplane arrangement which contains different strong complex frames, and
we compare the corresponding cocycles.

Proposition 6.1. Let A = {Uy,... ,U,} be a boolean subspace arrangement in C?,
and let H° and H' be strong complex frames for A with respect to framing ar-
rangements A% and AL . Let G be a complex hyperplane arrangement that con-
tains both H° and H*. Denote by c%t, t = 0,1, the standard cocycles defined on

A(Pg\Piink(a)) with respect to the strong complex frame indicated by the index.
Then, the induced cohomology classes coincide:

[6%0]2[0%1] for 0 #SCin].

Proof. The proof is by induction on n.

For n = 1 let U be a complex subspace of codimension m in C?, and let
(strong) complex frames H® = {H?,... ,HY} and H' = {H{,... ,H:} be given
for U, with (", Hf = U and N?_, H! = {0} for t = 0,1. We include the hy-
perplanes H! 1190 H L in the frames since we assumed strong complex frames
to be essential. We choose to work with coarsest possible stratifications of C?,
namely those induced by the arrangements #°, resp. H'. Let cyo, cy: denote
the standard generating cocycles on the simplicial models A(Pyo\Pink({v})), resp.
A(Py \Pink({uy))-

Consider linear bases {h?,... ,hS} and {h},...,hl} of C?, given by unit nor-
mal vectors At on Hf for i = 1,...,d, t = 0,1, and define a complex coordinate
transformation T on C? by T'(h}) = h? for i = 1,...,d. This transformation

respects the stratifications induced by H', resp. H°, and restricts to a cellular
map between the respective CW-decompositions of the unit sphere. In particular,
T¥ (cyo) = ¢y follows from the explicit definition of the cocycles. By restric-
tion, T" induces a complex coordinate transformation on the orthogonal space of U.
Let ¢ € H>™(U+,U+\{0}) denote the cohomological dual of the orientation class
on UL [MS, §9]. A complex coordinate transformation is orientation preserving,
hence the map induced by 7' on H*™(U+,U+\{0}) maps ¢ to itself. Using natural-
ity of the exact sequence for the pair (U, U+\{0}), we conclude that T induces the
identity on H?>™~Y(U+\{0}). U+\{0} being a deformation retract of M({U}), an-
other naturality argument implies that 7" induces the identity on H*™ 1(M({U})).
From this, we conclude that [cyo] = [cy1]. By Proposition 4.5 this identity then
translates to corresponding cocycles on any simplicial model for M({U}) that is
induced by a hyperplane arrangement which contains both #° and H'.

For the induction step let A = {Ui,...,U,} be a boolean arrangement of n
subspaces and 7-l0, H1 strong complex frames for 4 as stated above.
For |S| < m, consider the subarrangement Ag = {U;}ics. Let cisyﬁ%, t=0,1,

denote the cocycle defined on A(Pg\Pink(4s)) according to 4.1 with respect to the

1t 7 . . . S
strong complex frames HY = |J;. 4 H} for Ag. By induction hypothesis [CAs,ﬁg | =

[ci i ], and Remark 4.4 allows us to transfer this identity to the corresponding
SHityg
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cocycles on the complement of A:
s . s . s s
) = S D) = (S m ) = ().

[n] [n]

For S = [n], we relate the cohomology classes represented by ¢ iger C o O coho-
mology classes CEZ”_%O”’ c[;,_%l,, for the complement of the restriction A" defined

with respect to the “restricted” strong complex frames 7-[0”, HY By induction
hypothesis, [C[;\L'T,%O” | = [CZL,Z%// ]in H*(M(A")). Lemma 5.4 reveals (6*)~! as a
splitting map in the Mayer-Vietoris long exact sequence considered in the proof of
Theorem 5.2. We conclude that

0 [ 1= ()7 ([ 01 = @)~ L) = [

A,?Tlo A”,’ﬁo” AIIJ_?I” Aﬂ?{l

For a geometric arrangement .4 and an independent set S in £(A) we defined a
cocycle ¢® on the complement of A by considering the corresponding cocycle on
the complement of a specified maximal boolean subarrangement Ap(s) in A and
restricting it to the complement of A (cf. 5.1). The previous proposition now enables
us to show that for S € L(A) we can work with any boolean subarrangement
in A4 that contains Ag and with any strong complex frame — once we adjust
Definition 5.1 to the respective setting we reach to a cocycle that represents the
same cohomology class as the original cocycle ¢°:

Corollary 6.2. Let A = {Uy,... ,U,} be a geometric arrangement in C*, with a
simplicial model for M(A) as in Definition 5.1. Let H°(Ar) C G be an additional
strong complex frame for a boolean subarrangement Ar, T € Z(L(A)). For SCT
define

¢ = if(ch,),
where ciT denotes the standard cocycle on A(Pg\Pink(4r)) defined with respect
to H°(Ar) and i : A(Pg\Pink(a)) — A(Pg\Pink(Ar)) is the natural inclusion.
Then, the cohomology classes induced by ¢ and c° coincide:

(2] = [°].
Proof. The inclusion of M(A) into M(As) factors through the inclusion into
M(Ar) and through the inclusion into M(Ap(s)):

MA)  —2 M(Ap)

b
M(Ap(s)) —— M(As).

Remark 4.4 combined with the definition of & shows that [¢°] = i} o
i3 ( [cjs 9(As) ]), where the latter cocycle is defined with respect to the subframe
~0 ’ ~0 ST ek ek S
HO(Ag) of HP(Ar). Analogously, [¢°] = i} o lf([cAsﬁ(fls)])’
cocycle is defined with respect to the subframe H(As) of H(Ap(s)). Our previous
proposition applied to cis and commutativity of the diagram above yield

it o i3 ([, s =

= ijois ([, ) =[],

where the latter

(25] = it 0i5 (15, sopan))
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which completes the proof. [

The following observation is crucial for our analysis: If a subspace arrangement
is contained in a proper linear subspace of the ambient space, then its complement
can be viewed as a multiple suspension. Using the standard isomorphism between
the (co)homology of a space and the (co)homology of its suspension we can picture
cohomology classes for complements of certain arrangements as “suspensions” of
cohomology classes for complements of arrangements in a smaller ambient space.
This viewpoint will be crucial in the proof of a later proposition.

Proposition 6.3. Let A be a complex subspace arrangement in C? and assume that
the subspaces of A are contained in a complex subspace U in C¢ of positive codimen-
sion m. Let G be a hyperplane arrangement that contains a complex frame for A
and hyperplanes Hy,. .., Hp, in C* with N}, H; = U. Besides A(Pg\Piinka)), 9
induces the simplicial model A(Pg,,,\Pink(a)) for the complement of A in U, and
A(Pg\Pink(4)) is homotopy equivalent to a 2m-fold suspension of A(Pg.,, \ Pini(4))-

Let c be a cocycle on A(Pg, \Pink(a)) in degree d, defined by c := Y 7 a7,
where T is a set of (d+1)-element chains of cells in FQW\Flink(A): and o €Z for
T€T. The 2m-fold iteration of the standard isomorphism between the cohomology
of a space and the cohomology of its suspension maps [c] € H*(A(Pg, \Pink(4)))

to a cohomology class in ?Id“‘Qm(A(Pg\Hink(A))), which can be represented by

susp’™ ¢ = Z (-)™a, Z 7,
€T
where the second sum is over all (d+2m+ 1)-element chains of cells 7 in
Fg\Flink(A) that coincide with T in their initial d+ 1 cells and are elementary as-
cending along (Hy, ... ,H,,) on their final 2m cells.

Proof. We discuss a single suspension of an arrangement complement and its effect
on cohomology. Let A be a complex subspace arrangement contained in a real
hyperplane U that is obtained from a complex hyperplane H = ker (g7, {5 € (C?)*,
by U := {z € C? : im 4 (2) = 0}. Consider a simplicial model for the complement
of A induced by a hyperplane arrangement G that contains H. Let a cocycle ¢ be
defined on Ag := A(Pg, \Pink(4)) as stated in the theorem. We aim to describe
a representative on A := A(Pg\Rini(4)) for the image of [¢] under the suspension
isomorphism in cohomology. We realize this isomorphism in the context of the
simplicial models in question:

Consider the subcomplex in I'g formed by cells § with §(H) =14 — a regu-
lar CW-decomposition of the “upper” hemisphere (S$2¢~1)* when considering U
as the equator. Denote its face lattice by Pg ., 5, - The order complex
At = A(Pg((imlHZO)\Plink(A)) provides a simplicial model, in fact a deforma-
tion retract of (S2¢ 1)*\link (A) (compare [Mu, Lemma 70.1]). Analogously,
A7 = A(Pg; im0, <o) \Hink(4)) provides a simplicial model for (S%4=1)~\link (A).
Obviously, AT N A~ = Ay. Moreover, At U A~ = A, since the intersection of
subposets of Pg\Bjuk (4) that define the order complexes AT and A~ is a lower
order ideal in Pg\Pjnk(4)- The isomorphism between the cohomology groups of
AY and its suspension A is realized by the connecting homomorphism in the coho-
mological Mayer-Vietoris sequence for the union of spaces A™ and A™, both being
contractible:

— BYAYY @ HYA™) — HY(Ao) 25 AP (A) — B (AT) @ A (A7) —
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A representative for 0*[c] on A(Pg\Rink(4)) can be obtained by tracing c on
cochain level through the diagram of cochain complexes that results into the long
exact Mayer-Vietoris sequence. We refer to [Fe, Prop. 1.6.3] for the details. Here,
we only note the description of a representing cocycle susp ¢ for 6*[c¢]:

susp ¢ = Z (-1, Z 7,
TeT
where the second sum is over all (d + 2)-element chains of cells 7 in I'g\'jjpi(.4) that
coincide with 7 after deletion of their last cell 7(¢*Y) and for which 7(+1) (H) = 4.
The general case of a 2m-fold suspension stated in the theorem follows by iter-
ation of the single suspension thus described. [

Remark 6.4. With the previous proposition we can derive Proposition 4.6 from the
explicit description of a cohomology generator for a hyperplane complement given
by BJORNER & ZIEGLER [BZ]: In the setting of Proposition 4.6, we can view U as
a hyperplane in U' = I, H;, and the complement of U in C? as a 2(m—1)-fold
suspension of the complement of U in U’. Following [BZ, Sect. 7], a cohomology
generator for the hyperplane complement is represented by ¢ = > _ 7%, where the
sum is over all 2-element chains 7 : 7(®) < 7(1) in Lg . \Llink({v}) With 7O (H)) =+
and 7 (H;) =1i. The representative for the 2(m—1)-fold “suspension” of this co-
homology generator provided by the previous proposition coincides up to sign with
the standard cocycle ¢!V} = ¢! defined according to 4.1.

The construction of cocycles ¢° for boolean arrangements according to Defini-
tion 4.1 depends heavily on the linear order of the index set S. In fact, the charac-
teristic sequences of hyperplanes for S change under reordering of the hyperplanes
in a strong complex frame.

Ezample 6.5. Consider the boolean arrangement of subspaces in C° given by

U ={z21=20=0}, Uy={23=24=25=0}, Us={z1=24=26=0}.

Choosing uy := es, us := e3, and ug := eg, we obtain the framing arrangement
Vi={z1=0}, Vo={zs4=25=0}, Va={z1=24=0}.

The following hyperplanes form a strong complex frame in the given setting:

721 : Hig={22=0}, Hi;={z =0},
7;12 : H2,0 = {23 = 0}; H271 = {25 = 0}; H2,2 = {24 = 0};
Hg . Hgy() = {ZG = 0}, H371 = {24 = 0}, H3’2 = {Zl = 0} .

Characteristic sequences of hyperplanes for S = {2,3} . are
-7?;2’3}< = (Hz,0,H21), -7‘~—§2’3}< = (H3,0,H3,1,Hs>),
whereas under reversed order, S = {3, 2}, the selection results in
-7T—§3’2}< = (Hz,,Hs2), -7‘~—§3’2}< = (H20,Hs,1,H> ).

There is no evident relation between the cocycles ¢123}< and ¢t3:2}<. However,
the following proposition enables us to control the effect which the reordering of an
index set has on the cohomology class represented by the corresponding standard
cocycle.



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 23

Proposition 6.6. Let A = {Uy,...,U,} be a boolean arrangement in C¢. For
an index set S = {i1,... ix}< C [n], let ¢ denote the standard cocycle defined
in 4.1 and ¢, o € S5, the cocycle defined analogously with respect to the order
bo(1) < ... <fgk)y on S. Then

(@] = sgno[c¥],
where sgno denotes the sign of the permutation o.

Proof. Tt suffices to show that [¢™(5) ] = —[¢] for any transposition 7 = (r,7+1) €
S, r=1,...,|S|-1. We will work with the subarrangement As = {U;}cs and
compare cochains c;l(ss) and cis defined on A(Pg\Pink(ag))- Once we prove our
claim for those, the result transfers to the corresponding cohomology classes on the
complement of A using Remark 4.4.

Our proof is by induction on the cardinality of S. For the induction start, set
S={1,2}, 7=(1,2) € &y, and denote c'? := cill{’i}Q}, o= cTA({{ll”;}) the cochains
that are to be compared.

Assume that codimc Uy + codimg Uz = codimg Uyy 2y in Ayy 23, Denote char-
acteristic sequences of hyperplanes for {i}, chosen from the strong complex frame
H = Hy UH, for Af1 2y, with Fifori = 1,2. The following identities hold for
characteristic sequences of hyperplanes with respect to the indicated index orders:

(Fib#< Fiv2<y = (£, F) and  (FPPY<, FPU<) = (R, F).
For the sequence indexed with the respective maximal element of the index
set, the claim is obvious. For ]f_:1{1,2}< we compare cardinalities: |.7?i{172}<| =
codimg Uy oy — codime Uz = codimc Uy = |f1| Both ]_:1{172}< and ]-N'l contain
Hi o by definition. Moreover, a hyperplane H; ; that is chosen for ]-'1{1’2}< is also
chosen for F; since Hy; 2 (), Hi. N Vo implies that Hy; 2 (1,5, H1,.. Hence,

}'1{1’2}< C F1 and we conclude that ﬁ.1{1,2}< = F,. For f2{2’1}< we argue analo-
gously.
On cochain level the following factorizations hold:

? =ct— ¢ and =t
We argue for ¢'? in detail: The cochain ¢! — ¢? evaluates non-trivially on
a chain of cells § : 80 < .. . < RcodimcUp—2) jp Lo\ Dlink(Ay, .y) if and

only if the initial cell sequence of length 2codim¢ U;—1 is elementary ascend-
ing along ]—~'1, and the final cell sequence of length 2codime Uz—1 is elementary
ascending along Fs (compare [Br, p. 328] for the explicit evaluation of a cup
product on cochain level). These conditions overlap in g(2codimeti—1) and en-
force the sign pattern #(*) (]—N—z) = (+,0,...,0) on the initial cell sequence, i.e.,
for t = 0,...,2codimc U;—1, and the sign pattern H(t)(]?l) = (i,4,...,%) on the
final cell sequence, i.e., for t = 2codimc U;—1,... ,2codimg Uy 23 —2. It follows
that ¢! — c? evaluates non-trivially, namely to €, = —1, only on chains of cells in
Lg\Dlink(Ay, ;) that are ascending along (F1,F»). By our comparison of character-
istic sequences given above, this description coincides with the definition of c'? as a
sum of elementary cochains. The factorization for ¢! can be deduced analogously.
Thus our assertion now is a simple consequence of the anti-commutativity of the
cup product:

[¢*] =[] =[] = ~[c'] =[] = =[]
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Assume that codimc Uy + codime Uz > codime Uy oy in Agy 2y. The codimen-
sion of the sum of vector spaces Uy + Us, t := codime (Uy + Us), is strictly positive.
We will consider Ay ) as an arrangement in U; + U and view its complement
in S(C? as a 2t-fold suspension of the complement of Ag2y in Uy + Uz, Ap-
plying Propositions 4.5 and 6.1 we are free to work with a , strong complex frame
H = 7-[1 U?—lg for which the last ¢ hyperplanes in the families 7-[1 and 7-12 coincide and
intersect in Uy +Us = V1 + V5. The families of hyperplanes 7—[1 ={Hyj:j<ti—t},
~(2 = {H,; : j <ty — t} restricted to U; + U, form a strong complex frame for
A{lyz} as arrangement in U; + U,. By the explicit description of representatives
for “suspended” cohomology classes given in Proposition 6.3 we see that c'? co-
incides on cochain level with the cocycle c! ArU vy “suspended” along the hyper-
planes Ho ty—ti1,.-. ,Hat, up to a coefficient (—1)f. Analogously, ¢?! coincides
up to (—1)* with the cocycle CAFU oy “suspended” along the (identical) sequence
of hyperplanes Hi t, —¢41,...,H1t, - The codimensions of U; and Us in Uy + Us
add up to the codimension of their intersection. We conclude using our previous
considerations:

[¢*'] = (1) [susp? ci‘lwﬁvz] = (=1)"*! [susp* 6}42’—[71+U2] = —[c"?].

For the induction step, let S = {1,...,k} and 7 = (r,r + 1) in & for r €
{1,...,k —1}. Assume that 7# (k—1,k). The Mayer-Vietoris argument in the
proof of Theorem 5.2 applied to the boolean arrangement Ag reveals [cis] and
[c;l(ss)] as images of [cA,,{k}] and [c (,S\{k})] under the splitting map (6*)~!. The

latter we can compare by induction hypothesis, and we conclude that
(X = @)1l ) = @) 1D = — 1]

For 7 =(k—1, k), define an arrangement of complex subspaces W = {Wy,... ,W;}
in C? by

W, = NFS, forj=1,.... k-2,

Wi-1 = Ug-1, and

Wy, = U,

where the ff are characteristic sequences of hyperplanes for Ag. The arrange-
ment W is a boolean arrangement of k£ subspaces and HW = .7?19 u...u .7?;5_2 U
7-lk71 U ?-le is a complex frame for W; the subframe 7-lk4 U ?-le we take from Ag.
The latter is a strong complex frame for the subarrangement {Wy_1, Wj} in W,

whereas we can not assume in general that HW forms a strong complex frame
for W.
Define c{]} j=1,...,k, to be the standard generating cocycle for the sub-

space W; on A(Pg\lek(W)) with respect to the (strong) complex frame ]—N"JS for
j#k—1,k, resp. ﬁj for j =k—1,k. Moreover, define also c%_l’k} as in 4.1. For
T={i1,... ,ir}< CS,|T|>2, define

ol LK 2T,
CW = . ;
R ST N 135 ) el A
The proposed cochains are actually cocycles: For c{] } ,J=1,...,k, and C%ilyk}

this follows from Proposition 4.2; all other cochalns are cup products of cocycles
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and hence cocycles themselves. A comparison of descriptions in terms of elementary
cochains shows that we obtain identical cochains if we use Definition 4.1 with respect
to the (non-strong) complex frame HW. The concept of strong complex frames was
not used any further in our considerations except to ensure that the cochains defined
in 4.1 are actually cocycles. Due to the product structure on the first k—2 subspaces
in W we ensure this by our definition of cochains c% independently from the frame.
In particular, we can conclude as before that the cocycles c%, ) £T C S, represent
a linear basis for H*(M(W)).

The cohomology class [c3),] factorizes by definition. We apply the induction start

on [c%fl’k}] and conclude that

(S S\{k—1,k r({k—1,k S\{k—1,k k—1,k
(7] = [T = [ D] = = [T = [y ™) = [
There is a natural inclusion of arrangement complements, i : M(W) — M (Ag).
By comparison on cochain level we see that iﬁ(cis) = Ci?v- Both cis and c)s,v
represent generating cohomology classes of the top dimensional (infinite cyclic)
cohomology group of M(Ag), resp. M(W). Hence, i* is an isomorphism in degree

2 codime [V;cg Ui — S|, and our result translates from the complement of WV to the
complement of Ag: [CTA(f)] =—[c5, -0

7. THE COHOMOLOGY ALGEBRAS OF GEOMETRIC ARRANGEMENTS

In this section we describe multiplication and derive linear relations among co-
homology classes on the complement of a geometric arrangement. This results in a
presentation of the cohomology algebra in terms of generators and relations, where
cohomology classes [¢°], indexed by independent sets S in £(A) (cf. Definition 5.1),
figure as multiplicative generators.

Proposition 7.1. Let A = {U;,...,U,} be an arrangement of complex subspaces
in C¢ with geometric intersection lattice L = L(A). Then the cup product of coho-
mology classes [c°], [c¢T], for S,T € Z(L), satisfies

[cs] = [cT] _ 0, if codimc Usyr < codimg Ug + codimge U,
sgno[¢YT], if codime Usyr = codime Ug + codime Ur,

where o € & sur| 15 the permutation which orders S followed by T ascendingly.

Proof. For S, T €Z(L), assume that codimc Us + codim¢ Uy > codime Usyr and
S UT is independent in £. We work with the boolean subarrangement Ag 7.
Results on the cup product of [¢5, ]and [¢], ]in H*(M(Asur)) transfer to
results on corresponding cohomology classes in H*(M(A)) via the map induced by
the inclusion of complements. In the sequel, we suppress the indices of cocycles
that indicate the (sub)arrangement on whose complement a cocycle is defined. The
degree of [¢”]— [T ] equals
2 codimg Ug — |S| + 2 codim¢c Up — |T| > 2codim¢c Usyr — |S U T| ,

whereas the maximal degree of a non-trivial cohomology class in H* (M (Asur))
is 2codime Usur — |SUT|. We conclude that [¢®] —[¢T] =0 in H*(M(Asur)),
resp. H*(M(A)).

For codim¢ Us + codimge Ur > codimg Usyr, but SUT ¢ Z(L), we argue

via a comparison of degrees in the cohomology of the (non-boolean) subarrange-
ment Asyr: There is a proper subset say of T, 7" C T, such that SUT" is maximal
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independent in £(Asur). For the degree of [¢®] — [¢!'] we obtain

deg ([c®] — [¢']) = 2codimcUs — |S| + 2 codime Ur — |T)|

> 2codimc Ug + 2 codime Uy — |S| — 2|T"| + |T|
> 2codime Usyr — rank L(Asur) — |17 + |1
> 2codime Usyr — rank L(Asur) ,
where the first inequality follows from codimc Ur — codimc Uz > |T| — |T7]

for independent sets T’ C T, and the second from codimc¢ Usg + codimg Upr >
codime Ugyr = codime Usyr and rank L(Asur) = |S| + |T’|. However, the maxi-
mal degree of a non-zero cohomology class in H*(M(Agsur)) is 2codime Usur —
rank £(Asur) and we again conclude that [¢%] — [¢'] = 0.

We have left to verify the non-trivial multiplication in case codimg¢Ug +
codim¢ Ur = codimg Ugyr- The index sets S, T € Z(L) are disjoint; otherwise

codimg Usyr < codime Ug + codime UT\(S[‘]T) < codimg Ug + codime Ur .

Moreover, S U T is independent in £; if S UT were dependent, there exists an
element ¢ in SUT, say ¢t € T', such that Usur = Usur)\f¢}, and

codimc Usyr < codimg Ug + codimge UT\{t} < codimg Ug + codime Uy .

Since we thus restrict our attention to a boolean subarrangement, Agyr, we can re-
fer to Corollary 6.2 and assume that all cocycles figuring in the following discussion
are defined with respect to a fixed strong complex frame H for Asur-

For S={i1,...,ix}< and T={j1,... ,ji}< as above, denote by (S,T) the or-
dered index set {iy,...,ig,j1,...,01}<. Let ¢!5T) denote the cocycle defined
on A(Pg\Pink(4s,,)) according to 4.1 with respect to the indicated linear order
on SUT. Once we show that

[®] = [T] = [¢57],

our claim follows by applying Proposition 6.6 to [¢(3T)].

The cocycle ¢ — ¢!’ evaluates non-trivially on a chain of cells @ in I'g \Flink(AsuT)
.. ,fi) and
.. ,.7?;’; ). These conditions overlap
LLFD).

if and only if # has an initial cell sequence that is ascending along (ﬁ'fl ,-

a final cell sequence that is ascending along (.77'}; )
in one cell and enforce such chain to be ascending along (F7 ... ,}N',Sk , .7?};, .
We claim that

(Fo,..  FSFL

PV g1

7T\ — ((ST) 7(5,T) F(S.T) 7(5,T)
.,.7-'3.1)—(]-'2'1 VS s Fi e Ty, ).

’ (73

The straightforward verification will be omitted. We refer to the similar, though
slightly simpler reasoning in the proof of Proposition 6.6 (for details see [Fe, 1.7.1]).

We conclude that ¢ — ¢! evaluates non-trivially, in fact to (—1)5/17lg g/e7) =
€|sur], on chains of cells in I'g\Ijink(4g,,) that are ascending along

~(S,T =(S,T) =(S,T ~(S,T
(FET L RSD FST L FET)

— a description that coincides with the definition of ¢(*T) and thus verifies our
claim even on cochain level. [

Proposition 7.2. Let A = {Ui,...,U,} be an arrangement of complex subspaces
in C? with geometric intersection lattice L= L(A). For any independent set S in L
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that contains a broken circuit C\{i1}, where C={i1,... ,ix}< is a circuit in L, the
following linear relation holds among cohomology classes of degree 2 codimc Us—|S|:
k
S (<1)" sgnoy, [cSHIDMIH] = g,
r=1

where 0, € &g is the permutation that orders C\{i,} followed by S\{iz,... ,ir}
ascendingly.

Proof. We use induction on the number of elements that are contained in S but not
in the broken circuit C\{i;}. For the induction start we have to prove an analogue
of the classical Orlik-Solomon relations in the cohomology of complex hyperplane
arrangements:

k
Y ()M = o, (%)
r=1
where C' = {iy,... ,ix} is a circuit in L.

We work with the subarrangement Ac = {U;}icc, using again that any linear
relation in the cohomology of its complement transfers to the cohomology of the
complement of A. An arrangement such as A¢ is called a circuit arrangement
on k elements: the intersections of less than k—1 subspaces are pairwise distinct,
whereas all intersections of k—1 subspaces coincide. The intersection lattice is a
boolean algebra on k elements truncated in rank k—1. Its associated matroid is
the uniform matroid Uj_ , the k-element circust, which explains our terminology.
The deletion of a circuit arrangement is boolean, whereas the restriction of a circuit
arrangement on k subspaces is a circuit arrangement on k—1 subspaces. We allow
the degenerate case of a circuit arrangement on two (coinciding) subspaces.

To prove the induction start, we verify the linear relation (x) among the top-
dimensional cohomology classes on the complement of Ac by induction on the
cardinality of C. For a circuit arrangement on two subspaces, C = {Uy,Us}, the
relation states that the generating cocycles ¢!, ¢?, corresponding to the coinciding
subspaces Uy, Uz, and defined with respect to different (strong) complex frames
induce the same cohomology class — an assertion that we proved as the induction
start in the proof of Proposition 6.1.

Let C = {Ux,...,Ui} be a circuit arrangement on k subspaces, k > 2. By induc-
tion hypothesis, the following relation holds in the cohomology of the restriction C”':
k—1
S (=1 [egn M =0,
r=1

Recall from Lemma 5.4 that 6* ([¢"V{#}]) = [, ] for S € BC(L"), hence for index
sets 0 £ S C [k—1], S # {2,...,k—1}, where ¢* is the connecting homomorphism
in the Mayer-Vietoris sequence for the union of M(C’) and M({Ug}). Similar
reasoning verifies a corresponding identity for the index set S = {2,...,k—1}.
Using exactness of the Mayer-Vietoris sequence we conclude

k—1

Z (—1)"[PM7} ] € kerd* = imi*,

r=1
where imi* = H*(M(C')) ® H*(M({Ux})). The only non-trivial cohomology
class in im4* that matches the dimension of the linear combination is i*([cgc,_l]]) =
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[c!*~1], and we conclude
k—1

(1) Z (_1)r[c[k]\{r}] = «a [c[’“’l]] for some a € Z .
r=1

We alter the order of subspaces in C by 7 = (k—1, k) € &, and obtain an analogous
linear identity among the top-dimensional cohomology classes on M(C),

k—1
(2) SO (DTN = g ] forsome B € Z,
r=1

where ¢ denotes cocycles that are defined with respect to the permuted order

of subspaces. Comparison on cochain level shows that i) \F} = (kI\{k=1} 514

[k]\{k b = ckI\k} Restriction from the complement of the boolean subar-

rangement C\q,3 of C and an application of Proposition 6.6 yields [c [Tk]\{r}] =
k . k ,
"l (k{]\]{\{}r} = —i"c [C[L}\{f,n}}] = — [cFMH for r #£ k—1, k.

Identity (2) then reads

kif (_1)T+1[c[k]\{r}] + (_1)’671[0[1«]\{’6}] - B[C[k]\{kfl}]‘

r=1

Insertion in (1) yields

k—1

Z(—l)’"[c[k]\{’"}] = a(-1)k (B [N\ {k—1} +Z [k} )

r=1

The involved cohomology classes form a linear basis for H*(M(C)) in dimension
2 codimc Uc—k+1, as can be seen by a Mayer-Vietoris argument with respect to the
linear order k<1<2< ... <k—1 on the index set of subspaces in C. Comparison
of coefficients for [c*\{1}] yields a = (—1)¥ 1. Given (1), this finishes the proof of
the induction start.

For the induction step let now S be an independent set in £ that properly
contains the broken circuit C\{i1} = {i2,... ,ir}<, S = {i2,--. ik, J1,--- -1}
Let us assume for now that i» < ... <ip<j1 < ... <j; in S. We work with the
subarrangement B = {U;};csu(i,3- We claim that C' = {i,... i} is the only
circuit in £(B): Assume C' #C is another circuit in £(B). Then i; € C' since
otherwise C’ were contained in S which we assumed to be independent. But if
both C' and C' contain i; there is a circuit C" C(C U C")\{i1} by the circuit
elimination axiom for matroids. With C"" C S we reach a contradiction. In particu-
lar, this reasoning shows that (S U {i1})\{i,} €Z(L) for r = 1,... k. Since C
is a circuit in L:, UC\{il} = UC\{i,.} for r = 2,... ,k, and U(Su{il})\{i,.}
UC\{iT} N US\{i2,...,ik} = UC\{il} N US\{i27...,ik} = Ug. We conclude that the
cocycles indexed by (SU{i1 })\{ir}, r =1,... ,k, are all of degree 2 codim¢c Us—|S)|.

Consider the deletion and the restriction of B. Their intersection lattices have
only one circuit as well: For £(B') this is obvious. For £(B") circuits of the con-
traction are minimal non-empty sets obtained from circuits of the original matroid
by removing the contracted elements. In particular, S\{j;} is an independent set
in £(B") that contains the (only) broken circuit C'\{i;} in £(B") and the number
of elements contained in S\{j;} but not in C\{i;} is one less than for S in L(B).
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We can thus apply the induction hypothesis to B":

k
Sy g —

r=1

By exactness of the Mayer-Vietoris sequence on the union of spaces M(B') and
M({Uj, }) we have

k
S (=17 [ M € ker gt = imi,

r=1

where im¢* = H*(M(B')) ® H*(M({Uj;,})). Top-dimensional classes in these
cohomology groups are of dimension 2 codimg Ug\ 5,3 —|S|+1, whereas the degree
of the before-mentioned linear combination is strictly larger. We thus conclude that

k
> (1 [e N = 0,

r=1

So far we assumed that S is endowed with a special order, listing first the elements
of C\{i1}, then the elements of S\{is, ... ,i}. Using Proposition 6.6, we can adjust
the relation summand by summand to the usual ascending order on SU {i;}. U

We are now ready to formulate and prove a presentation for the integer coho-
mology algebras of geometric subspace arrangements in terms of generators and
relations.

Theorem 7.3. Let A = {U;,...,U,} be an arrangement of complex subspaces
in C¢ with geometric intersection lattice L= L(A). The integer cohomology algebra
of the complement of A in C¢ is generated by cohomology classes [¢°], S €Z(L),
with representing cocycles as defined in 5.1. It has a presentation as a quotient

of the (graded) exterior algebra that is generated by elements es in dimension
2 codimg Us—|S| for S € Z(L),

0—J —— A*(SEIB(c) Zles)) —— H*(M(A);Z) — 0,
%

where 7 is defined by w(es) = [¢’]. The following elements of the exterior algebra

generate the ideal of relations J:
es ANer for S,T € I(L) such that
codim¢ Ugyr < codimg Ug + codime Ur,
es Aer —sgnoesur for S,T € Z(L) such that
codime Usyr = codimg Ug + codime Uy,
and 0 € Ssyr| the permutation that orders
elements of S followed by elements of T as-

i cendingly,
Z(_1)TSgnare(su{il})\{i,.} fOT‘ SEI([:)\BC([:), C = {i1,... ,ik}< a
r=1 circuit in L with C\{i1} CS; 0, €65 the

permutation that orders C\{i,} followed by
S\{iz2, ... ,ir} ascendingly.
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Proof. There is a linear basis for the cohomology of M(.A) among the multiplicative
generators that we propose. By anti-commutativity of the cup product a presen-
tation of the cohomology algebra as a quotient of the exterior algebra on these
generators exists. Moreover, we verified the proposed relations among the corre-
sponding cohomology classes, and we are thus left to show that these relations
actually generate the ideal J.

The relations that describe multiplication among the generators es obviously
reduce the exterior algebra to an algebra that is linearly generated by the ele-
ments eg, S€Z(L). Assume S €Z(L) contains a broken circuit of £. Due to the
additional linear relations, es can be written as a Z-linear combination of genera-
tors with lexicographically smaller index sets. Iterating this process, we write eg
as a Z-linear combination of generators that are indexed by elements of the broken
circuit complex. Hence, the proposed relations actually reduce the exterior algebra
to an algebra which is linearly generated by elements eg with S € BC(£). In view
of Theorem 5.2, this concludes the proof. []

One might suspect that linear relations resembling the classical Orlik-Solomon
relations indexed by circuits in £ together with the multiplication rules on the gen-
erators [c°], S € Z(L), should suffice to generate the ideal of relations J. However,
the following example shows that the “extended” Orlik-Solomon relations, indexed
by independent sets that properly contain a broken circuit in £, are necessary to
reduce the exterior algebra to the cohomology algebra of the arrangement.

Example 7.4. Consider the arrangement A of four subspaces in C* given by

y L(A)
Uy = {z =23 =0},
U2 = {22 = 23 = 0},
U3 = {21+22:Z3:0},
U4 - {23 = 24 = 0} -

Uy

The figure displays the intersection lattice £ = £(.A) without its minimal element,
where complex codimensions of the intersections are written next to the correspond-
ing lattice elements.

The following index sets are independent in L:

Z(L) = {1,2,3,4,12,13,14,23,24, 34,124,134, 234} .
There exists only one circuit C' = {1,2,3} in £, and the broken circuit complex is
BC(L) = {1,2,3,4,12,13,14,24,34,124,134} .

We list reduced Betti numbers and corresponding generators in the non-trivial
dimensions:

i | 3 4 5
Ei(M(A))' 4 5 2
linear . [ [e*2][et?]  [e'?4] [t
genera ors [CS] [C4] [014] [024]

| [c*]
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The algebra presentation according to Theorem 7.3 reads:
H*(M(A) = A ( @ z[°])/J,
Sez(L)
where the ideal of relations J is generated by
(%] — [¢T] for S,T € Z(L),
—[¢B] + [c¥] - 2], and

_[0234] + [0134] _ [C124] .

°]

The generating relation which is listed second corresponds to the classical Orlik-
Solomon relation indexed by the circuit {1,2,3} in £. Together with the multi-
plicative relations it does not suffice to reduce the proposed exterior algebra to an
algebra that is isomorphic to the cohomology of the complement of A: The latter is
of rank 2 in degree 5, whereas there are 3 independent sets in £ that index genera-
tors of degree 5 in the exterior algebra. This shows the necessity of the “extended”
Orlik-Solomon relation indexed by the independent set {2,3,4}.

Our investigations cover the case of complex hyperplane arrangements since their
intersection lattices are geometric. Cocycles ¢®, S € Z(L), as defined in 4.1, re-
spectively 5.1, are in this case products of 1-dimensional cocycles, which are in
one-to-one correspondence with the hyperplanes of the arrangement. This makes it
an easy conclusion to see that our algebra presentation specializes to the classical
Orlik-Solomon presentation in the hyperplane case.

Thus we have provided a complete and elementary reproof of the Orlik-
Solomon result, avoiding the detour to complex de Rham theory of BJORNER &
ZIEGLER [BZ, Sect. 7]. Strictly remaining in the context of combinatorial strat-
ifications they had derived the algebra presentation up to the signs in the rela-
tions. Their proof holds as well for real 2-arrangements — arrangements of real
subspaces of codimension 2 in R?¢ where all intersections have even codimensions
(for details on stratifications induced by 2-(pseudo)arrangements see [BZ, Sect. 8]).
The ambiguity of signs is a natural limitation for an approach that while dealing
with complex hyperplane arrangements does not refer to the complex structure:
Though their intersection lattices are geometric, real 2-arrangements are more gen-
eral than complex hyperplane arrangements — their associated matroids can be
non-representable over C [GM, Part III, 5.2], and even the rational cohomology
algebra of the complement of a real 2-arrangement is not determined by its combi-
natorial data [Z, Sect. 2].

Complex structure is essential for our investigations in the induction start of
the proof of Proposition 6.1: We show that our description of standard cocycles
provides a canonical cohomology generator for a subspace complement. We use the
fact that complex coordinate transformations preserve orientation.

We close with an extension of our results to real (mod 2)-arrangements — ar-
rangements of real subspaces of even codimension in R?? where all intersections
are as well of even codimension. Combinatorial stratifications induced by real 2-
arrangements yield cellular, respectively simplicial models for the complements of
real (mod 2)-arrangements; for details we refer to [Fe, 1.8]. Tracing our arguments
in this more general context we can conclude:
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Theorem 7.5. The integer cohomology algebra of a real (mod 2)-arrangement with
geometric intersection lattice has a combinatorial presentation in terms of gener-
ators and relations as stated in Theorem 7.3; however, the signs in the relations
necessarily remain undetermined in the combinatorial context. The analogous pre-
sentation for the cohomology algebra with coefficients in Zs is uniquely determined.
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