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t. The integer 
ohomology algebra of the 
omplement of a 
omplexsubspa
e arrangement with geometri
 interse
tion latti
e is 
ompletely deter-mined by the 
ombinatorial data of the arrangement. We give a 
ombinatorialpresentation of the 
ohomology algebra in the spirit of the Orlik-Solomon resulton the 
ohomology algebras of 
omplex hyperplane arrangements. Our meth-ods are elementary: we work with simpli
ial models for the 
omplements thatare indu
ed by 
ombinatorial strati�
ations of 
omplex spa
e. We des
ribesimpli
ial 
o
hains that generate the 
ohomology. Among them we distin-guish a linear basis, study 
up produ
t multipli
ation, and derive an algebrapresentation in terms of generators and relations.1. Introdu
tionSubspa
e arrangements have attra
ted interest from topologi
al, algebrai
, aswell as from 
ombinatorial points of view. It is the interplay of methods fromseemingly distant areas that makes the theory of subspa
e arrangements a vivid andappealing �eld of resear
h (see the re
ent surveys by Bj�orner [Bj3, Bj4℄). In thepresent paper we are 
on
erned with the intera
tion of topologi
al and 
ombinatorialstru
ture of 
omplex subspa
e arrangements.Let A = fU1; : : : ; Ung be a 
omplex subspa
e arrangement , that is, a �nite setof 
omplex linear subspa
es in C d . Two topologi
al spa
es are naturally asso
iatedto the arrangement, the singularity link VA := SA\S2d�1, and the 
omplementM(A) := C dnSA. Their homotopy types, homology groups, 
ohomology algebras,et
. are among the topologi
al invariants of the arrangement. On the other hand,there are 
ombinatorial data asso
iated to the arrangement | the interse
tionlatti
e L(A), de�ned as the poset of interse
tions among subspa
es in A ordered byreverse in
lusion, and the 
odimension fun
tion 
odimC :L(A) ! N, whi
h assignsto every element in L(A) the 
omplex 
odimension of the respe
tive subspa
e of C d .It is of interest to see the extent in whi
h the topologi
al invariants of an ar-rangement are determined by the 
ombinatorial data. Spe
i�
ally, we ask here:Æ Is the 
ohomology algebra of the 
omplement of a (
omplex) subspa
e ar-rangement determined by the interse
tion latti
e together with the 
odimensionfun
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2 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERÆ Can one give an expli
it algebra presentation in terms of generators and rela-tions?Æ Can the generators be represented by expli
it 
ombinatorial/geometri
 
o
y
les,and 
an the relations be veri�ed in terms of these?A positive answer to this last question should reveal an expli
it 
orresponden
ebetween the topologi
al and the 
ombinatorial stru
ture of an arrangement.All three questions have satisfa
tory, positive answers for 
omplex hyperplanearrangements: In a 
lassi
al paper from 1980, Orlik & Solomon [OS℄ showedthat the 
ohomology algebra of the 
omplement is 
ompletely determined by the
ombinatorial data of an arrangement. They gave a presentation of the 
ohomologyalgebra in generators and relations that depends only on 
ombinatorial data. (Inthe hyperplane 
ase, the 
odimC -fun
tion is determined by L.) For their proof theyused Brieskorn's [Bn℄ des
ription of the 
ohomology algebra in terms of expli
itde Rham 
lasses, relying on Lefs
hetz type arguments from algebrai
 geometry.Later, an elementary reproof by Bj�orner & Ziegler [BZ℄ 
omplemented theOrlik-Solomon result, and provided a positive answer to the third question. Ourpresent investigations are based on [BZ℄, and we will thus 
omment on this work insome detail.The results on 
ohomology algebras of 
omplements of 
omplex subspa
e ar-rangements are less 
omplete: The linear stru
ture was 
lari�ed by Goresky &Ma
Pherson [GM, PartIII℄. Re
ently, De Con
ini & Pro
esi [DP℄ showed thatthe rational 
ohomology algebras of 
omplex subspa
e arrangements are 
ompletelydetermined by the 
ombinatorial data of the arrangements. They provide rationalmodels for the 
omplements, i.e., di�erential graded algebras whose 
ohomologyalgebras are isomorphi
 to the rational 
ohomology algebras of the arrangements.Regarding a des
ription of the algebras in 
ombinatorial terms, their result is farfrom expli
it. The De Con
ini-Pro
esi model has been 
onsiderably simpli�ed byYuzvinsky [Y℄, who 
onje
tures a natural integral version of his model to be an in-tegral model for the 
omplements of 
omplex subspa
e arrangements [Y, Conj. 6.6℄.In the present paper we 
on
entrate on 
omplex subspa
e arrangements withgeometri
 interse
tion latti
es (in the sense of matroid theory [CR℄ [Ox℄): We 
allthem geometri
 arrangements for brevity. We will des
ribe the integer 
ohomologyalgebras of their 
omplements in the spirit of the Orlik-Solomon result for hyper-plane arrangements, striving for an elementary and geometri
ally elu
idating proof.We provide an outline of our work in the following.Our investigations are based on Bj�orner & Ziegler [BZ℄ in the hyperplane
ase. We adjust their approa
h to the study of subspa
e arrangements: When
arefully 
hoosing an appropriate hyperplane arrangement, the indu
ed 
ombina-torial strati�
ation of 
omplex spa
e [BZ, Se
t. 2℄ yields 
ellular models for the linkand the 
omplement of a given subspa
e arrangement. These models are regularCW 
omplexes whose fa
e posets have simple 
ombinatorial des
riptions. We studythe 
omplement of an arrangement through the bary
entri
 subdivision of its 
el-lular model, thus working within simpli
ial 
ohomology theory (Se
tion 2). In the
ase of arrangements with boolean interse
tion latti
es, boolean arrangements forbrevity, we parti
ularly re�ne our models by a spe
i�
 
hoi
e of indu
ing hyperplanearrangements (Se
tion 3).We give expli
it des
riptions of 
ertain simpli
ial 
o
y
les on the 
omplements ofboolean arrangements | a de�nition that plays a key role also beyond the boolean
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ase (Se
tion 4). Restri
tion from the 
omplements of boolean subarrangementstransfers these 
o
y
les to 
omplements of general geometri
 arrangements. Wedistinguish a linear basis of the 
ohomology algebra among the resulting 
ohomology
lasses (Se
tion 5).Several 
hoi
es are involved in the de�nition of our 
o
y
les. We spend most ofSe
tion 6 to show that when varying these 
hoi
es the 
orresponding 
ohomology
lasses are a�e
ted at most by a sign 
hange, whi
h we 
an 
ontrol. Thus, fordistinguished 
ohomology 
lasses we have a variety of expli
it representing 
o
y
lesat hand. This allows us to study 
up produ
t multipli
ation and linear relationsamong the proposed generators of the 
ohomology algebra. Combined with thelinear basis obtained in Se
tion 5, this results in a 
ombinatorial presentation ofthe integer 
ohomology algebra in terms of generators and relations (Se
tion 7,Theorem 7.3).We 
lose our investigations with some remarks on the spe
ialization of our re-sult to 
omplex hyperplane arrangements and on an extension to real (mod 2)-arrangements | arrangements of real linear subspa
es for whi
h all interse
tionshave even 
odimensions (Theorem 7.5).A
knowledgments. Sergey Yuzvinsky [Y℄ independently obtained a 
ombi-natorial presentation for the 
ohomology algebras of geometri
 subspa
e arrange-ments, using his integral models for the 
omplements of 
omplex subspa
e arrange-ments. We thank Dmitry Kozlov for 
arefully reading an early version of thispaper and for dete
ting a 
ru
ial error whi
h led us to the \right" 
ombinatorialstrati�
ations in the boolean 
ase.2. Combinatorial stratifi
ationsCombinatorial strati�
ations for 
omplex hyperplane arrangements were intro-du
ed in [BZ℄. They yield a 
omplete en
oding of the arrangement's topology into
ombinatorial data. Here we review the basi
 
onstru
tion and then adjust it tothe study of 
omplex subspa
e arrangements.De�ne a sign fun
tion s : C �! f0;+;�; i; jg on the 
omplex plane:s(x+ i y) = 8>>>><>>>>: i if y > 0;j if y < 0;+ if y = 0 and x > 0;� if y = 0 and x < 0;0 if y = x = 0:Let H= fH1; : : : ; Hng be an arrangement of 
omplex linear hyperplanes in C d .Assume that H is essential , that is, TH= f0g, and that the hyperplanes are givenby 
omplex linear forms `i : C d ! C with Hi=ker `i for i = 1; : : : ; n. To ea
hpoint in C d we assign a 
omplex sign ve
tor that en
odes its relative position tothe 
omplex hyperplanes of the arrangement:sH : C d �! f0;+;�; i; jgnz 7�! ( s(`1(z)); : : : ; s(`n(z)) ) :The non-empty sets sH�1(X), formed by all the points in C d that sH maps to thesame sign ve
tor X , for X 2 f0;+;�; i; jgn, are relative-open 
onvex polyhedral
ones. The resulting partition of C d is 
alled the 
ombinatorial strati�
ation of C dindu
ed by the arrangement H. Restri
tion of this strati�
ation to the unit sphere



4 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERS2d�1� C d yields a regular CW de
omposition �H of S2d�1. Its fa
e poset PH(extended by a minimal element) is given byPH = �sH(C d );�);where \�" denotes the 
omponentwise order of the sign ve
tors in sH(C d ) �f0;+;�; i; jgn that is indu
ed by the following partial order of signs:
0 �+ jiThis poset is the (augmented) fa
e poset of the regular CW de
omposition of S1indu
ed by f0g when 
onsidered as a \hyperplane" in C 1 :Cij +i j�0+f0g�The hyperplanes in H as well as all of their interse
tions are unions of strata ofthe 
ombinatorial strati�
ation. Thus the singularity link VH := SH \ S2d�1 is asub
omplex �link(H) of �H, and its augmented fa
e poset Plink(H) is an order idealof PH. The 
omplement of Plink(H) in PH is the reversed fa
e poset of a regularCW 
omplex that is a strong deformation retra
t of (and thus homotopy equivalentto) the 
omplement M(H) := C dnSH.Thus the 
ombinatorial strati�
ation of C d indu
ed by a hyperplane arrangementleads to 
ellular models for both the link and the 
omplement of the arrangement.Now we adjust the approa
h to the study of subspa
e arrangements.Let A= fU1; : : : ; Ung be an arrangement of 
omplex linear subspa
es in C d .Call an essential arrangement of 
omplex linear hyperplanes H= fHi;j : 1 � i � n;1 � j � tig in C d a 
omplex frame of hyperplanes for A if Ttij=1Hi;j =Ui fori = 1; : : : ; n. Any hyperplane arrangement whi
h 
ontains a 
omplex frame ofhyperplanes for A indu
es a 
ombinatorial strati�
ation of C d that leads to 
ellularmodels for the link and the 
omplement of the subspa
e arrangement A.We will assume that the subspa
es of an arrangement A= fU1; : : : ; Ung in C dare linearly ordered by the natural order on their index set [n℄ := f1; : : : ; ng, unlessstated otherwise. We often 
onsider subsets fi1; : : : ; ikg of the index set; we thenuse the notation fi1; : : : ; ikg< to indi
ate that i1 < : : : < ik a

ording to the naturalorder indu
ed from [n℄. Moreover, we assume that the hyperplanes in a 
omplexframe H= fHi;j : 1 � i � n; 1 � j � tig for A are ordered lexi
ographi
allywith respe
t to their index pairs (i; j) and that hyperplanes in any subarrangementof a 
omplex frame are endowed with the order inherited from the order of theframe. We denote the subarrangement fHi;1; : : : ; Hi;tig of H that 
orresponds tothe subspa
e Ui with Hi for i = 1; : : : ; n. The hyperplanes in a 
omplex frameneed not ne
essarily be distin
t.To des
ribe the position of a 
ell � in �H with respe
t to a subarrangement,we use the following: By �(H) we denote the sign ve
tor entry for � with respe
tto the hyperplane H in H. For a sequen
e of hyperplanes H0 = (H1; : : : ; Hk)
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e of sign ve
tor entries (�(H1); : : : ; �(Hk)) with�(H1; : : : ; Hk), or even shorter with �(H0).Our setting in the following will 
onsist of a 
omplex subspa
e arrangementA = fU1; : : : ; Ung su
h that the subspa
es in A are pairwise distin
t and in
lusionmaximal, together with a hyperplane arrangement G that 
ontains a 
omplex frameH = H1 [ : : : [ Hn for A. If we were 
on
erned about e
onomi
al 
ell de
omposi-tions, then we should require that G = H is a minimal 
omplex frame, that is, a
omplex frame with jHij = 
odimC Ui for i = 1; : : : ; n. However, the present set-upsimpli�es indu
tive proofs.The 
ondition on G ensures that the 
ells in �G that are 
ontained in the linkof A form a sub
omplex �link(A) of �G | a 
ombinatorial 
ell de
omposition forthe link of the subspa
e arrangement. The 
ells in �link(A) are easily 
hara
terizedin terms of their sign ve
tors (we swit
h freely between 
ells of the de
ompositionand their en
oding in sign ve
tors):� 2 �link(A) () �(Hi) = (0; : : : ; 0) for some i 2 f1; : : : ; ng :We denote the (augmented) fa
e poset of �link(A) by Plink(A).The strata in C d de�ned by G are relative-open polyhedral 
ones, whi
h impliesthat �G is a PL de
omposition of the unit sphere [BZ, Thm. 2.6℄. Thus, the followingapplies to �G :Lemma 2.1. [BZ, Prop. 3.1℄ Let P be the fa
e poset of a PL regular CW de
om-position � of a sphere. Let P0 be a lower ideal in P , the fa
e poset of a sub
omplex�0 in �. Then (PnP0)op, the poset PnP0 under reversed order, is the fa
e poset ofa regular CW 
omplex that is a strong deformation retra
t of j�jnj�0j.We 
on
lude that P
pl(A) := (PGnPlink(A) )opis the fa
e poset of a regular CW 
omplex �
pl(A) that is homotopy equivalent toj�G jnj�link(A)j | a 
ellular model for the 
omplement of the arrangement. In fa
t,�
pl(A) is a sub
omplex of the dual blo
k 
omplex (
f. [Mu, x64℄) of �G whi
h,be
ause of �G being PL, is itself a 
ell 
omplex. �
pl(A) is formed by 
ells dual tothose 
ells of �G that lie in the 
omplement of A:�op 2 �
pl(A) () �(Hi) 6= (0; : : : ; 0) for all i = 1; : : : ; n :From the 
ellular model for the 
omplement we obtain a simpli
ial model bybary
entri
 subdivision, that is, by 
onsidering the order 
omplex of P
pl(A):�(P
pl(A)) �= sd�
pl(A) ' M(A):This model is 
onvenient sin
e we 
an pi
ture simpli
es in �(P
pl(A)) =�(PGnPlink(A)) as 
hains of 
ells in �Gn�link(A) ordered by in
lusion, and thusthere is no need to swit
h to dual 
ells. Furthermore, we prefer a simpli
ial modelfor the 
omputation of 
up produ
ts.Simpli
ial 
o
y
les on �(PGnPlink(A)) will be 
onstru
ted as sums of elemen-tary 
o
hains, that is, of 
o
hains that evaluate to 1 on one spe
i�ed simplex of�(PGnPlink(A)) and yield 0 on all others. To spe
ify a simplex in �(PGnPlink(A))means to spe
ify a 
hain of 
ells in �Gn�link(A) ordered by in
lusion. We introdu
enotation for this purpose.



6 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERDe�nition 2.2. Let (H1; : : : ; Hk) be a sequen
e of hyperplanes in G. A 
hain of
ells � : �(0) < : : : < �(2k�1) in �G is elementary as
ending along (H1; : : : ; Hk) iffor 1 � r � k and 0 � s � 2k � 1�(s)(Hr) = 8<: 0 if s < 2r � 2;+ if s = 2r � 2;i if s > 2r � 2 :More expli
itly, the following pattern must o

ur in the sign ve
tors for the 
ellsin �: H1 H2 H3 H4 : : : Hk�(2k�1) i i i i : : : i�(2k�2) i i i i : : : +... ... ... ...�(3) i i 0 0 : : : 0�(2) i + 0 0 : : : 0�(1) i 0 0 0 : : : 0�(0) + 0 0 0 : : : 0Elementary as
ending 
hains are the building blo
ks for the following:De�nition 2.3. Let Ft=(Ft;1; : : : ; Ft;dt), t=1; : : : ;m, be sequen
es of hyper-planes, all 
ontained in the arrangement G. A 
hain of 
ells � : �(0) < : : : <�(2P dt �m) in �G is as
ending along (F1; : : : ;Fm) if�(0)(Ft) = (+; 0; : : : ; 0) for t = 1; : : : ;m ;and if for ea
h t, 1 � t � m, the 
hain�(D(t)+1) < �(D(t)+2) < : : : < �(D(t)+2dt) for D(t) := 2 (t�1Xj=1 dj)� tis elementary as
ending along (Ft;1; : : : ; Ft;dt).We again illustrate this de�nition with pi
turing sign ve
tor entries for an as
ending
hain. F1;1 F1;2 : : : F1;d1 F2;1 F2;2 : : : F2;d2 : : : : : : Fm;1 Fm;2 : : : Fm;dm�(D(m)+2dm) i i : : : i... . . .i 0 : : : 0�(D(m)+1) + 0 : : : 0... . . .�(D(2)+2d2) i i : : : i... . . .i 0 : : : 0�(D(2)+1) i i : : : i + 0 : : : 0... . . .i 0 : : : 0�(0) + 0 : : : 0 + 0 : : : 0 + 0 : : : 0As
ending 
hains will play a 
ru
ial role for the 
onstru
tion of 
o
y
les on�(PGnPlink(A)).



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 73. Stratifi
ations for boolean arrangementsThe next two se
tions 
on
ern boolean arrangements: We use spe
ial 
omplexframes and their indu
ed strati�
ations for the 
onstru
tion of expli
it simpli
ial
o
y
les. These 
o
y
les will then be transferred to general geometri
 subspa
earrangements.An arrangement A= fU1; : : : ; Ung of 
omplex linear subspa
es in C d is booleanif its interse
tion latti
e is a boolean algebra Bn on n elements, that is, if the 2ninterse
tions US := Ti2S Ui for S � [n℄ are pairwise distin
t.De�nition 3.1. Let A = fU1; : : : ; Ung be a boolean arrangement in C d . Chooseve
tors ui with ui 2 (Tj 6=i Uj )nUi for i = 1; : : : ; n, and setVi := spanC (Ui [ fuig ) :Then A4 := fV1; : : : ; Vng is a framing arrangement for A.The 
hoi
e of the ve
tors ui is possible if (and only if!) we deal with a booleanarrangement.Proposition 3.2. Let A4 = fV1; : : : ; Vng be a framing arrangement for theboolean arrangement A = fU1; : : : ; Ung in C d . ThendimC VS � dimC US = jSj for S � [n℄ :Proof. The statement is obvious for jSj = 0; 1. For S = fi1; : : : ; ikg, k > 1, 
onsiderthe following sequen
e of in
lusions:Ui1 \ : : : \ Uik � Vi1 \ Ui2 \ : : : \ Uik�1 \ Uik...� Vi1 \ Vi2 \ : : : \ Vik�1 \ Uik � Vi1 \ : : : \ Vik :By the very 
onstru
tion of the subspa
es Vi from the subspa
es Ui, the di�eren
ein dimension is exa
tly 1 for ea
h of the in
lusions.De�nition 3.3. Let A = fU1; : : : ; Ung be a boolean arrangement in C d withframing arrangement A4 = fV1; : : : ; Vng, and let H = H1 [ : : : [ Hn withHi = fHi;1; : : : ; Hi;tig, ti 2N for i = 1; : : : ; n, be a 
omplex frame for A4. Choosehyperplanes Hi;0 in C d with Hi;0 \ Vi = Ui , and seteH = eH1 [ : : : [ eHn with eHi := fHi;0g [ Hifor i = 1; : : : ; n. Then eH is a strong 
omplex frame for the boolean arrangement Awith respe
t to the framing arrangement A4.In the setting of De�nition 3.3, let S= fi1; : : : ; ikg<� [n℄ be a non-empty (ordered)subset of the index set of A. We sele
t hyperplanes from Hi1 [ : : : [ Hik , a 
omplexframe for the subarrangement A4;S = fVigi2S of A4: Choose subsets FSij � Hijfor j = 1; : : : ; k by 
onsidering the hyperplanes in Hi1 [ : : :[Hik one by one underreversed linear order, and take Hij ;t 2 Hij to belong to FSij if it does not 
ontainthe interse
tion of all previously 
hosen hyperplanes:FSij = fHij ;t 2 Hij : Hij ;t 6� � \u>t Hij ;u � \ (Vij+1 \ : : : \ Vik ) g ; j = 1; : : : ; k :Our sele
tion ensures that the FSij , j = 1; : : : ; k, are pairwise disjoint sets of hy-perplanes. To stress that they 
ome along with a natural order inherited from the



8 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERorder on the hyperplanes of the strong 
omplex frame, we refer to them as sequen
esof hyperplanes.De�nition 3.4. Let A = fU1; : : : ; Ung be a boolean arrangement in C d with fram-ing arrangementA4 = fV1; : : : ; Vng, and eH = eH1[: : :[ eHn a strong 
omplex framefor A with respe
t to A4. For ; 6= S = fi1; : : : ; ikg< � [n℄ 
hoose sequen
es ofhyperplanes FSij , j = 1; : : : ; k, in the 
omplex frame H for A4 as des
ribed above,and set eFSij := fHij ;0g [ FSij for j = 1; : : : ; k :We 
all ( eFSi1 ; : : : ; eFSik ) the 
hara
teristi
 sequen
es of hyperplanes for the indexset S with respe
t to the strong 
omplex frame eH for A.By de�nition, the following identities hold for the interse
tions of 
hara
teristi
sequen
es of hyperplanes:k\j=r eFSij = Uir \ : : : \ Uik for r = 1; : : : ; k :Using Proposition 3.2, we dedu
e thatj eFSij j = 
odimC (Vij \ : : : \ Vik )� 
odimC (Vij+1 \ : : : \ Vik ) + 1= 
odimC (Uij \ : : : \ Uik )� 
odimC (Uij+1 \ : : : \ Uik) for j = 1; : : : ; k:In parti
ular, the union of the eFSij is a boolean hyperplane arrangement interse
tingin US = Ti2S Ui | an in
lusion minimal 
omplex frame of US , 
ontained in eHi1 [: : : [ eHik .For a subspa
e arrangement A = fU1; : : : ; Ung in C d denote the arrangementobtained by deletion of Un, AnfUng = fU1; : : : ; Un�1g, by A0, and the arrangementobtained by restri
tion to Un, AdUn = fU1 \ Un; : : : ; Un�1 \ Ung� C d , by A00. Inthe literature, A00 is 
ommonly 
onsidered as an arrangement in Un, but we needto 
onsider it as an arrangement in C d . Throughout this paper, both deletions andrestri
tions will ex
lusively be performed with respe
t to the last subspa
e of anarrangement. We agree to refer to these spe
ial operations when talking about thedeletion and the restri
tion of A.For any boolean arrangement both its deletion and its restri
tion are booleanarrangements. We need that the 
on
epts introdu
ed in this se
tion are 
ompat-ible with deletion and restri
tion on boolean arrangements: Consider a booleanarrangement A = fU1; : : : ; Ung with framing arrangement A4 = fV1; : : : ; Vng,de�ned by 
hoi
e of ui(A) 2 (Tj 6=i Uj)nUi for i = 1; : : : ; n, and a strong 
omplexframe eH = eH1 [ : : : [ eHn with respe
t to A4.ForA0, A04 = fV1; : : : ; Vn�1g is a framing arrangement, and eH0 = eH1[: : :[ eHn�1a strong 
omplex frame with respe
t to A04. Framing arrangements and strong
omplex frames for all subarrangements of A 
an be obtained this way.We 
hooseui(A00) := ui(A) 2 (\j 6=i Uj)nUi � ( \j 6=i;n Uj \ Un)n(Ui \ Un) ; i = 1; : : : ; n�1 ;and we thus obtain a framing arrangement A004 = fV 001 ; : : : ; V 00n�1g for A00 withV 00i := spanC (Ui \ Un; fuig) = Vi \ Un for i=1; : : : ; n�1. We de�ne a 
omplex



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 9frame H00 for A004 by setting H00i :=Hi [ eHn for i = 1; : : : ; n�1. Extending H00i toeH00i := fHi;0g [ H00i yields a strong 
omplex frame eH00 = eH001 [ : : : [ eH00n�1 for A00with respe
t to A004.Thus if G 
ontains a strong 
omplex frame eH for A, then it also 
ontains strong
omplex frames for the deletion and the restri
tion of A, namely eH0 and eH00 asde�ned above. It simultaneously indu
es strati�
ations of C d that are suitable forthe study of A, A0 and A00. We 
lose this se
tion with a 
omparison of 
hara
teristi
sequen
es of hyperplanes in the respe
tive strong 
omplex frames. The proof isstraightforward and thus omitted.Proposition 3.5. Let A = fU1; : : : ; Ung be a boolean arrangement in C d , eH =eH1 [ : : : [ eHn a strong 
omplex frame with respe
t to a framing arrangement A4.Consider the indu
ed framing arrangements and strong 
omplex frames for the dele-tion and the restri
tion of A as des
ribed above. Then the 
hara
teristi
 sequen
esof hyperplanes in the respe
tive frames with index set S = fi1; : : : ; ikg<� [n�1℄ aregiven by (i) eFSij (A0) = eFSij (A) for j = 1; : : : ; k ;(ii) eFSij (A00) = 8<: eFS[fngik (A) [ eFS[fngn (A) for j = k ;eFS[fngij (A) for j < k :4. Co
y
les for boolean arrangementsNow we 
ombine the prerequisites of Se
tions 2 and 3 to 
onstru
t 
ertain
o
hains on the simpli
ial models for the 
omplements of boolean arrangements.De�nition 4.1. Let A = fU1; : : : ; Ung be a boolean subspa
e arrangement in C d ,eH a strong 
omplex frame for A with respe
t to a framing arrangement A4, and Ga hyperplane arrangement that 
ontains eH.Ea
h non-empty index set S = fi1; : : : ; ikg< � [n℄ 
orresponds to a sub-spa
e US := Ti2S Ui of C d . We de�ne a simpli
ial 
o
hain 
S of dimension2 
odimC US �jSj on the simpli
ial model �(PGnPlink(A)) for the 
omplement of A:
S := "jSj X� ��:Here the sum is over all 
hains of 
ells � in �Gn�link(A) that are as
ending alongthe 
hara
teristi
 sequen
es of hyperplanes ( eFSi1 ; : : : ; eFSik) 
hosen from eH, while ��denotes the elementary 
o
hain that 
orresponds to the 
hain � , and the 
oeÆ
ientsare given by "jSj = � 1 for jSj � 0; 1 (mod 4)�1 for jSj � 2; 3 (mod 4) :Proposition 4.2. For ; 6= S � [n℄, the 
o
hain 
S is a 
o
y
le on �(PGnPlink(A)).Proof. Let lS := 2 
odimC US � jSj denote the dimension of the 
o
hain 
S . Weevaluate Æ
S on (lS+2)-element 
hains of 
ells � : �(0) < : : : < �(lS+1) in �Gn�link(A).Denote by �j the (lS+1)-element 
hain obtained from � by deletion of the (j+1)-st
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ell for j = 0; : : : ; lS + 1. ThenÆ
S(�) = 
S(��) = lS+1Xj=0 (�1)j 
S(�j) :A non-zero 
ontribution o

urs among the 
S(�j) if and only if � is a 1-
ell extensionof an (lS+1)-element 
hain � in �Gn�link(A) that is as
ending along ( eFSi1 ; : : : ; eFSik).With respe
t to the 
hara
teristi
 sequen
es of hyperplanes for S, the 
hain � hasthe pattern displayed after De�nition 2.3. Thus the pattern of �, whi
h extends thatof � by an extra sign ve
tor, either has dupli
ates on eFSi1[: : :[ eFSik , or it extends by asign ve
tor that has zero entries with respe
t to one of the 
hara
teristi
 sequen
es.In the �rst 
ase, for two 
onse
utive 
ells in � the sign ve
tor entries 
oin
idewith respe
t to eFSi1[: : :[ eFSik and hen
e two 
onse
utive 1-element deletions �j , �j�1are as
ending along ( eFSi1 ; : : : ; eFSik). The 
o
hain 
S evaluates to �1 with oppositesigns on these deletions, whereas no other 1-element deletion of � gives a non-trivial
ontribution under 
S . Hen
e, Æ
S evaluates to zero on �.In the se
ond 
ase �(0)( eFSij ) = (0; : : : ; 0) for some j 2 f1; : : : ; kg. As initial
ell of the as
ending 
hain �, �(1)(FSi1 [ : : : [ FSik ) = (0; : : : ; 0) and the same holdsfor �(0). Hen
e�(0) � Hij ;0 \ ( k\r=j FSir ) = Hij ;0 \ (Vij \ : : : \ Vik ) :By our 
onstru
tion of strong 
omplex frames, Hij ;0 \ Vij = Uij . This implies that�(0) � Uij , in 
ontradi
tion to � being a 
hain of 
ells in �Gn�link(A).Remark 4.3. For the �nal argument in the pre
eding proof the use of a strong
omplex frame of hyperplanes is essential: If one takes an arbitrary 
omplex framein the de�nition of 
S , then the 
o
hain 
S is not ne
essarily a 
o
y
le!Remark 4.4. The de�nition of the 
o
y
le 
S is designed to be 
ompatible with\taking subarrangements": Consider the subarrangement AT := fUigi2T of A,S�T � [n℄; a framing arrangement and a strong 
omplex frame for AT are obtainedby taking subarrangements of the 
orresponding arrangements for A (
ompare Se
-tion 3). Obviously, 
hara
teristi
 sequen
es in the respe
tive strong 
omplex frames
oin
ide for index sets S�T . Let 
SAT , 
SA denote the standard 
o
hains de�ned onthe simpli
ial models �(PGnPlink(AT )), �(PGnPlink(A)) a

ording to De�nition 4.1.By their expli
it des
ription in terms of elementary 
o
hains we see that 
SAT mapsto 
SA when restri
ted to �(PGnPlink(A)):i℄(
SAT ) = 
SA ;where i : �(PGnPlink(A)) �! �(PGnPlink(AT )) denotes the in
lusion. In the sequelwe will extensively use restri
tions of 
o
y
les from the 
omplements of subarrange-ments to the 
omplement of an initial arrangement.Our de�nition of the 
o
y
les 
S depends heavily on the simpli
ial model. Morepre
isely, it depends on the strong 
omplex frame for A, on the hyperplane arrange-ment G that indu
es the strati�
ation, and on the order of the index set S that sofar we assumed to be as
ending. In the following we will see that these dependen-
ies have very little e�e
t on the 
ohomology 
lasses whi
h are represented by the
o
y
les 
S (
f. Propositions 4.5, 6.1, and 6.6).
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omplex frame eH for A, and we verify thatthe 
ohomology 
lass [
S ℄ represented by the 
o
y
le 
S is independent of the 
hoi
eof a hyperplane arrangement G if it only 
ontains eH. This is the only point wherewe deal with di�erent models for the 
omplement of an arrangement at the sametime. We therefore re
all that the realization of the simpli
ial model j�(P
pl(A))j,homeomorphi
 to j�
pl(A)j, is a deformation retra
t of j�G jnj�link(A)j, and hen
e ofM(A)\S2d�1. It is in the latter spa
e that we have to 
ompare 
ohomology 
lasseswhi
h are de�ned with respe
t to di�erent strati�
ations.Proposition 4.5. Let G � G0 be arrangements of 
omplex hyperplanes, both 
on-taining a strong 
omplex frame eH for the boolean subspa
e arrangement A. Theregular 
ell 
omplex �G0 indu
ed by G0 is a subdivision of the 
omplex �G indu
edby G. Denote the respe
tive simpli
ial models for the 
omplement by �(P
pl(A);G0)and �(P
pl(A);G). Letr0 : M(A) \ S2d�1 = j�G0 jnj�link(A);G0 j �! j�(P
pl(A);G0)jr : M(A) \ S2d�1 = j�G jnj�link(A);G j �! j�(P
pl(A);G)jbe the deformation retra
tions from the 
omplement of A in S2d�1 to the respe
tiverealizations of the simpli
ial models. Thenr0�( [
SG0 ℄ ) = r�( [
SG ℄ ) ;where 
SG , 
SG0 , for ; 6= S � [n℄, denote the standard 
o
y
les that are de�ned in therespe
tive models, both with respe
t to the strong 
omplex frame eH.Proof. In any 
ombinatorial strati�
ation of C d that is appropriate for a studyof A, the realization of �(P
pl(A)) is the bary
entri
 subdivision of the sub
om-plex �
pl(A) of the dual 
ell 
omplex of �. It 
oin
ides with a sub
omplex of thebary
entri
 subdivision of the original 
ell 
omplex, namely with the realizationof �(P nPlink(A)). For pi
turing simpli
es in �(P
pl(A)), we will therefore reversethe order on P
pl(A) and work as before with 
hains of 
ells in �n�link(A) orderedby in
lusion. The realization of su
h a simplex in the bary
entri
 subdivision of �is identi�ed with the simplex that is des
ribed by the 
hain of dual 
ells in thebary
entri
 subdivision of �
pl(A).There is a poset map f : PG0nPlink(A) �! PGnPlink(A) de�ned on the sign ve
torsof 
ells in �G0n�link(A) by \forgetting" the sign entries with respe
t to hyperplanesin G0nG. On 
o
hain level for respe
tive order 
omplexes, it maps 
SG to 
SG0 for; 6= S � [n℄. Leti0 : j�(PG0nPlink(A))j �! j�G0 jnj�link(A);G0 j = M(A) \ S2d�1i : j�(PGnPlink(A))j �! j�G jnj�link(A);G j = M(A) \ S2d�1denote in
lusions and 
onsider the diagramj�(PG0nPlink(A))j i0����! j�G0 jnj�link(A);G0 jf??y kM(A)kj�(PGnPlink(A))j i����! j�G jnj�link(A);G j :
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ommutes up to homotopy. For this, de�ne a 
arrierC from j�(PG0nPlink(A))j into M(A) byC ( �(0) < : : : < �(d) ) = f(�(d))for 
hains of 
ells �(0) < : : : < �(d) in �G0n�link(A), where f(�(d)) denotes the 
losureof the 
ell f(�(d)) in �Gn�link(A). The in
lusion i0 is 
arried by C sin
ei0 ( j�(0) < : : : < �(d)j ) � �(d) � f(�(d))for �(0) < : : : < �(d) in �G0n�link(A). Here f(�(d)) is the 
ell of lowest dimensionin �G that 
ontains �(d) in its subdivision indu
ed by the hyperplanes in G0nG. Also,i Æ f is 
arried by C sin
e obviouslyi ( jf(�(0)) < : : : < f(�(d))j ) � f(�(d))for �(0) < : : : < �(d) in �G0n�link(A).The Carrier Lemma [Mu, x13℄, [Bj2, (10.1)℄ implies that i0 � i f . In parti
ular,i0� = f� i�, and for the retra
tions, whi
h are 
ohomology inverses of the in
lusions,we have r� = r0� f�. We 
on
lude that r0�( [
SG0 ℄ ) = r0� f�( [
SG ℄ ) = r�( [
SG ℄ )for ; 6= S � [n℄.We will see later that for any boolean arrangement the proposed 
o
y
les 
S ,; 6= S � [n℄, represent a linear basis for the 
ohomology of the 
omplement (
f.Theorem 5.2 in the broader 
ontext of geometri
 arrangements). Here we verifythis 
laim for the smallest instan
e, an arrangement given by one single subspa
ein C d . The proof isolates the geometri
 essen
e of our investigations and justi�esour de�nition of the 
o
hains 
S via as
ending 
hains.Proposition 4.6. Let U be a 
omplex subspa
e of 
odimension m in C d , andlet G be a 
omplex hyperplane arrangement in C d that 
ontains a (strong) 
om-plex frame H = fH1; : : : ; Hmg for U . Then, the 
o
y
le 
U := 
f1g de�ned on�(PGnPlink(fUg)) a

ording to De�nition 4.1 represents a generating 
ohomology
lass for eH�(M(fUg)).Proof. In view of Proposition 4.5, we may assume that G 
ontains a 
omplex framefor the orthogonal 
omplement U? of U in C d . The 
ells of �G that lie in U?form a sub
omplex �GdU? in �G . In parti
ular, j�GdU? j is a deformation retra
tof j�G jnj�link(fUg)j, and the order 
omplex of its fa
e poset �(PGdU? ) is a simpli
ialmodel for the 
omplement of U in C d .Likewise, �(PGdU? ) is a simpli
ial model for the 
omplement of the 0-subspa
ein U? that is indu
ed by the restri
tion of the arrangement G to U?. Referringagain to Proposition 4.5 we work with the simpli
ial model �(PHdU? ) obtained by
oarsening the strati�
ation of U? to the one indu
ed by the 
omplex frame HdU?for f0g in U?. It follows from the proof of Proposition 4.5 that an isomorphismbetween the 
ohomology algebras of these simpli
ial models is indu
ed by the posetmap f : PGdU? �! PHdU? , where f is de�ned on sign ve
tors of 
ells in �GdU? by\forgetting" the sign entries that 
orrespond to hyperplanes in GdU?nHdU? .Sin
eHdU? is a boolean hyperplane arrangement, the fa
e poset PHdU? of �HdU?equals f0;+;�; i; jgmnf0̂g, where f0;+;�; i; jg has the partial order given in Se
-tion 2. The order 
omplex �(PHdU? ) is homeomorphi
 to a sphere; hen
e, any
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o
hain that 
orresponds to a maximal 
hain in PHdU? represents agenerating 
ohomology 
lass in eH�(�(PHdU? )). We 
hoose the maximal 
hain �whi
h is elementary as
ending along the sequen
e (H1 \ U?; : : : ; Hm \ U?) andwork with [��℄ as a generator for eH�(�(PHdU? )). The isomorphism f� maps [��℄ toa generator of eH�(�(PGdU? )). In terms of elementary 
o
hains, f ℄(��) = P� ��,where the sum is over all 2m-element 
hains of 
ells in �GdU? whi
h are elementaryas
ending along (H1 \ U?; : : : ; Hm \ U?).We �nally get ba
k to our initial simpli
ial model �(PGnPlink(fUg)) for the 
om-plement of U : The in
lusion of fa
e posets i : PGdU? �! PGnPlink(fUg) indu
es anisomorphism between the 
ohomology algebras of the respe
tive order 
omplexes.Any simpli
ial 
o
y
le on �(PGnPlink(fUg)) that restri
ts to f ℄(��) on �(PGdU? )represents a generating 
ohomology 
lass in eH�(�(PGnPlink(fUg))). Comparing ex-pli
it des
riptions in terms of elementary 
o
hains, 
U restri
ts to f ℄(��) and hen
erepresents a generating 
ohomology 
lass in eH�(M(fUg)).Remark 4.7. The pre
eding proof shows that for de�ning a generating 
o
y
le ofa subspa
e 
omplement, i.e., a generator for eH�(M(fUg)), in the spirit of Def-inition 4.1 any \dense" as
ending pattern of sign ve
tor entries with respe
t to(H1; : : : ; Hm) 
ould be used. Our 
onvention is 
ompatible with that of [BZ℄ forthe hyperplane 
ase.5. Linear bases for the 
ohomology ofgeometri
 arrangementsNow we extend our investigations to 
omplex subspa
e arrangements whi
h havea geometri
 interse
tion latti
e. First we 
omment on the 
hoi
e of appropriate
ombinatorial strati�
ations. Working with the indu
ed simpli
ial models for ar-rangement 
omplements, we transfer the simpli
ial 
o
y
les introdu
ed in Se
tion 4to geometri
 arrangements by restri
tion from the 
omplements of boolean subar-rangements. Among the 
o
y
les thus obtained we distinguish the representativesof a linear basis for the 
ohomology of a geometri
 arrangement.In order to �x 
ombinatorial terminology, re
all that a �nite latti
e L is geomet-ri
 if it is semimodular and all elements are joins of atoms (elements of rank 1)[CR, Chap. 2℄ [Ox, Se
t. 1.7℄. For a set of atoms S in L, rank (WS) � jSj; S is inde-pendent if equality holds, otherwise it is dependent . A maximal independent set isa basis of L; a minimal dependent set is a 
ir
uit. The 
olle
tion of all non-emptyindependent sets forms a simpli
ial 
omplex | the matroid 
omplex I(L) [Bj1,Se
t. 7.3℄. We denote the 
olle
tion of its fa
ets, the maximal independent setsin L, by B(L). Assume that the atoms in L are given a linear order. A 
ir
uitin L minus its smallest element is 
alled a broken 
ir
uit . The sub
omplex of I(L)formed by all non-empty sets of atoms that do not 
ontain a broken 
ir
uit is 
alledthe broken 
ir
uit 
omplex BC(L). See [Bj1, Bry℄ for additional information.Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
es in C d withgeometri
 interse
tion latti
e L = L(A) | we 
all A a geometri
 arrangement forbrevity. We identify the atoms in L with the elements of the index set of subspa
esinA, and thus de�ne the subarrangementAS := fUigi2S for any set of atoms S in L.Observe that AS is itself a geometri
 arrangement with interse
tion latti
e L(AS),
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e of L generated by the atoms 
ontained in S. Moreover, AS isboolean if and only if the index set S is independent in L.To obtain a 
ombinatorial strati�
ation of C d that is suitable for the study ofthe arrangement A, 
hoose a framing arrangement AB;4 and a strong 
omplexframe eH(AB) for ea
h maximal boolean subarrangement AB , B 2 B(L). Fix a hy-perplane arrangement G in C d that 
ontains the strong 
omplex frames eH(AB)for all B 2 B(L). In the sequel, we work with the indu
ed simpli
ial model�(PGnPlink(A)) for the 
omplement of A.De�nition 5.1. Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
esin C d with geometri
 interse
tion latti
e L=L(A). Assume that the set of basesB(L) is linearly ordered by reversed lexi
ographi
 order.For S= fi1; : : : ; ikg< 2I(L), let B(S) be the minimal basis in L that 
on-tains S, and let 
SAB(S) denote the 
o
y
le de�ned on the simpli
ial model�(PGnPlink(AB(S))) for M(AB(S)) a

ording to De�nition 4.1. De�ne a 
o
y-
le 
S 2 C2 
odimCUS�jSj(�(PGnPlink(A))) by restri
tion of the 
o
y
le 
SAB(S) to�(PGnPlink(A)), 
S := i℄(
SAB(S) ) ;where i : �(PGnPlink(A)) �! �(PGnPlink(AB(S))) denotes the natural in
lusion.As a restri
tion of a 
o
y
le, the 
o
hain 
S is a 
o
y
le by de�nition. Interms of elementary 
o
hains, it 
an be written as 
S = "jSj P� ��, wherethe sum is over all 
hains of 
ells � in �Gn�link(A) that are as
ending along( eFSi1(AB(S)); : : : ; eFSik(AB(S))) | the 
hara
teristi
 sequen
es of hyperplanes 
hosenfrom the strong 
omplex frame eH(AB(S)) for the boolean subarrangement AB(S)of A.Theorem 5.2. Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
esin C d with geometri
 interse
tion latti
e L = L(A). Then the set of 
ohomology
lasses f [ 
S ℄ : S 2 BC(L) gis a Z-linear basis for the redu
ed 
ohomology of the 
omplement of A.Proof. The proof is by indu
tion on the number of subspa
es in A. The indu
tionstart is 
overed by Proposition 4.6 where we veri�ed that [
f1g℄ is a 
ohomologygenerator for an arrangement A = fU1g 
onsisting of one single subspa
e.For the indu
tion step, let A = fU1; : : : ; Ung be a geometri
 arrangement in C don n subspa
es with interse
tion latti
e L = L(A). Both the deletion A0 := AnfUngand the restri
tion A00 = fU1 \ Un; : : : ; Un�1 \ Ung are geometri
 arrangements.Their interse
tion latti
es are L0 := L(A0), the join sublatti
e generated by theatoms 1; : : : ; n�1 in L(A), and L00 := L(A00), the interval [Un; 1̂℄ in L(A). Observethat A0 is an arrangement of exa
tly n�1 subspa
es, whereas A00 is an arrangementof at most n�1 subspa
es.On the 
ombinatorial side, we use the re
ursive 
onstru
tion of the broken 
ir
uit
omplex of L from the broken 
ir
uit 
omplexes of L0 and L00 due to Brylawski [Bry℄:BC(L) = BC(L0) [ ffngg [ fS [ fng : S 2 BC(L00)g : (�)
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al side, our indu
tive proof relies on a 
ohomologi
al Mayer-Vietorissequen
e that involves the 
omplements of the arrangement A, of its deletion A0,of its restri
tion A00, and of a single subspa
e. We view the 
omplement of A as theinterse
tion of the 
omplement ofA0 with the 
omplement of the single subspa
e Un,M(A) = M(A0) \M(fUng) :As the union of these spa
es we obtain the 
omplement of the restri
tion A00,M(A0) [M(fUng) = M(A00) :The Mayer-Vietoris sequen
e in redu
ed 
ohomology [Br, Ch.V, Thm. 8.3℄ for theunion of the spa
esM(A0) and M(fUng) is(i�3 ;i�4)����! eHt(M(A0))� eHt(M(fUng)) i�1�i�2����! eHt(M(A)) Æ��! eHt+1(M(A00)) (i�3 ;i�4)����!where the maps i�j , j = 1; : : : ; 4, are indu
ed by in
lusions.We have to make sure that the strati�
ation of C d by the hyperplane arrange-ment G that we 
hose with respe
t to the arrangement A is also suitable for thestudy of the arrangements A0 and A00:Lemma 5.3. For a geometri
 arrangement A = fU1; : : : ; Ung in C d , let G bea hyperplane arrangement that 
ontains a strong 
omplex frame eH(AB) for ea
hmaximal boolean subarrangement AB in A, B 2 B(L). Then G 
ontains strong
omplex frames for all maximal boolean subarrangements of both the deletion andof the restri
tion of A.Proof. Maximal boolean subarrangements of the deletion A0 are either maximalin A or they are deletions of maximal boolean subarrangements in A. Maximalboolean subarrangements in the restri
tion A00 are restri
tions of maximal booleansubarrangements in A. By our dis
ussion in Se
tion 3, the hyperplane arrange-ment G thus 
ontains the needed strong frames.Thus, G simultaneously indu
es simpli
ial models for the 
omplements of thegeometri
 arrangements A, A0 and A00, and also for the arrangement 
onsistingof the single subspa
e Un. We will use the same notation for in
lusions betweenthese simpli
ial models as introdu
ed above for the in
lusions between the a
tual
omplements.By indu
tion, the 
o
y
les 
SA0 2C�(�(PGnPlink(A0))) for S 2BC(L0) represent alinear basis for eH�(M(A0)). The 
hara
teristi
 sequen
es of hyperplanes that o

urin the des
ription of 
SA0 in terms of elementary 
o
hains are 
hosen from the strong
omplex frame eH(A0BL0 (S)) for the maximal boolean subarrangementA0BL0 (S) in A0.Re
all that BL0(S) denotes the reversed lexi
ographi
ally minimal basis in L0 that
ontains S.Consider S as an element in BC(L). If rankL = rankL0, any basis of L thatis not a basis of L0 
ontains n and hen
e is reversed lexi
ographi
ally larger thanBL0(S). We 
on
lude that BL(S) = BL0(S). If rankL < rankL0, any basis of L
ontains n and their linear order is determined by elements from [n � 1℄, hen
eBL(S) = BL0(S) [ fng.Thus, eH(A0BL0 (S)) either 
oin
ides with eH(ABL(S)) or it is the deletion ofeH(ABL(S)). We refer the latter 
ase to Proposition 3.5(i), and 
on
lude that the
hara
teristi
 sequen
es of hyperplanes for S in A0 
oin
ide with those for S in A.
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SA from 
SA0 by restri
tion, as one sees from the expli
it des
ription ofthese 
o
hains: i℄1(
SA0) = 
SA for S 2 BC(L0) :We de�ne a 
o
y
le 
Un on �(PGnPlink(fUng)) that represents a generator foreH�(M(fUng)) (
f. Proposition 4.6) with respe
t to the strong 
omplex frame usedfor the de�nition of 
fngA on �(PGnPlink(A)). Thus, 
fngA is obtained from 
Un byrestri
tion: i℄2(
Un) = 
fngA :By indu
tion, the 
o
y
les 
SA00 2C�(�(PGnPlink(A00))) for S 2BC(L00) represent alinear basis for eH�(M(A00)). The 
hara
teristi
 sequen
es of hyperplanes for Sin A00 are 
hosen from the strong 
omplex frame eH(A00BL00 (S)) for the maximalboolean subarrangement A00BL00 (S) in A00. With S [ fng 2 BC(L) a

ording to (�),we 
an 
ompare minimal bases in L00, resp. L that 
ontain S, resp. S [ fng: Sin
eall bases in L that 
ontain S[fng in parti
ular 
ontain n, their order is determinedby elements in [n�1℄, hen
e BL(S [ fng) = BL00(S) [ fng. Thus, A00BL00 (S) is therestri
tion of the boolean subarrangement ABL(S[fng) in A. We 
on
lude thateH(A00BL00 (S)) is the restri
tion of the strong 
omplex frame eH(ABL(S[fng)) fromwhi
h 
hara
teristi
 sequen
es of hyperplanes are 
hosen for the de�nition of 
S[fngA .Here is the 
ru
ial step of our proof.Lemma 5.4. The 
onne
ting homomorphism in the 
ohomologi
al Mayer-Vietorissequen
e for M(A0) [M(fUng) is surje
tive,Æ� ( [ 
S[fngA ℄ ) = [ 
SA00 ℄ for S 2 BC(L00) :This lemma implies that the Mayer-Vietoris sequen
e de
omposes into short exa
tsequen
es:0 �! eHt(M(A0))� eHt(M(fUng)) �! eHt(M(A)) Æ��! eHt+1(M(A00)) �! 0:Moreover, eH�(M(A00)) is free abelian by indu
tion hypothesis, hen
e the sequen
essplit. In parti
ular, a linear basis for eH�(M(A)) is represented by the 
o
y
les
SA = i℄1 (
SA0) for S 2 BC(L0)
fngA = i℄2 (
Un)
S[fngA 2 (Æ�)�1 ( [
SA00 ℄ ) for S 2 BC(L00) :Observe that the index sets 
ombine to the broken 
ir
uit 
omplex of L by itsre
ursive 
onstru
tion (�), thus the above list proves Theorem 5.2.Proof of Lemma 5.4. For S = fi1; : : : ; ikg< 2 BC(L00) 
onsider the booleansubarrangement B := ABL(S[fng) in A. We study the 
ohomologi
al Mayer-Vietoris sequen
e for the union of the spa
es M(B0) and M(fUng). The in
lusioni : M(A00) �!M(B00) indu
es a map of Mayer-Vietoris sequen
es:�! eHt(M(B0))� eHt(M(fUng)) ����! eHt(M(B)) Æ�B����! eHt+1(M(B00)) �!??yi�dM(A0)�id� ??yi� ??yi��! eHt(M(A0)) � eHt(M(fUng)) ����! eHt(M(A)) Æ�A����! eHt+1(M(A00)) �!
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S[fngB and 
SB00 denote the standard 
o
y
les on the simpli
ial models�(PGnPlink(B)), resp. �(PGnPlink(B00)), de�ned with respe
t to the strong 
omplexframe eH(B) = eH(ABL(S[fng)), resp. its restri
tion eH00(B). As dis
ussed above,
S[fngA and 
SA00 are de�ned with respe
t to these strong 
omplex frames as well.By de�nition,[ 
S[fngA ℄ = i�( [ 
S[fngB ℄ ) and [ 
SA00 ℄ = i�( [ 
SB00 ℄ ) :It suÆ
es to show that Æ�B ( [ 
S[fngB ℄ ) = [ 
SB00 ℄ ; (��)by naturality of the Mayer-Vietoris sequen
e we then 
on
lude thatÆ�A ( [ 
S[fngA ℄ ) = Æ�A i� ( [ 
S[fngB ℄ ) = i� Æ�B ( [ 
S[fngB ℄ ) = i� ( [ 
SB00 ℄ ) = [ 
SA00 ℄ :Thus we 
on
entrate on the 
onne
ting homomorphism Æ�B in the Mayer-Vietorissequen
e for the boolean arrangement B. Now all the 
o
y
les involved are de�nedwith respe
t to one single strong 
omplex frame, namely eH(B). The 
onne
tinghomomorphism Æ�B : eH�(M(B)) �! eH�+1(M(B00)) 
an be des
ribed asÆ�B( [ 
 ℄ ) = [ (i℄3; i℄4)�1 Æ Æ Æ (i℄1 � i℄2)�1 (
) ℄ for [ 
 ℄ 2 eH�(M(B)) ;resulting from the following diagram of 
o
hain 
omplexes with exa
t rows:Ct+1(M(B00)) (i℄3;i℄4)����! Ct+1(M(B0))� Ct+1(M(fUng)) ����! : : :x??Æ: : : ����! Ct(M(B0))� Ct(M(fUng)) (i℄1�i℄2)����! Ct(M(B)) :We sket
h how to tra
e the representing 
o
y
le 
S[fngB 2C�(M(B)) through thisdiagram. Details 
an be found in [Fe, Thm. 1.5.2℄.Re
all the des
ription of 
S[fngB as a sum of elementary 
o
hains:
S[fngB = "jSj+1 X� �� ;where the sum is over all (lS + 1)-element 
hains, lS := 2 
odimCUS[fng � jSj � 1,in �Gn�link(B) whi
h are as
ending along( eFS[fngi1 (B); : : : ; eFS[fngik (B); eFS[fngn (B)) :The 
o
y
le 
SB00 
an be des
ribed as 
SB00 = "jSj P� ��, where the sum isover all (lS + 2)-element 
hains of 
ells in �Gn�link(B00) that are as
ending along( eFSi1(B00); : : : ; eFSik (B00)); by Proposition 3.5(ii) the latter sequen
es 
oin
ide with( eFS[fngi1 (B); : : : ; eFS[fngik (B) [ eFS[fngn (B)) :Step 1. We propose a 
o
hain (�S ; 0)2ClS (M(B0)) � ClS (M(fUng)) as inverseimage of 
S[fngB under i℄1 � i℄2:�S := "jSj+1 X� lS�2mn+1Xt=0 ��t ;



18 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERwhere the �rst sum is over all (lS + 1)-element 
hains � : � (0) < : : : < � (lS) in�Gn�link(B) whi
h are as
ending along( eFS[fngi1 (B); : : : ; eFS[fngik (B); eFS[fngn (B)) ;and the 
hain �t is obtained from � by altering the �rst t 
ells in one sign ve
tor 
o-ordinate: � (j)t (Hn;0) = 0 for j = 0; : : : ; t�1. We emphasize that �0 
oin
ides with � ,and that �lS�2mn+1 has the following sign pattern with respe
t to eFS[fngn (B):� (j)lS�2mn+1( eFS[fngn (B)) = (0; : : : ; 0) for j = 0; : : : ; lS�2mn ;and on the rest of the 
ells, � (lS�2mn+1)lS�2mn+1 < : : : < � (lS)lS�2mn+1, the 
hain is elementaryas
ending along the hyperplanes in eFS[fngn (B).For t> 0, there are 
ells in �t that are not 
ontained in �Gn�link(B); restri
-tion maps the 
orresponding elementary 
o
hains to zero. Hen
e i℄1(�S) ="jSj+1 P� ��0 = 
S[fngB .Step 2. We now des
ribe the image of �S under the 
oboundary operator Æ. Wepropose the following 
o
hain in ClS+1(M(B0)):Æ(�S) = "jSj X� Xb� �̂� ;where the �rst sum is over all (lS + 1)-element 
hains in �Gn�link(B) whi
h areas
ending along ( eFS[fngi1 (B); : : : ; eFS[fngik (B); eFS[fngn (B)) ;and the se
ond sum is over (lS + 2)-element 
hains �̂ in �Gn�link(B0) whi
h areobtained from � by altering the relative positions of the �rst lS�2mn+1 
ells withrespe
t to the hyperplane Hn;0, namely to �̂ (j)(Hn;0) = 0, j = 0; : : : ; lS�2mn, andinserting a 
ell � after �̂ (lS�2mn) with� ( eFS[fngir (B)) = ( i ; : : : ; i ) for r = 1; : : : ; k ;� ( eFS[fngn (B)) = (0; : : : ; 0) :We emphasize the two main features of 
hains �̂ in �Gn�link(B0):(i) The deletion of the 
ell �̂ (lS�2mn+1) results in a 
hain �lS�2mn+1 as des
ribedin Step 1.(ii) The 
hains �̂ are as
ending along( eFS[fngi1 (B); : : : ; eFS[fngik (B) [ eFS[fngn (B)) :We leave the veri�
ation of the des
ription for Æ(�S) to the reader. As in theproof of Proposition 4.2 one 
an show that non-trivial 
ontributions in Æ�S(�) =PlS+1j=0 (�1)j �S(�j) 
an be paired su
h that they 
an
el, unless � is one of the
hains �̂ des
ribed above. For those, Æ�S evaluates to (�1)lS�2mn+1"jSj+1 = "jSj.Step 3. We �nally assert that(i℄3; i℄4) (
SB00) = (Æ�S ; 0) ;whi
h is immediately seen from the expli
it des
riptions of the 
o
hains involved.Thus, [ 
S[fngB ℄ maps under Æ�B as 
laimed.



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 196. Representatives for generating 
ohomology 
lassesOur next aim is to understand multipli
ation and to derive relations among the
ohomology 
lasses that are represented by the 
o
y
les of De�nition 5.1. In thisse
tion we obtain more 
exibility in their 
onstru
tion. As a �rst step we analyzethe simpli
ial model for the 
omplement of a boolean arrangement that is indu
edby a hyperplane arrangement whi
h 
ontains di�erent strong 
omplex frames, andwe 
ompare the 
orresponding 
o
y
les.Proposition 6.1. Let A = fU1; : : : ; Ung be a boolean subspa
e arrangement in C d ,and let eH0 and eH1 be strong 
omplex frames for A with respe
t to framing ar-rangements A04 and A14. Let G be a 
omplex hyperplane arrangement that 
on-tains both eH0 and eH1. Denote by 
SeHt , t = 0; 1, the standard 
o
y
les de�ned on�(PGnPlink(A)) with respe
t to the strong 
omplex frame indi
ated by the index.Then, the indu
ed 
ohomology 
lasses 
oin
ide:[ 
SeH0 ℄ = [ 
SeH1 ℄ for ; 6= S � [n℄ :Proof. The proof is by indu
tion on n.For n = 1 let U be a 
omplex subspa
e of 
odimension m in C d , and let(strong) 
omplex frames H0 = fH01 ; : : : ; H0dg and H1 = fH11 ; : : : ; H1dg be givenfor U , with Tmi=1Hti = U and Tdi=1Hti = f0g for t = 0; 1. We in
lude the hy-perplanes Htm+1; : : : ; Htd in the frames sin
e we assumed strong 
omplex framesto be essential. We 
hoose to work with 
oarsest possible strati�
ations of C d ,namely those indu
ed by the arrangements H0, resp. H1. Let 
H0 , 
H1 denotethe standard generating 
o
y
les on the simpli
ial models �(PH0nPlink(fUg)), resp.�(PH1nPlink(fUg)).Consider linear bases fh01; : : : ; h0dg and fh11; : : : ; h1dg of C d , given by unit nor-mal ve
tors hti on Hti for i = 1; : : : ; d, t = 0; 1, and de�ne a 
omplex 
oordinatetransformation T on C d by T (h1i ) = h0i for i = 1; : : : ; d. This transformationrespe
ts the strati�
ations indu
ed by H1, resp. H0, and restri
ts to a 
ellularmap between the respe
tive CW-de
ompositions of the unit sphere. In parti
ular,T ℄ (
H0) = 
H1 follows from the expli
it de�nition of the 
o
y
les. By restri
-tion, T indu
es a 
omplex 
oordinate transformation on the orthogonal spa
e of U .Let � 2 H2m(U?; U?nf0g) denote the 
ohomologi
al dual of the orientation 
lasson U? [MS, x9℄. A 
omplex 
oordinate transformation is orientation preserving,hen
e the map indu
ed by T on H2m(U?; U?nf0g) maps � to itself. Using natural-ity of the exa
t sequen
e for the pair (U?; U?nf0g), we 
on
lude that T indu
es theidentity on H2m�1(U?nf0g). U?nf0g being a deformation retra
t ofM(fUg), an-other naturality argument implies that T indu
es the identity on H2m�1(M(fUg)).From this, we 
on
lude that [ 
H0 ℄ = [ 
H1 ℄. By Proposition 4.5 this identity thentranslates to 
orresponding 
o
y
les on any simpli
ial model for M(fUg) that isindu
ed by a hyperplane arrangement whi
h 
ontains both H0 and H1.For the indu
tion step let A = fU1; : : : ; Ung be a boolean arrangement of nsubspa
es and eH0, eH1 strong 
omplex frames for A as stated above.For jSj < n, 
onsider the subarrangement AS = fUigi2S . Let 
SAS ; eHtS , t = 0; 1,denote the 
o
y
le de�ned on �(PGnPlink(AS)) a

ording to 4.1 with respe
t to thestrong 
omplex frames eHtS = Si2S eHti for AS . By indu
tion hypothesis [ 
SAS; eH0S ℄ =[ 
SAS ; eH1S ℄, and Remark 4.4 allows us to transfer this identity to the 
orresponding
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o
y
les on the 
omplement of A:[ 
SA; eH0 ℄ = i�( [ 
SAS; eH0S ℄ ) = i�( [ 
SAS; eH1S ℄ ) = [ 
SA; eH1 ℄ :For S = [n℄, we relate the 
ohomology 
lasses represented by 
[n℄A; eH0 , 
[n℄A; eH1 to 
oho-mology 
lasses 
[n�1℄A00; eH000 , 
[n�1℄A00; eH100 for the 
omplement of the restri
tion A00 de�nedwith respe
t to the \restri
ted" strong 
omplex frames eH000 , eH100 . By indu
tionhypothesis, [ 
[n�1℄A00; eH000 ℄ = [ 
[n�1℄A00; eH100 ℄ in H�(M(A00)). Lemma 5.4 reveals (Æ�)�1 as asplitting map in the Mayer-Vietoris long exa
t sequen
e 
onsidered in the proof ofTheorem 5.2. We 
on
lude that[ 
[n℄A; eH0 ℄ = (Æ�)�1( [ 
[n�1℄A00; eH000 ℄ ) = (Æ�)�1( [ 
[n�1℄A00; eH100 ℄ ) = [ 
[n℄A; eH1 ℄ :For a geometri
 arrangement A and an independent set S in L(A) we de�ned a
o
y
le 
S on the 
omplement of A by 
onsidering the 
orresponding 
o
y
le onthe 
omplement of a spe
i�ed maximal boolean subarrangement AB(S) in A andrestri
ting it to the 
omplement ofA (
f. 5.1). The previous proposition now enablesus to show that for S 2 L(A) we 
an work with any boolean subarrangementin A that 
ontains AS and with any strong 
omplex frame | on
e we adjustDe�nition 5.1 to the respe
tive setting we rea
h to a 
o
y
le that represents thesame 
ohomology 
lass as the original 
o
y
le 
S :Corollary 6.2. Let A = fU1; : : : ; Ung be a geometri
 arrangement in C d , with asimpli
ial model for M(A) as in De�nition 5.1. Let eH0(AT ) � G be an additionalstrong 
omplex frame for a boolean subarrangement AT , T 2 I(L(A)). For S � Tde�ne �
S := i℄(
SAT ) ;where 
SAT denotes the standard 
o
y
le on �(PGnPlink(AT )) de�ned with respe
tto eH0(AT ) and i : �(PGnPlink(A)) �! �(PGnPlink(AT )) is the natural in
lusion.Then, the 
ohomology 
lasses indu
ed by �
S and 
S 
oin
ide:[ �
S ℄ = [ 
S ℄ :Proof. The in
lusion of M(A) into M(AS) fa
tors through the in
lusion intoM(AT ) and through the in
lusion into M(AB(S)):M(A) i1����! M(AT )??yi4 ??yi2M(AB(S)) i3����! M(AS) :Remark 4.4 
ombined with the de�nition of �
S shows that [ �
S ℄ = i�1 Æi�2 ( [ 
SAS; eH0(AS) ℄ ) , where the latter 
o
y
le is de�ned with respe
t to the subframeeH0(AS) of eH0(AT ). Analogously, [ 
S ℄ = i�4 Æ i�3 ( [ 
SAS; eH(AS) ℄ ), where the latter
o
y
le is de�ned with respe
t to the subframe eH(AS) of eH(AB(S)). Our previousproposition applied to 
SAS and 
ommutativity of the diagram above yield[ �
S ℄ = i�1 Æ i�2 ( [ 
SAS ; eH0(AS) ℄) = i�1 Æ i�2 ( [ 
SAS ; eH(AS) ℄) == i�4 Æ i�3 ( [ 
SAS ; eH(AS) ℄) = [ 
S ℄ ;
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h 
ompletes the proof.The following observation is 
ru
ial for our analysis: If a subspa
e arrangementis 
ontained in a proper linear subspa
e of the ambient spa
e, then its 
omplement
an be viewed as a multiple suspension. Using the standard isomorphism betweenthe (
o)homology of a spa
e and the (
o)homology of its suspension we 
an pi
ture
ohomology 
lasses for 
omplements of 
ertain arrangements as \suspensions" of
ohomology 
lasses for 
omplements of arrangements in a smaller ambient spa
e.This viewpoint will be 
ru
ial in the proof of a later proposition.Proposition 6.3. Let A be a 
omplex subspa
e arrangement in C d and assume thatthe subspa
es of A are 
ontained in a 
omplex subspa
e U in C d of positive 
odimen-sion m. Let G be a hyperplane arrangement that 
ontains a 
omplex frame for Aand hyperplanes H1; : : : ; Hm in C d with Tmi=1 Hi = U . Besides �(PGnPlink(A)), Gindu
es the simpli
ial model �(PGdU nPlink(A)) for the 
omplement of A in U , and�(PGnPlink(A)) is homotopy equivalent to a 2m-fold suspension of �(PGdU nPlink(A)).Let 
 be a 
o
y
le on �(PGdU nPlink(A)) in degree d, de�ned by 
 := P�2T �� �� ;where T is a set of (d+1)-element 
hains of 
ells in �GdUn�link(A), and �� 2Z for� 2T . The 2m-fold iteration of the standard isomorphism between the 
ohomologyof a spa
e and the 
ohomology of its suspension maps [ 
 ℄ 2 eHd(�(PGdU nPlink(A)))to a 
ohomology 
lass in eHd+2m(�(PGnPlink(A))), whi
h 
an be represented bysusp2m 
 := X�2T (�1)m ��X �̂� ;where the se
ond sum is over all (d+2m+1)-element 
hains of 
ells �̂ in�Gn�link(A) that 
oin
ide with � in their initial d+1 
ells and are elementary as-
ending along (H1; : : : ; Hm) on their �nal 2m 
ells.Proof. We dis
uss a single suspension of an arrangement 
omplement and its e�e
ton 
ohomology. Let A be a 
omplex subspa
e arrangement 
ontained in a realhyperplane U that is obtained from a 
omplex hyperplane H = ker `H , `H 2 (C d )�,by U := fz 2 C d : im `H(z) = 0g. Consider a simpli
ial model for the 
omplementof A indu
ed by a hyperplane arrangement G that 
ontains H . Let a 
o
y
le 
 bede�ned on �0 := �(PGdU nPlink(A)) as stated in the theorem. We aim to des
ribea representative on � := �(PGnPlink(A)) for the image of [ 
 ℄ under the suspensionisomorphism in 
ohomology. We realize this isomorphism in the 
ontext of thesimpli
ial models in question:Consider the sub
omplex in �G formed by 
ells � with �(H)= i | a regu-lar CW-de
omposition of the \upper" hemisphere (S2d�1)+ when 
onsidering Uas the equator. Denote its fa
e latti
e by PGd(im `H�0) . The order 
omplex�+ := �(PGd(im `H�0)nPlink(A)) provides a simpli
ial model, in fa
t a deforma-tion retra
t of (S2d�1)+nlink (A) (
ompare [Mu, Lemma 70.1℄). Analogously,�� := �(PGd(im `H�0)nPlink(A)) provides a simpli
ial model for (S2d�1)�nlink (A).Obviously, �+ \ �� = �0. Moreover, �+ [ �� = �, sin
e the interse
tion ofsubposets of PGnPlink (A) that de�ne the order 
omplexes �+ and �� is a lowerorder ideal in PGnPlink (A). The isomorphism between the 
ohomology groups of�0 and its suspension � is realized by the 
onne
ting homomorphism in the 
oho-mologi
al Mayer-Vietoris sequen
e for the union of spa
es �+ and ��, both being
ontra
tible:�! eHd(�+)� eHd(��) �! eHd(�0) Æ��! eHd+1(�) �! eHd+1(�+)� eHd+1(��) �!
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 ℄ on �(PGnPlink(A)) 
an be obtained by tra
ing 
 on
o
hain level through the diagram of 
o
hain 
omplexes that results into the longexa
t Mayer-Vietoris sequen
e. We refer to [Fe, Prop. 1.6.3℄ for the details. Here,we only note the des
ription of a representing 
o
y
le susp 
 for Æ�[ 
 ℄:susp 
 := X�2T (�1)d+1 ��X �̂� ;where the se
ond sum is over all (d+2)-element 
hains of 
ells �̂ in �Gn�link(A) that
oin
ide with � after deletion of their last 
ell �̂ (d+1) and for whi
h �̂ (d+1)(H) = i.The general 
ase of a 2m-fold suspension stated in the theorem follows by iter-ation of the single suspension thus des
ribed.Remark 6.4. With the previous proposition we 
an derive Proposition 4.6 from theexpli
it des
ription of a 
ohomology generator for a hyperplane 
omplement givenby Bj�orner & Ziegler [BZ℄: In the setting of Proposition 4.6, we 
an view U asa hyperplane in U 0 = Tmi=2 Hi, and the 
omplement of U in C d as a 2(m�1)-foldsuspension of the 
omplement of U in U 0. Following [BZ, Se
t. 7℄, a 
ohomologygenerator for the hyperplane 
omplement is represented by 
 = P� ��, where thesum is over all 2-element 
hains � : � (0)<� (1) in �GdU0n�link(fUg) with � (0)(H1)=+and � (1)(H1)= i. The representative for the 2(m�1)-fold \suspension" of this 
o-homology generator provided by the previous proposition 
oin
ides up to sign withthe standard 
o
y
le 
fUg = 
1 de�ned a

ording to 4.1.The 
onstru
tion of 
o
y
les 
S for boolean arrangements a

ording to De�ni-tion 4.1 depends heavily on the linear order of the index set S. In fa
t, the 
hara
-teristi
 sequen
es of hyperplanes for S 
hange under reordering of the hyperplanesin a strong 
omplex frame.Example 6.5. Consider the boolean arrangement of subspa
es in C 6 given byU1 = f z1 = z2 = 0 g; U2 = f z3 = z4 = z5 = 0 g; U3 = f z1 = z4 = z6 = 0 g :Choosing u1 := e2, u2 := e3, and u3 := e6, we obtain the framing arrangementV1 = f z1 = 0 g; V2 = f z4 = z5 = 0 g; V3 = f z1 = z4 = 0 g :The following hyperplanes form a strong 
omplex frame in the given setting:eH1 : H1;0 = fz2 = 0g; H1;1 = fz1 = 0g;eH2 : H2;0 = fz3 = 0g; H2;1 = fz5 = 0g; H2;2 = fz4 = 0g;eH3 : H3;0 = fz6 = 0g; H3;1 = fz4 = 0g; H3;2 = fz1 = 0g :Chara
teristi
 sequen
es of hyperplanes for S = f2; 3g< areeFf2;3g<2 = (H2;0; H2;1) ; eFf2;3g<3 = (H3;0; H3;1; H3;2) ;whereas under reversed order, S = f3; 2g<, the sele
tion results ineFf3;2g<3 = (H3;0; H3;2) ; eFf3;2g<2 = (H2;0; H2;1; H2;2) :There is no evident relation between the 
o
y
les 
f2;3g< and 
f3;2g< . However,the following proposition enables us to 
ontrol the e�e
t whi
h the reordering of anindex set has on the 
ohomology 
lass represented by the 
orresponding standard
o
y
le.



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 23Proposition 6.6. Let A = fU1; : : : ; Ung be a boolean arrangement in C d . Foran index set S = fi1; : : : ; ikg< � [n℄, let 
S denote the standard 
o
y
le de�nedin 4.1 and 
�(S), � 2 SjSj, the 
o
y
le de�ned analogously with respe
t to the orderi�(1) < : : : < i�(k) on S. Then [ 
�(S) ℄ = sgn� [ 
S ℄ ;where sgn� denotes the sign of the permutation �.Proof. It suÆ
es to show that [ 
�(S) ℄ = � [ 
S ℄ for any transposition � = (r; r+1) 2SjSj, r = 1; : : : ; jSj�1. We will work with the subarrangement AS = fUigi2S and
ompare 
o
hains 
�(S)AS and 
SAS de�ned on �(PGnPlink(AS)). On
e we prove our
laim for those, the result transfers to the 
orresponding 
ohomology 
lasses on the
omplement of A using Remark 4.4.Our proof is by indu
tion on the 
ardinality of S. For the indu
tion start, setS= f1; 2g, � =(1; 2)2S2, and denote 
12 := 
f1;2gAf1;2g , 
21 := 
�(f1;2g)Af1;2g the 
o
hainsthat are to be 
ompared.Assume that 
odimC U1 + 
odimC U2 = 
odimC Uf1;2g in Af1;2g. Denote 
har-a
teristi
 sequen
es of hyperplanes for fig, 
hosen from the strong 
omplex frameeH = eH1 [ eH2 for Af1;2g, with eF i for i = 1; 2. The following identities hold for
hara
teristi
 sequen
es of hyperplanes with respe
t to the indi
ated index orders:( eFf1;2g<1 ; eFf1;2g<2 ) = ( eF1; eF2 ) and ( eFf2;1g<2 ; eFf2;1g<1 ) = ( eF2; eF1 ) :For the sequen
e indexed with the respe
tive maximal element of the indexset, the 
laim is obvious. For eFf1;2g<1 we 
ompare 
ardinalities: j eFf1;2g<1 j =
odimC Uf1;2g � 
odimC U2 = 
odimC U1 = j eF1j : Both eFf1;2g<1 and eF1 
ontainH1;0 by de�nition. Moreover, a hyperplane H1;t that is 
hosen for Ff1;2g<1 is also
hosen for F1 sin
e H1;t 6� Tu>tH1;u \ V2 implies that H1;t 6� Tu>tH1;u. Hen
e,Ff1;2g<1 � F1 and we 
on
lude that eFf1;2g<1 = eF1. For eFf2;1g<2 we argue analo-gously.On 
o
hain level the following fa
torizations hold:
12 = 
1 ^ 
2 and 
21 = 
2 ^ 
1 :We argue for 
12 in detail: The 
o
hain 
1 ^ 
2 evaluates non-trivially ona 
hain of 
ells � : �(0) < : : : < �(2 
odimCUf1;2g�2) in �Gn�link(Af1;2g) if andonly if the initial 
ell sequen
e of length 2 
odimC U1�1 is elementary as
end-ing along eF1, and the �nal 
ell sequen
e of length 2 
odimC U2�1 is elementaryas
ending along eF2 (
ompare [Br, p. 328℄ for the expli
it evaluation of a 
upprodu
t on 
o
hain level). These 
onditions overlap in �(2 
odimCU1�1) and en-for
e the sign pattern �(t)( eF2) = (+; 0; : : : ; 0) on the initial 
ell sequen
e, i.e.,for t = 0; : : : ; 2 
odimC U1�1, and the sign pattern �(t)( eF1) = (i; i; : : : ; i) on the�nal 
ell sequen
e, i.e., for t = 2 
odimC U1�1; : : : ; 2 
odimC Uf1;2g�2. It followsthat 
1 ^ 
2 evaluates non-trivially, namely to "2 = �1, only on 
hains of 
ells in�Gn�link(Af1;2g) that are as
ending along ( eF1; eF2). By our 
omparison of 
hara
ter-isti
 sequen
es given above, this des
ription 
oin
ides with the de�nition of 
12 as asum of elementary 
o
hains. The fa
torization for 
21 
an be dedu
ed analogously.Thus our assertion now is a simple 
onsequen
e of the anti-
ommutativity of the
up produ
t: [ 
21 ℄ = [ 
2 ℄^ [ 
1 ℄ = � [ 
1 ℄^ [ 
2 ℄ = � [ 
12 ℄ :
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odimC U1 + 
odimC U2 > 
odimC Uf1;2g in Af1;2g. The 
odimen-sion of the sum of ve
tor spa
es U1+U2, t := 
odimC (U1+U2), is stri
tly positive.We will 
onsider Af1;2g as an arrangement in U1 + U2 and view its 
omplementin S(C d as a 2t-fold suspension of the 
omplement of Af1;2g in U1 + U2. Ap-plying Propositions 4.5 and 6.1 we are free to work with a strong 
omplex frameeH = eH1[ eH2 for whi
h the last t hyperplanes in the families eH1 and eH2 
oin
ide andinterse
t in U1+U2 = V1+V2. The families of hyperplanes eH01 = fH1;j : j � t1 � tg,eH02 = fH2;j : j � t2 � tg restri
ted to U1 + U2 form a strong 
omplex frame forAf1;2g as arrangement in U1 + U2. By the expli
it des
ription of representativesfor \suspended" 
ohomology 
lasses given in Proposition 6.3 we see that 
12 
o-in
ides on 
o
hain level with the 
o
y
le 
12AdU1+U2 \suspended" along the hyper-planes H2;t2�t+1; : : : ; H2;t2 up to a 
oeÆ
ient (�1)t. Analogously, 
21 
oin
idesup to (�1)t with the 
o
y
le 
21AdU1+U2 \suspended" along the (identi
al) sequen
eof hyperplanes H1;t1�t+1; : : : ; H1;t1 . The 
odimensions of U1 and U2 in U1 + U2add up to the 
odimension of their interse
tion. We 
on
lude using our previous
onsiderations:[ 
21 ℄ = (�1)t [ susp2t 
21AdU1+U2 ℄ = (�1)t+1 [ susp2t 
12AdU1+U2 ℄ = � [ 
12 ℄ :For the indu
tion step, let S = f1; : : : ; kg and � = (r; r + 1) in Sk for r 2f1; : : : ; k � 1g. Assume that � 6=(k�1; k). The Mayer-Vietoris argument in theproof of Theorem 5.2 applied to the boolean arrangement AS reveals [ 
SAS ℄ and[ 
�(S)AS ℄ as images of [ 
SnfkgA00S ℄ and [ 
�(Snfkg)A00S ℄ under the splitting map (Æ�)�1. Thelatter we 
an 
ompare by indu
tion hypothesis, and we 
on
lude that[ 
�(S)AS ℄ = (Æ�)�1( [ 
�(Snfkg)A00S ℄ ) = �(Æ�)�1( [ 
SnfkgA00S ℄ ) = � [ 
SAS ℄ :For � =(k�1; k), de�ne an arrangement of 
omplex subspa
es W = fW1; : : : ;Wkgin C d by Wj = T eFSj ; for j = 1; : : : ; k � 2;Wk�1 = Uk�1 ; andWk = Uk ;where the eFSj are 
hara
teristi
 sequen
es of hyperplanes for AS . The arrange-ment W is a boolean arrangement of k subspa
es and eHW = eFS1 [ : : : [ eFSk�2 [eHk�1 [ eHk is a 
omplex frame for W ; the subframe eHk�1 [ eHk we take from AS .The latter is a strong 
omplex frame for the subarrangement fWk�1;Wkg in W ,whereas we 
an not assume in general that eHW forms a strong 
omplex framefor W .De�ne 
fjgW , j=1; : : : ; k, to be the standard generating 
o
y
le for the sub-spa
e Wj on �(PGnPlink(W)) with respe
t to the (strong) 
omplex frame eFSj forj 6= k�1; k, resp. eHj for j= k�1; k. Moreover, de�ne also 
fk�1;kgW as in 4.1. ForT = fi1; : : : ; irg<�S, jT j � 2, de�ne
TW := 8<: 
fi1gW ^ : : : ^ 
firgW if fk�1; kg 6� T ;
fi1gW ^ : : : ^ 
fir�2gW ^ 
fk�1;kgW if fk�1; kg � T :The proposed 
o
hains are a
tually 
o
y
les: For 
fjgW , j = 1; : : : ; k, and 
fk�1;kgWthis follows from Proposition 4.2; all other 
o
hains are 
up produ
ts of 
o
y
les
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e 
o
y
les themselves. A 
omparison of des
riptions in terms of elementary
o
hains shows that we obtain identi
al 
o
hains if we use De�nition 4.1 with respe
tto the (non-strong) 
omplex frame eHW . The 
on
ept of strong 
omplex frames wasnot used any further in our 
onsiderations ex
ept to ensure that the 
o
hains de�nedin 4.1 are a
tually 
o
y
les. Due to the produ
t stru
ture on the �rst k�2 subspa
esinW we ensure this by our de�nition of 
o
hains 
TW independently from the frame.In parti
ular, we 
an 
on
lude as before that the 
o
y
les 
TW , ; 6= T � S, representa linear basis for eH�(M(W)).The 
ohomology 
lass [
SW ℄ fa
torizes by de�nition. We apply the indu
tion starton [
fk�1;kgW ℄ and 
on
lude that[ 
�(S)W ℄ = [ 
Snfk�1;kgW ℄^ [ 
�(fk�1;kg)W ℄ = � [ 
Snfk�1;kgW ℄ ^ [ 
fk�1;kgW ℄ = � [ 
SW ℄ :There is a natural in
lusion of arrangement 
omplements, i : M(W) �!M(AS).By 
omparison on 
o
hain level we see that i℄(
SAS ) = 
SW . Both 
SAS and 
SWrepresent generating 
ohomology 
lasses of the top dimensional (in�nite 
y
li
)
ohomology group ofM(AS), resp.M(W). Hen
e, i� is an isomorphism in degree2 
odimC Ti2S Ui�jSj, and our result translates from the 
omplement of W to the
omplement of AS : [ 
�(S)AS ℄ = � [ 
SAS ℄.7. The 
ohomology algebras of geometri
 arrangementsIn this se
tion we des
ribe multipli
ation and derive linear relations among 
o-homology 
lasses on the 
omplement of a geometri
 arrangement. This results in apresentation of the 
ohomology algebra in terms of generators and relations, where
ohomology 
lasses [
S ℄, indexed by independent sets S in L(A) (
f. De�nition 5.1),�gure as multipli
ative generators.Proposition 7.1. Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
esin C d with geometri
 interse
tion latti
e L = L(A). Then the 
up produ
t of 
oho-mology 
lasses [ 
S ℄, [ 
T ℄, for S; T 2I(L), satis�es[ 
S ℄ ^ [ 
T ℄ = � 0; if 
odimC US[T < 
odimC US + 
odimC UT ;sgn� [ 
S[T ℄; if 
odimC US[T = 
odimC US + 
odimC UT ;where � 2SjS[T j is the permutation whi
h orders S followed by T as
endingly.Proof. For S; T 2I(L), assume that 
odimC US + 
odimC UT > 
odimC US[T andS [ T is independent in L. We work with the boolean subarrangement AS[T .Results on the 
up produ
t of [ 
SAS[T ℄ and [ 
TAS[T ℄ in H�(M(AS[T )) transfer toresults on 
orresponding 
ohomology 
lasses in H�(M(A)) via the map indu
ed bythe in
lusion of 
omplements. In the sequel, we suppress the indi
es of 
o
y
lesthat indi
ate the (sub)arrangement on whose 
omplement a 
o
y
le is de�ned. Thedegree of [ 
S ℄^ [ 
T ℄ equals2 
odimC US � jSj+ 2 
odimC UT � jT j > 2 
odimC US[T � jS [ T j ;whereas the maximal degree of a non-trivial 
ohomology 
lass in H�(M(AS[T ))is 2 
odimC US[T � jS [ T j. We 
on
lude that [ 
S ℄^ [ 
T ℄ = 0 in H�(M(AS[T )),resp. H�(M(A)).For 
odimC US + 
odimC UT > 
odimC US[T , but S [T 62 I(L), we arguevia a 
omparison of degrees in the 
ohomology of the (non-boolean) subarrange-ment AS[T : There is a proper subset say of T , T 0 � T , su
h that S[T 0 is maximal



26 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERindependent in L(AS[T ). For the degree of [ 
S ℄^ [ 
T ℄ we obtaindeg ( [ 
S ℄ ^ [ 
T ℄ ) = 2 
odimC US � jSj+ 2 
odimC UT � jT j� 2 
odimC US + 2 
odimC UT 0 � jSj � 2 jT 0j+ jT j� 2 
odimC US[T � rankL(AS[T )� jT 0j+ jT j> 2 
odimC US[T � rankL(AS[T ) ;where the �rst inequality follows from 
odimC UT � 
odimC UT 0 � jT j � jT 0jfor independent sets T 0 � T , and the se
ond from 
odimC US + 
odimC UT 0 �
odimC US[T 0 = 
odimC US[T and rankL(AS[T ) = jSj+ jT 0j. However, the maxi-mal degree of a non-zero 
ohomology 
lass in H�(M(AS[T )) is 2 
odimC US[T �rankL(AS[T ) and we again 
on
lude that [ 
S ℄^ [ 
T ℄ = 0.We have left to verify the non-trivial multipli
ation in 
ase 
odimC US +
odimC UT = 
odimC US[T . The index sets S; T 2I(L) are disjoint; otherwise
odimC US[T � 
odimC US + 
odimC UTn(S\T ) < 
odimC US + 
odimC UT :Moreover, S [ T is independent in L; if S [ T were dependent, there exists anelement t in S [ T , say t 2 T , su
h that US[T = U(S[T )nftg, and
odimC US[T � 
odimC US + 
odimC UTnftg < 
odimC US + 
odimC UT :Sin
e we thus restri
t our attention to a boolean subarrangement, AS[T , we 
an re-fer to Corollary 6.2 and assume that all 
o
y
les �guring in the following dis
ussionare de�ned with respe
t to a �xed strong 
omplex frame eH for AS[T .For S= fi1; : : : ; ikg< and T = fj1; : : : ; jlg< as above, denote by (S; T ) the or-dered index set fi1; : : : ; ik; j1; : : : ; jlg<. Let 
(S;T ) denote the 
o
y
le de�nedon �(PGnPlink(AS[T )) a

ording to 4.1 with respe
t to the indi
ated linear orderon S [ T . On
e we show that[ 
S ℄ ^ [ 
T ℄ = [ 
(S;T ) ℄ ;our 
laim follows by applying Proposition 6.6 to [ 
(S;T ) ℄.The 
o
y
le 
S^
T evaluates non-trivially on a 
hain of 
ells � in �Gn�link(AS[T )if and only if � has an initial 
ell sequen
e that is as
ending along ( eFSi1 ; : : : ; eFSik) anda �nal 
ell sequen
e that is as
ending along ( eFTj1 ; : : : ; eFTjl ). These 
onditions overlapin one 
ell and enfor
e su
h 
hain to be as
ending along ( eFSi1 ; : : : ; eFSik ; eFTj1 ; : : : ; eFTjl ).We 
laim that( eFSi1 ; : : : ; eFSik ; eFTj1 ; : : : ; eFTjl ) = ( eF (S;T )i1 ; : : : ; eF (S;T )ik ; eF (S;T )j1 ; : : : ; eF (S;T )jl ) :The straightforward veri�
ation will be omitted. We refer to the similar, thoughslightly simpler reasoning in the proof of Proposition 6.6 (for details see [Fe, 1.7.1℄).We 
on
lude that 
S^
T evaluates non-trivially, in fa
t to (�1)jSjjT j"jSj"jT j ="jS[T j, on 
hains of 
ells in �Gn�link(AS[T ) that are as
ending along( eF (S;T )i1 ; : : : ; eF (S;T )ik ; eF (S;T )j1 ; : : : ; eF (S;T )jl )| a des
ription that 
oin
ides with the de�nition of 
(S;T ) and thus veri�es our
laim even on 
o
hain level.Proposition 7.2. Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
esin C d with geometri
 interse
tion latti
e L=L(A). For any independent set S in L
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ontains a broken 
ir
uit Cnfi1g, where C = fi1; : : : ; ikg< is a 
ir
uit in L, thefollowing linear relation holds among 
ohomology 
lasses of degree 2 
odimC US�jSj:kXr=1 (�1)r sgn�r [ 
(S[fi1g)nfirg ℄ = 0 ;where �r 2 SjSj is the permutation that orders Cnfirg followed by Snfi2; : : : ; ikgas
endingly.Proof. We use indu
tion on the number of elements that are 
ontained in S but notin the broken 
ir
uit Cnfi1g. For the indu
tion start we have to prove an analogueof the 
lassi
al Orlik-Solomon relations in the 
ohomology of 
omplex hyperplanearrangements: kXr=1 (�1)r [ 
Cnfirg ℄ = 0 ; (�)where C = fi1; : : : ; ikg is a 
ir
uit in L.We work with the subarrangement AC = fUigi2C , using again that any linearrelation in the 
ohomology of its 
omplement transfers to the 
ohomology of the
omplement of A. An arrangement su
h as AC is 
alled a 
ir
uit arrangementon k elements: the interse
tions of less than k�1 subspa
es are pairwise distin
t,whereas all interse
tions of k�1 subspa
es 
oin
ide. The interse
tion latti
e is aboolean algebra on k elements trun
ated in rank k�1. Its asso
iated matroid isthe uniform matroid Uk�1;k, the k-element 
ir
uit , whi
h explains our terminology.The deletion of a 
ir
uit arrangement is boolean, whereas the restri
tion of a 
ir
uitarrangement on k subspa
es is a 
ir
uit arrangement on k�1 subspa
es. We allowthe degenerate 
ase of a 
ir
uit arrangement on two (
oin
iding) subspa
es.To prove the indu
tion start, we verify the linear relation (�) among the top-dimensional 
ohomology 
lasses on the 
omplement of AC by indu
tion on the
ardinality of C. For a 
ir
uit arrangement on two subspa
es, C = fU1; U2g, therelation states that the generating 
o
y
les 
1, 
2, 
orresponding to the 
oin
idingsubspa
es U1, U2, and de�ned with respe
t to di�erent (strong) 
omplex framesindu
e the same 
ohomology 
lass | an assertion that we proved as the indu
tionstart in the proof of Proposition 6.1.Let C = fU1; : : : ; Ukg be a 
ir
uit arrangement on k subspa
es, k > 2. By indu
-tion hypothesis, the following relation holds in the 
ohomology of the restri
tion C00:k�1Xr=1 (�1)r [ 
[k�1℄nfrgC00 ℄ = 0 :Re
all from Lemma 5.4 that Æ� ([ 
S[fkg ℄) = [ 
SC00 ℄ for S 2BC(L00), hen
e for indexsets ; 6= S � [k�1℄, S 6= f2; : : : ; k�1g, where Æ� is the 
onne
ting homomorphismin the Mayer-Vietoris sequen
e for the union of M(C0) and M(fUkg). Similarreasoning veri�es a 
orresponding identity for the index set S = f2; : : : ; k�1g.Using exa
tness of the Mayer-Vietoris sequen
e we 
on
ludek�1Xr=1 (�1)r[ 
[k℄nfrg ℄ 2 ker Æ� = im i� ;where im i� �= H�(M(C0)) � H�(M(fUkg)) . The only non-trivial 
ohomology
lass in im i� that mat
hes the dimension of the linear 
ombination is i�([
[k�1℄C0 ℄) =
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[k�1℄℄, and we 
on
ludek�1Xr=1 (�1)r[ 
[k℄nfrg ℄ = � [
[k�1℄℄ for some � 2 Z :(1)We alter the order of subspa
es in C by � = (k�1; k) 2 Sk and obtain an analogouslinear identity among the top-dimensional 
ohomology 
lasses on M(C),k�1Xr=1 (�1)r[ 
[k℄nfrg� ℄ = � [ 
[k�1℄� ℄ for some � 2 Z ;(2)where 
S� denotes 
o
y
les that are de�ned with respe
t to the permuted orderof subspa
es. Comparison on 
o
hain level shows that 
[k℄nfkg� = 
[k℄nfk�1g and
[k℄nfk�1g� = 
[k℄nfkg. Restri
tion from the 
omplement of the boolean subar-rangement C[k℄nfrg of C and an appli
ation of Proposition 6.6 yields [
[k℄nfrg� ℄ =i�[
�([k℄nfrg)C[k℄nfrg ℄ = � i�[
[k℄nfrgC[k℄nfrg ℄ = � [
[k℄nfrg℄ for r 6= k�1; k.Identity (2) then readsk�2Xr=1 (�1)r+1[
[k℄nfrg℄ + (�1)k�1[
[k℄nfkg℄ = � [
[k℄nfk�1g℄ :Insertion in (1) yieldsk�1Xr=1 (�1)r[
[k℄nfrg℄ = � (�1)k�1 � [
[k℄nfk�1g℄ + k�2Xr=1 (�1)r[
[k℄nfrg℄! :The involved 
ohomology 
lasses form a linear basis for H�(M(C)) in dimension2 
odimC UC�k+1, as 
an be seen by a Mayer-Vietoris argument with respe
t to thelinear order k< 1< 2< : : : <k�1 on the index set of subspa
es in C. Comparisonof 
oeÆ
ients for [
[k℄nf1g℄ yields � = (�1)k�1. Given (1), this �nishes the proof ofthe indu
tion start.For the indu
tion step let now S be an independent set in L that properly
ontains the broken 
ir
uit Cnfi1g = fi2; : : : ; ikg<, S = fi2; : : : ; ik; j1; : : : ; jlg.Let us assume for now that i2< : : : < ik<j1< : : : < jl in S. We work with thesubarrangement B = fUigi2S[fi1g. We 
laim that C = fi1; : : : ; ikg is the only
ir
uit in L(B): Assume C 0 6=C is another 
ir
uit in L(B). Then i1 2C 0 sin
eotherwise C 0 were 
ontained in S whi
h we assumed to be independent. But ifboth C and C 0 
ontain i1 there is a 
ir
uit C 00� (C [ C 0)nfi1g by the 
ir
uitelimination axiom for matroids. With C 00�S we rea
h a 
ontradi
tion. In parti
u-lar, this reasoning shows that (S [ fi1g)nfirg2I(L) for r = 1; : : : ; k. Sin
e Cis a 
ir
uit in L, UCnfi1g = UCnfirg for r = 2; : : : ; k, and U(S[fi1g)nfirg =UCnfirg \ USnfi2;::: ;ikg = UCnfi1g \ USnfi2;::: ;ikg = US . We 
on
lude that the
o
y
les indexed by (S[fi1g)nfirg, r = 1; : : : ; k, are all of degree 2 
odimC US�jSj.Consider the deletion and the restri
tion of B. Their interse
tion latti
es haveonly one 
ir
uit as well: For L(B0) this is obvious. For L(B00) 
ir
uits of the 
on-tra
tion are minimal non-empty sets obtained from 
ir
uits of the original matroidby removing the 
ontra
ted elements. In parti
ular, Snfjlg is an independent setin L(B00) that 
ontains the (only) broken 
ir
uit Cnfi1g in L(B00) and the numberof elements 
ontained in Snfjlg but not in Cnfi1g is one less than for S in L(B).
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an thus apply the indu
tion hypothesis to B00:kXr=1 (�1)r [ 
((Snfjlg)[fi1g)nfirgB00 ℄ = 0 :By exa
tness of the Mayer-Vietoris sequen
e on the union of spa
es M(B0) andM(fUjlg) we have kXr=1 (�1)r [ 
(S[fi1g)nfirgB ℄ 2 ker Æ� = im i� ;where im i� �= H�(M(B0)) � H�(M(fUjlg)). Top-dimensional 
lasses in these
ohomology groups are of dimension 2 
odimC USnfjlg�jSj+1, whereas the degreeof the before-mentioned linear 
ombination is stri
tly larger. We thus 
on
lude thatkXr=1 (�1)r [ 
(S[fi1g)nfirgB ℄ = 0 :So far we assumed that S is endowed with a spe
ial order, listing �rst the elementsof Cnfi1g, then the elements of Snfi2; : : : ; ikg. Using Proposition 6.6, we 
an adjustthe relation summand by summand to the usual as
ending order on S [ fi1g.We are now ready to formulate and prove a presentation for the integer 
oho-mology algebras of geometri
 subspa
e arrangements in terms of generators andrelations.Theorem 7.3. Let A = fU1; : : : ; Ung be an arrangement of 
omplex subspa
esin C d with geometri
 interse
tion latti
e L=L(A). The integer 
ohomology algebraof the 
omplement of A in C d is generated by 
ohomology 
lasses [
S ℄, S 2I(L),with representing 
o
y
les as de�ned in 5.1. It has a presentation as a quotientof the (graded) exterior algebra that is generated by elements eS in dimension2 
odimC US�jSj for S 2 I(L),0 �! J ����! ��( LS2I(L) Z[eS℄ ) �����! H�(M(A);Z)�! 0;where � is de�ned by �(eS) = [
S ℄. The following elements of the exterior algebragenerate the ideal of relations J :eS ^ eT for S; T 2 I(L) su
h that
odimC US[T < 
odimC US + 
odimC UT ,eS ^ eT � sgn� eS[T for S; T 2 I(L) su
h that
odimC US[T = 
odimC US + 
odimC UT ,and � 2 SjS[T j the permutation that orderselements of S followed by elements of T as-
endingly,kXr=1 (�1)r sgn�r e(S[fi1g)nfirg for S 2I(L)nBC(L), C = fi1; : : : ; ikg< a
ir
uit in L with Cnfi1g�S; �r 2SjSj thepermutation that orders Cnfirg followed bySnfi2; : : : ; ikg as
endingly.



30 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERProof. There is a linear basis for the 
ohomology ofM(A) among the multipli
ativegenerators that we propose. By anti-
ommutativity of the 
up produ
t a presen-tation of the 
ohomology algebra as a quotient of the exterior algebra on thesegenerators exists. Moreover, we veri�ed the proposed relations among the 
orre-sponding 
ohomology 
lasses, and we are thus left to show that these relationsa
tually generate the ideal J .The relations that des
ribe multipli
ation among the generators eS obviouslyredu
e the exterior algebra to an algebra that is linearly generated by the ele-ments eS , S 2I(L). Assume S 2I(L) 
ontains a broken 
ir
uit of L. Due to theadditional linear relations, eS 
an be written as a Z-linear 
ombination of genera-tors with lexi
ographi
ally smaller index sets. Iterating this pro
ess, we write eSas a Z-linear 
ombination of generators that are indexed by elements of the broken
ir
uit 
omplex. Hen
e, the proposed relations a
tually redu
e the exterior algebrato an algebra whi
h is linearly generated by elements eS with S 2 BC(L). In viewof Theorem 5.2, this 
on
ludes the proof.One might suspe
t that linear relations resembling the 
lassi
al Orlik-Solomonrelations indexed by 
ir
uits in L together with the multipli
ation rules on the gen-erators [
S ℄, S 2I(L), should suÆ
e to generate the ideal of relations J . However,the following example shows that the \extended" Orlik-Solomon relations, indexedby independent sets that properly 
ontain a broken 
ir
uit in L, are ne
essary toredu
e the exterior algebra to the 
ohomology algebra of the arrangement.Example 7.4. Consider the arrangement A of four subspa
es in C 4 given byU1 = fz1 = z3 = 0g ;U2 = fz2 = z3 = 0g ;U3 = fz1 + z2 = z3 = 0g ;U4 = fz3 = z4 = 0g :
L(A)43 3 3 32 2 2 2U1 U2 U3 U4The �gure displays the interse
tion latti
e L = L(A) without its minimal element,where 
omplex 
odimensions of the interse
tions are written next to the 
orrespond-ing latti
e elements.The following index sets are independent in L:I(L) = f1; 2; 3; 4; 12; 13; 14; 23; 24; 34; 124; 134; 234g :There exists only one 
ir
uit C = f1; 2; 3g in L, and the broken 
ir
uit 
omplex isBC(L) = f1; 2; 3; 4; 12; 13; 14; 24; 34; 124; 134g :We list redu
ed Betti numbers and 
orresponding generators in the non-trivialdimensions: i j 3 4 5je�i(M(A))j 4 5 2linear j[
1℄ [
2℄ [
12℄ [
13℄ [
124℄ [
134℄j[
3℄ [
4℄ [
14℄ [
24℄j [
34℄generators j



COHOMOLOGY ALGEBRAS OF COMPLEX SUBSPACE ARRANGEMENTS 31The algebra presentation a

ording to Theorem 7.3 reads:H�(M(A)) = ��( MS2I(L) Z[ 
S ℄ ) = J ;where the ideal of relations J is generated by[
S ℄^ [
T ℄ for S; T 2 I(L) ;�[
23℄ + [
13℄� [
12℄ ; and�[
234℄ + [
134℄� [
124℄ :The generating relation whi
h is listed se
ond 
orresponds to the 
lassi
al Orlik-Solomon relation indexed by the 
ir
uit f1; 2; 3g in L. Together with the multi-pli
ative relations it does not suÆ
e to redu
e the proposed exterior algebra to analgebra that is isomorphi
 to the 
ohomology of the 
omplement of A: The latter isof rank 2 in degree 5, whereas there are 3 independent sets in L that index genera-tors of degree 5 in the exterior algebra. This shows the ne
essity of the \extended"Orlik-Solomon relation indexed by the independent set f2; 3; 4g.Our investigations 
over the 
ase of 
omplex hyperplane arrangements sin
e theirinterse
tion latti
es are geometri
. Co
y
les 
S , S 2 I(L), as de�ned in 4.1, re-spe
tively 5.1, are in this 
ase produ
ts of 1-dimensional 
o
y
les, whi
h are inone-to-one 
orresponden
e with the hyperplanes of the arrangement. This makes itan easy 
on
lusion to see that our algebra presentation spe
ializes to the 
lassi
alOrlik-Solomon presentation in the hyperplane 
ase.Thus we have provided a 
omplete and elementary reproof of the Orlik-Solomon result, avoiding the detour to 
omplex de Rham theory of Bj�orner &Ziegler [BZ, Se
t. 7℄. Stri
tly remaining in the 
ontext of 
ombinatorial strat-i�
ations they had derived the algebra presentation up to the signs in the rela-tions. Their proof holds as well for real 2-arrangements | arrangements of realsubspa
es of 
odimension 2 in R2d where all interse
tions have even 
odimensions(for details on strati�
ations indu
ed by 2-(pseudo)arrangements see [BZ, Se
t. 8℄).The ambiguity of signs is a natural limitation for an approa
h that while dealingwith 
omplex hyperplane arrangements does not refer to the 
omplex stru
ture:Though their interse
tion latti
es are geometri
, real 2-arrangements are more gen-eral than 
omplex hyperplane arrangements | their asso
iated matroids 
an benon-representable over C [GM, Part III, 5.2℄, and even the rational 
ohomologyalgebra of the 
omplement of a real 2-arrangement is not determined by its 
ombi-natorial data [Z, Se
t. 2℄.Complex stru
ture is essential for our investigations in the indu
tion start ofthe proof of Proposition 6.1: We show that our des
ription of standard 
o
y
lesprovides a 
anoni
al 
ohomology generator for a subspa
e 
omplement. We use thefa
t that 
omplex 
oordinate transformations preserve orientation.We 
lose with an extension of our results to real (mod 2)-arrangements | ar-rangements of real subspa
es of even 
odimension in R2d where all interse
tionsare as well of even 
odimension. Combinatorial strati�
ations indu
ed by real 2-arrangements yield 
ellular, respe
tively simpli
ial models for the 
omplements ofreal (mod 2)-arrangements; for details we refer to [Fe, 1.8℄. Tra
ing our argumentsin this more general 
ontext we 
an 
on
lude:



32 EVA MARIA FEICHTNER AND G�UNTER M. ZIEGLERTheorem 7.5. The integer 
ohomology algebra of a real (mod 2)-arrangement withgeometri
 interse
tion latti
e has a 
ombinatorial presentation in terms of gener-ators and relations as stated in Theorem 7.3; however, the signs in the relationsne
essarily remain undetermined in the 
ombinatorial 
ontext. The analogous pre-sentation for the 
ohomology algebra with 
oeÆ
ients in Z2 is uniquely determined.Referen
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