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Abstract

We present a hierarchy of covering properties of rational convex cones with respect to
the unimodular subcones spanned by the Hilbert basis.

For two of the concepts from the hierarchy we derive characterizations: a description
of partitions that leads to a natural integer programming formulation for the HILBERT
PARTITION problem, and a characterization of “binary covers” that admits a linear algebra
test over GF(2) for the existence of BINARY HILBERT COVERS.

Implementation of our test leads to interesting new examples, among them: cones that
have a HILBERT PARTITION but no REGULAR one; a 4-dimensional cone with unimodular
facets that has no HILBERT PARTITION; and two 5-dimensional cones that do not have
any BINARY HILBERT COVER.

1 Introduction

The geometry of rational polyhedral cones and their Hilbert bases is of basic importance for
subject areas that range from Integer Programming to Algebraic Geometry. So, Seb&’s [12]
HIiLBERT COVER conjecture posed in 1990 was motivated by considerations from Combina-
torial Optimization; the first counterexample to the slightly stronger HILBERT PARTITION
conjecture was given in the setting of Toric Varieties by Bouvier & Gonzalez-Sprinberg [2].

Similarly, Seb6’s main result, asserting that in dimension 3 REGULAR HILBERT PARTI-
TIONS exist, was rediscovered and reproved by Aguzzoli & Mundici [1] as well as by Bouvier
& Gonzalez-Sprinberg [3], who added an important uniqueness result.

Despite these investigations from different directions and with different motivations, a
number of central questions remains open, among them, in particular, Seb6’s HILBERT COVER
and INTEGRAL CARATHEODORY conjectures.

This note has three parts:
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1. We present a refinement of Sebd’s hierarchy that characterizes the covering properties
of a rational cone with respect to the unimodular subcones spanned by Hilbert basis
elements.

2. For two of the entries in this hierarchy we present characterizations that lead to compu-
tational procedures. Namely, the existence of a HILBERT PARTITION (as considered by
Sebd) can be checked by solving an integer programming problem (see also [7]), while
the existence of a BINARY HILBERT COVER (a new concept) is reduced to the solution
of a linear system of equations over GF(2).

3. Implementations of these computational test yield three new types of examples. So, we
show that the Ohsugi-Hibi examples without a REGULAR HILBERT PARTITION do in fact
have HILBERT PARTITIONS. We provide examples of simplicial cones in dimension 5 that
do not have a BINARY HILBERT COVER, thus getting further than ever on the search for
counterexamples in Sebd’s hierarchy. And, we have an especially nice example of a cone
in dimension 4, which has the hyperplane property (the Hilbert basis is “at height 1”)
and unimodular facets, and which has a BINARY HILBERT COVER, but no HILBERT
PARTITION.

2 Definitions and the Hierarchy

All the cones that we consider in the following are the following, C' C R"” will always be a
pointed, rational, polyhedral cones, that is, sets of the form

C = cone{a',...,a™} = {Ma'+...+XamER": N; ERN; >0fori=1,...,m}

for some rational vectors a!,...a™ € R” such that {0} is the largest linear subspace of C. A
finite set of integer vectors h',...,h* is a Hilbert basis of C if each integral vector in C' is a
nonnegative integral combination of {h',... h*}, that is, if

CNZ = {Mh + ..+ MAFeR : N €Z, N >0fori=1,...,k}.

The existence of a Hilbert basis for every cone was first established by Gordan (1873); van
der Corput (1931) showed that the minimal Hilbert basis for pointed cones is unique: it is the
finite set of nonzero integral vectors in C' that cannot be represented as a sum of two vectors
of the same kind — see Schrijver [13]. In the following, we will exclusively refer to minimal
Hilbert bases. We will denote the minimal Hilbert basis of C' by H = H(C).

The focus of this paper is to study the coverings of C' by certain families of simplicial
subcones, that is, by cones C',..., C" that are subsets of C.

Definition 1 (Interior facets; generic points)
Let C = {C',...,C"} a set of subcones of a cone C. We call a facet F of a subcone C'
an interior facet if F ¢ 0C, where 0C denotes the boundary of C. We will enumerate as
F:={F!, ..., F%} the set of all interior facets of the cones in C.

A point gy € int (C) is called a generic point (with respect to C) if is not contained in the
boundary of any of the subcones C?, that is, if gg € int (C) \ U;Zl Fi,

Definition 2 (The Cover Hierarchy)
Given any rational polyhedral pointed cone C and a finite family of subcones C = {C',...,C"}
each of the following properties implies the previous one.



COVER: C is a cover of C if every point of C' is contained in one of the subcones C?, that is,
ifC=U,_, C"
BINARY COVER: C is a binary cover of C if

(i) every generic point go € C is contained in an odd number of subcones C?, and
(ii) every interior facet FV is a facet of an even number of subcones C”.

PARTITION: A cover C is a partition if the intersection of any two subcones C* N C* is a face
of both cones, that is, if C forms a polyhedral complex.

REGULAR PARTITION: C is a regular partition if additionally the complex is given by the
domains of linearity of a piecewise linear convex function on C.
(For details on this concept see Sturmfels [14, Chap. 8] and Ziegler [15, Chap. 5].)

BINARY COVERS have a homological interpretation: they correspond to generators for simpli-
cial homology with GF(2) coefficients, that is, to generators of the relative singular homology
group H"~1(C' N H,0C N H; GF(2)), where H is an affine hyperplane such that C N H is a
bounded, (n — 1)-dimensional polytope.

A cone C' C R” is simplicial if it is generated by a linearly independent set of vectors.
A simplicial cone C' is unimodular if it is generated by a subset of basis of the lattice Z",
that is, if C = cone{a',...,a*} C R® for some set {a',...,a”} of integral vectors with
|det{al,...,a"}| = 1.

Proposition 3 (The Hilbert Cover Hierarchy)
Let C C R™ be an n-dimensional pointed rational polyhedral cone, and let U = {C",...,C*}
be the (finite) set of all n-dimensional unimodular subcones of C that are generated by a subset
of the Hilbert basis H = H(C).

Each of the following properties of C' implies the following ones.

REGULAR HILBERT PARTITION: Some subset C C U is a reqular partition of C.
HILBERT PARTITION: Some subset C CU is a partition of C.

BINARY HILBERT COVER: Some subset C CU is a binary cover of C.
HIiLBERT COVER: U is a cover of C.

INTEGRAL CARATHEODORY PROPERTY: Ewvery integral vector x € C N Z"™ can be written
as a nonnegative integral combination of at most n elements of the minimal Hilbert

basis H(C).

Incidentally, it seems that the Algebraic Geometry discussion started at the “high end” of
this hierarchy, where the existence of a REGULAR HILBERT PARTITION is equivalent to the
existence of a smooth projective torus-invariant resolution of the associated affine toric variety,
see [2, 3].

In contrast, the Combinatorial Optimization motivation starts with the INTEGRAL CARA-
THEODORY PROPERTY at the “low end” of the hierarchy. Thus, Sebd’s [12] “Conjecture A”
states that every cone C has the INTEGRAL CARATHEODORY PROPERTY: we call this the IN-
TEGRAL CARATHEODORY CONJECTURE. The stronger “Conjecture B” states that every cone
C has a HILBERT COVER: we call it the HILBERT COVER CONJECTURE. Both conjectures
are still open, but we contribute here as main (negative) results that



e In dimension n = 4, there are cones that have a BINARY HILBERT COVER, but no
HILBERT PARTITION: see Example 8.

e In dimension n = 5, there are cones that have no BINARY HILBERT COVER, but which
seem to have HILBERT COVERS: see Example 11.

e In dimension n = 10, there is a cone that has a HILBERT PARTITION, but no REGULAR
HILBERT PARTITION: see Example 12

(From any of these examples, it is easy to derive similar ones in any higher dimension.)

On the positive side, Seb§ [12, p. 447] observed that for n < 3 one always has a HILBERT
PARTITION. In fact, we know that there is even a REGULAR HILBERT PARTITION for n < 3,
which is essentially unique.

Our goal was to test the properties of the Hilbert hierarchy for concrete examples. For
this, the following section develops a Integer Programming model that in practice is quite
effective for testing the HILBERT PARTITION property. While the HILBERT COVER property
seems quite difficult test algorithmically, we find that the BINARY HILBERT COVER property,
which interpolates between HILBERT PARTITION and HILBERT COVER, is easy to test: in the
following we reduce it to the solution of a linear system of equations over GF(2).

3 Characterization Theorems

In this section we present characterizations of BINARY COVERS and PARTITIONS that yield
algorithmic approaches for computing such covers.

The following characterization of partitions and the integer programming formulation
that we derive from it in Corollary 5 can also be derived from De Loera, Hosten, Santos &
Sturmfels [7]. Namely, our Integer Programming formulation yields a face of the polytope Q4
of all triangulations as considered by [7]. That is, we get our inequality system of Corollary 5
from @ 4 by adding the constraints z, = 0 for all cones o ¢ C to the description of Q4 given
in [7] that uses the “chamber equation.” With this, Theorem 4 is a combination of results
from [7, Sect. 3].

Theorem 4 (Characterization of PARTITIONS)
Given a cone C C R™, a system of subcones C = {C',... C"}, the set F = {F',...,F*} of
their interior facets, and a generic point go, the following statements are equivalent:

1. C defines a PARTITION of the cone C'

2. go is contained in exactly one of the subcones C®, and whenever FI € F is a facet
of C* € C (which is interior for C), there is a unique second subcone C' € C with
CkNC' = FJ such that FJ is a facet of C'.

3. go is contained in exactly one of the subcones C*, and all interior facets FI are the
facets of an even number of CJs, with “the same number of subcones C7 on both sides.”

Proof. (1)=-(2) and (2)=-(3) are clear.

(3)=(1): The set |J; , dC" is closed and (n — 1)-dimensional, thus the set G of all generic
points is open and dense in C. By construction all the points in any connected component
of G are contained in the same number of subcones C".

Claim 1: Every generic point g € G is contained in exactly one subcone C*.



In any small neighborhood U.(g) that is contained in G we find a generic point ¢ € U.(g)
such that the interval

(90,9 :=={z € C:x=Ago+ (1 -X)g50< A< 1}

is in gemeral position, that is, such that it contains only a finite number of nongeneric points,
where it crosses facets of subcones (that is, it does not intersect any faces of subcones of
dimension d < n — 1). The nongeneric points of this interval define a segmentation of [go, ¢']
into finitely many subintervals and we see by moving from one interval to the next that the
interior of each such subinterval is contained in exactly one subcone C".

In particular, the point ¢’ is contained in exactly one subcone, and thus the same is true for
the point g, since ¢’ and g lie in the same connected component of G. O

(Our figure illustrates the situation, by representing an affine section of a 3-dimensional cone.
Only the triangles that meet the line ¢'g are drawn. They meet face-to-face.)

Since G is dense in (', Claim 1 also implies that the set C is a cover of C. Now we will
show that this cover also is a partition, that is, the intersection of any two subcones is a face
of both. For this we note that by Claim 1 the intersection of any two subcones is of dimension
at most n — 1: otherwise the intersection would contain generic points that are covered at
least twice.

Claim 2: Let C* be one of the subcones, let  be a point in the boundary of C*, and let
F C C" be the smallest face of C* that contains z, such that x is in the relative interior of F.
Then every small enough convex open neighborhood U = U, (x) has the property that U N C
is covered by the subcones C* that have F as a face.

The proof of this claim is analogous to the argument for Claim 1, with the additional obser-
vation that for & small enough all faces of C? that meet U must have F as a face, and the
same is true for the chain of subcones C7 that arises in the argument of Claim 1. O

To complete the argument, assume that there are two cones C* and C* such that the
intersection S := C*NC* is not a face of C*. There is a smallest face F of C that contains S,
given as the intersection of all faces of C* that contain S. In particular, S contains some
relative interior point of F', which we take as the point . Now the subcones that contain x
and have F as a face cover a small neighborhood of . Thus, since C¥ contains z, it either has
F as a face, or it has a full-dimensional intersection with a subcone that has this property.
In either case we get a contradiction. a



For more details see [5]. Using an integer programming algorithms, this characterization
allows one to test the existence of HILBERT PARTITIONS, and to find one if they exist.

Corollary 5 (IP formulation)
Let C C R be a cone as before, H = {h',... h*} the minimal Hilbert basis of C, U =
{C,...,C"} the set of all unimodular subcones spanned by elements of the Hilbert basis,
F ={F',... Fs} the set of their interior facets, and gy € C a generic point.

Then the HILBERT PARTITIONS of C' are in bijection with the feasible solution of the
integer program

. r r —
min ijl T; ijl Myjz; = 1
Zr 1ijj =0 for1<i<s
]:
' {0,1}  for1<j<m,

m

Lj

via .
xr +— C*:={C"el:xz; =1}
For this the matriz M € Z(1+9)x7 s given by

~ 1 - €y,
My = { 9o

0 : otherwise,

W, = { det(hit, ... i, ..., hin) - if F s a facet of €7,
0 : otherwise

for 1 <i<sandl <j<r, where the subcone C7 is given by C7 = cone{h®,... hi»} € C,

and F' is one of its facets, represented as F* = cone{hil, ... ,};E, e hi“} e F, withl <t <n.

(Since all subcones are unimodular, the nonzero entries in the matriz M are +1 or —1,

depending on position of the subcones in relation to the inner facets.)

Proof. The first equation guarantees that the generic point gy is in exactly one subcone. For
every interior facet the system has a corresponding equation, which models the requirement
that each inner facet must be in an even number of subcones, with “the same number on both
sides”. Thus by (1)<(3) of Theorem 4 the sets C* C U given by the characteristic vectors z of
solutions are the HILBERT PARTITIONS. The objective function selects a HILBERT PARTITION
with the minimal number of unimodular subcones. a

Theorem 6 (Characterization of BINARY COVERS)
Given a cone C C R", a system of subcones C, the set F of interior facets and a generic
point gy as above, the following statements are equivalent:

1. The set C is a BINARY COVER of the cone C'

2. go is contained in an odd number of subcones C*, and all inner facets F7 are the facets
of an even number of subcones CY.

Proof. (1)=-(2): This is the definition of a binary cover.

(2)=(1): The proof is the same as for Claim 1 in Theorem 4 above: we obtain that if g
is covered an odd number of times, then every generic point ¢ € G is contained in an odd
number of subcones C". N



Corollary 7 (GF(2) formulation)
Let C C R™ be a cone as above, U = {C',... ,C"} the set of all unimodular subcones spanned
by elements of the Hilbert basis, F = {F',... F*} the set of all interior facets, and go € C a
generic point.

Then the BINARY HILBERT COVERS of C are in bijection with the feasible solutions x €
(GF(2))" of following linear system of equations over GF(2):

r
ijl Mojzj = 1

Zr  Mijz; = 0 for1<i<s
J:
; GF(2) for1<j<r

m

L
via .
r +— C*={C"el:z; =1}

Here the matriz M € (GF(2))9)%7 is given by

__ 1 go € Cja
Moj = { 0 otherwise,
M 1 if F' is a facet of CJ,
v 0 otherwise,

for1<i<sandl1 <j<r.

Proof. By definition of the matrix, the first equation models that the generic point gg is in
an odd number of subcones, and the other equations represent that every interior facet is an
even number of subcones. By Theorem 6 the sets C* C U derived from the solutions x of this

system define the BINARY HILBERT COVERS. 0
4 Examples
In the following examples, “C' := cone M” for a matrix M € Z™*™ denotes the (rational,

polyhedral, pointed) cone spanned by the rows of the matrix M. In particular, in our first
examples we have m = n, and thus C' is a simplicial cone whose determinant is given by the
determinant of M. To use even more of a shorthand, we use

1 0 - 0 0
o 1 -- 0 0
Clay,a9,...,a,] = cone | + 1 - : :

o o0 -- 1 0

ap a2 -+ Gp-1 Qn
to denote the cone spanned by the first n — 1 unit vectors together with a = (aq,...,a,) € Z™
For a, > 0 this is a simplicial cone of determinant a,,. The condition that gcd (a;, a,) = 1 for
1 <14 < n is equivalent to the fact that all the facets of C[ay,...,a,] are unimodular.

In the following examples, we have tested the existence of HILBERT PARTITIONS via
Corollary 5, using CPLEX! to solve the integer programs that arise. The existence of BINARY

LCPLEX Linear Optimizer 4.0.8 with with Mixed Integer & Barrier Solvers; ©CPLEX Optimization, Inc.,
1989-1995



HiLBERT COVERS was tested via Corollary 7, using our own implementation of a Gauss
algorithm to solve the linear systems of equations over GF(2) that arise from it.

The saga of counterexamples in this field starts with C[1,4,3,7], the example of Bouvier
& Gonzalez-Sprinberg [2, 3] from 1992, of a 4-dimensional cone that does not have a HILBERT
PARTITION. A slight simplification yields the following.

Example 8 (No HILBERT PARTITION)
The 4-dimensional cone C[1,2,3,5] does not have a HILBERT PARTITION, but it does have a
BiNARY HILBERT COVER.

However, Lagarias & Ziegler [8] now have infinite classes of cones that have BINARY
HIiLBERT COVERS but no HILBERT PARTITION. Thus we here only present an especially nice
example found in our search: a 4-dimensional cone whose facets are unimodular.

Definition 9 (Hyperplane property; parallelotope cones)
An n-dimensional cone C' C R™ has the hyperplane property if its Hilbert basis H(C) is
contained in a hyperplane H(C). Neccessarily this hyperplane must be spanned by the integer

generators of the cone. For cones of the form C' = C[a!,...,a"] this hyperplane is given by
H(C) = {s€R" :m+...+m, + —@fatontly — gy

The hyperplane property is of algebraic interest, since it corresponds to the fact that the
corresponding monoid ring is normal. (See e. g. Bruns et al. [4].)

A simplicial cone C' = cone {b',...,b"} C R is a parallelotope cone if all the non-zero
integer points in the half-open parallelogram spanned by the generating vectors

par(C) == {Mbl 4. FMDER:0< N\, <1fori=1,...,n}

belong to the Hilbert basis, that is, if we have |H| = det(C) +n —1. (So they are parallelotope
cones in the terminology of Liu [9].)

We have searched for cones of the form C[ay, a2, a3, as] with the conditions that 0 < a; <
as < az < ag —1 < 100, ged (a1, ag,a3,a4) = 1, and with the hyperplane property: We found
10 such cones without a HILBERT PARTITION. All of them have a BINARY HILBERT COVER.
Only one of them has unimodular facets:

Example 10 (No HILBERT PARTITION, hyperplane property, unimodular facets)
The 4-dimensional simplicial cone C[14,31,34,39] has a BINARY HILBERT COVER, but no
HILBERT PARTITION. (Its Hilbert basis has |H| = 12 elements; it spans r = 161 unimodular
subcones.) It has the hyperplane property. All its facets are unimodular.

Our extensive search in dimension 4 did not produce any examples of simplicial cones
without a BINARY HILBERT COVER. Thus we also investigated this problem in dimension 5
with cones of the form Clay,as,a3,a4,as), where a € Z°, 0 < a1 < as < a3 < ag < a5 — 1
and ged (a1, a9,a3,a4,a5) = 1. Our analysis of all such cones with determinant at most 20
(a5 < 20) we found 10 without a BINARY HILBERT COVER. Up to unimodular equivalence
these cones give two distinct examples.



Example 11 (No BINARY HILBERT COVER)
The 5-dimensional simplicial cones

Cy:=C[2,3,5,13,19]  and  Cy:=C[2,5,11,13,19]

have no BINARY HILBERT COVER. Both of them have determinant 19, and both have a Hilbert
basis of cardinality 23, so they are parallelotope cones. All their facets are unimodular. C
has r = 7059 unimodular subcones, Cy has r = 7106 of them.

Currently, we do not know whether these cones do satisfy any of the weaker properties —
but computational tests with millions of random points suggest that they do have a HILBERT
COVER, and thus in particular that they satisfy the INTEGER CARATHEODORY PROPERTY.

Ohsugi & Hibi [10, 11] produced two non-simplicial cones of dimensions 10 and 20, for
which they could show that they are normal (which implies the hyperplane property), and
that they have no REGULAR HILBERT PARTITION.

Example 12 (A HILBERT PARTITION, but no REGULAR HILBERT PARTITION)

The following 10-dimensional non-simplicial cone has a HILBERT PARTITION, but no REGU-
LAR HILBERT PARTITION. This cone is generated from a graph on 10 vertices by associating
with the edge {i,j} the generator h =e; +e; +eig if 10 & {i,7}, and h = e; + e; otherwise.

—_
o

C := cone

—_ O OO OO0 MEOOO M-
OO OO R ODOOHHOOOOoO -

O OO H OODOHOOODOHFFHEO
OO R OOO R OOOOHFHEFEOO
ORF OO O R OOOOM=ME=OOO
OO OO R OOOOM=OOO OO
O OO HOODOOHHOOOOoOo

OO H OO ODOHOODODODODO OO
O H OO OOHOOOOOOoO OO
o e e e e e e e e e e e e

This cone has the property that the 15 generators (i. e., the rows hy,...,hi5 of the matriz)
form the complete Hilbert basis. In particular, the cone has the hyperplane property, with
H(C) = {z € R : 215 = 1}). Ohsugi & Hibi [10] have shown that there is no reqular
unimodular triangulation for this cone. (Their Grébner basis proof can be translated into a
simple geometric argument.)

The HILBERT PARTITION found by CPLEX for this example provides a triangulation
containing 56 unimodular subcones (out of r = 1202), and thus the polytope C' N H has
(normalized) volume 56. This coincides with the normalized volume computed by Ohsugi &
Hibi from the Grobner basis of the associated monomial ideal.

A detailed analysis of Ohsugi & Hibi’s example yields more remarkable properties. In
particular, De Loera confirmed the existence of a HILBERT PARTITION for this example using
his program PUNTOS [6], and he has analyzed the complete set of triangulations without
new vertices of the polytope C'N H:



e the triangulation with 56 facets is unique (up to symmetry); it is non-regular, but it
can be connected to a regular tringulation by one single “flip,”

e not only the maximal number of facets in a triangulation without new vertices (56)
cannot be achieved by a regular triangulation; also the triangulation with the minimal
number of simplices (46) is unique, but not regular: all regular triangulations have at
least 48 simplices.

Subsequently, Ohsugi & Hibi [11] found another example of the same type, a 20-dimensional
0/1-cone with 24 generators, for which they found that it does not have a REGULAR HILBERT
PARTITION. It is derived in the same way as their first example, from the following graph.

12 20 19 18

Again, using Corollary 5 we determined that the cone does have a HILBERT PARTITION: the
example turns out to have r = 4617 unimodular cones spanned by the Hilbert basis, 307 of
which appear in the solution. (CPLEX had not difficulties with the integer programming
problem. The example is too large for PUNTOS.)
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