
Shellability of complexes of treesHenryk Trappmann G�unter M. Ziegler�Dept. Mathematics, MA 6-1Technische Universit�at Berlin10623 Berlin, Germany[henryk,ziegler]@math.tu-berlin.deAugust 14, 1997We show that for all k � 1 and n � 0 the simplicial complexes T (k)n of all leaf-labelledtrees with nk + 2 leaves and all interior vertices of degrees kl + 2 (l � 1) are shellable.This yields a direct combinatorial proof that they are Cohen-Macaulay and that theirhomotopy types are wedges of spheres.Introduction.A very interesting abstract simplicial complex T (k)n has faces in bijection with the trees withat most n interior vertices, all of which have degrees at least k+2 and congruent to 2 mod k,and whose leaves are labelled by the distinct integers in f0; 1; : : : ;mg, where m+1 := nk+2is the number of leaves (n � 0, k � 1). Thus the facets of T (k)n correspond to the leaf-labelled trees with n interior vertices of degree exactly k+2, while the vertices of the complexcorrespond to the trees with exactly one interior edge, and two internal nodes of degrees kl+2and k(n � l) + 2, with 1 � l � n � 1. The partial order on these trees that is induced bycontraction of interior edges corresponds to inclusion relation between faces of the complexT (k)n . The complex T (k)n has Pn�1i=1 � mki+1� vertices. Its dimension is n� 2.For example, for n = 3 and k = 2 we obtain a 1-dimensional simplicial complex (i.e., agraph) with �73�+�75� = 56 vertices corresponding to graphs with one interior edge as depictedon the left of our picture, and 12�82��63� facets (graph edges) as depicted on the right.
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For k = 1, the complex T (1)n triangulates the \space of fully grown trees" of Boardman [5];see Adin & Blanc [1] for a recent appearance of this space in a homotopy theory setting.From a representation theory point of view, the complex T (k)n has an interesting actionof Sm+1, which induces an interesting representation of Sm+1 on the homology of T (k)n . Forthis purpose it was determined that� for k = 1, the complex T (1)n has the homotopy type of a wedge of n! (n � 2)-spheres(Robinson [8, 9]).� also for k > 1, the spaces T (k)n are Cohen-Macaulay; Hanlon's proof [6] has two parts:(i) all the links in a tree complex are themselves joins of tree complexes, and(ii) T (k)n has the homotopy type of a wedge of (n � 2)-spheres: Robinson's topologicalargument can be extended to the case k > 1, according to J.-L. Loday (unpublished).In this context a combinatorial argument for the shellability of the simplicial complexes T (k)nis desirable (see [6, p. 305]!), since from this one obtains� the homotopy type (as a wedge of spheres),� the Cohen-Macaulay property (over Z),� and the homology (whose rank is the number of spheres in the wedge, i.e., the dimensionof the representations studied).In this note we provide a shellability proof.(Note: Hanlon [6] works with the order complex �(L(k)n ) of the face lattice L(k)n of T (k)n ,which is the barycentric subdivision of the complex T (k)n that we study in this paper. Thusshellability of T (k)n implies \dual CL" shellability, cf. [4], of Hanlon's complex �(L(k)n ). It alsoimplies Cohen-Macaulayness of T (k)n , which is equivalent to that of �(L(k)n ).)Additionally we obtain, in the last section, an explicit set of �(k)n facets that yields a basisfor the (co)homology of the complex T (k)n . This basis is equivalent to the basis constructedby Hanlon & Wachs [7, Sect. 2] for the multiplicity-free part F [1] of the free Lie k-algebra.(With hindsight, one might perhaps have guessed the correct way to shell T (k)n from theconstructions of [7, p. 218]?)For small n and for small k, we derive explicit formulas for the dimensions �(k)n :�(1)n = n! �(2)n = �(2n)!2nn! �2 �(k)1 = 1 �(k)2 = �2k + 1k �� 1:Reverse lexicographic order.For the following k � 1 and n � 0 are �xed integers. We use the notation [n] for f1; 2; : : : ; ng.The symbol � denotes strict inclusion of (�nite) sets. The set of all subsets of V is writtenas 2V , while �Vr � is the collection of all r-element subsets of V . On �nite sets (of integers),we use � to denote the reverse lexicographic total order de�ned byA � B :() max((AnB) [ (BnA)) 2 B:We will use only two (obvious) properties of this order:A � B =) A � Bmax(A) < max(B) =) A � B;so any other order that satis�es these two properties would also be �ne for our purposes.2



Simplicial complexes and shellings.All the complexes that we consider are �nite, abstract, pure simplicial complexes representedby their collections of facets.De�nition 1 Let C be a pure simplicial complex (given by a �nite collection of �nite sets ofthe same cardinality, the facets of C).A shelling of C is a linear order \<" on the set of facets such that for any two facetsC 0 < C there is some facet C 00 of the complex as well as an element x 2 C such that(S1) C 00 < C,(S2) x =2 C 0, and(S3) Cnx � C 00.The three conditions of this de�nition imply thatC 0 \ C = (C 0nx) \ C = C 0 \ (Cnx) � C 0 \ C 00 � C 00and hence(S1�) C 0 \ C � C 00 \ C,(S2�) C 00 < C, and(S3�) C 00 di�ers from C in only one element, C 00nC = fxg,which are the conditions that are usually used to de�ne shellings [3, 4]. Conversely, if we haveC 00 < C such that C 0 \ C � C 00 \ C and C 00nC = fxg, then the conditions (S1) to (S3) arealso satis�ed.Leaf-labelled trees.Let T be a k-tree of size n: a tree with n interior (non-leaf) vertices, each of degree exactlyk + 2. Such a tree has n� 1 interior edges and nk + 2 leaf edges. Our trees are leaf-labelled:their m+ 1 := nk + 2leaf vertices (of degree 1) are injectively labelled by nonnegative integers, where one leaf musthave the label 0.We associate with every edge e of T the set l(e) of labels of all the leaves that e separatesfrom the leaf labelled 0. Thus l(e) is a subset of M . By bL(T ) we denote the set of all edgelabels of T : this includes the sets fig (i 2 M) and M of sizes 1 or m associated to the leafedges, as well as the n � 1 sets l(e) of sizes 1 < jl(e)j < m associated to the interior edgesof T . Let L(T ) be the collection of label sets of interior edges, such thatbL(T ) = L(T ) ] ffig : i 2Mg [ fMg:In the following, T (k)(M) denotes the (�nite) set of all k-trees of size n whose set of leaf-labels is f0g ]M . Thus, in particular, T (k)n := T (k)([m]) is the abstract simplicial complexdescribed in the introduction.Our next �gure shows an example tree for k = 1 and n = 3, withm+1 = 5 leaves. Its labelsets are L(T ) = ff1; 2; 4g; f1; 2gg and bL(T ) = ff1g; f2g; f3g; f4g; f1; 2; 3; 4g; f1; 2; 4g; f1; 2gg.3



In the �gure the edge labels are shown without set brackets:
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The edge labels of a leaf-labelled k-tree allow one to reconstruct the tree uniquely | thisis an important observation that allows us to describe and handle trees in terms of (only)their label sets.Every k-tree with more than one edge can be decomposed into k + 1 subtrees, which aretrees of their own: If M0; : : : ;Mk are the (disjoint!) maximal sets in bL(T )nfMg, then thesubtrees are given by bL(Ti) = fN 2 bL(T ) : N �Mig = bL(T )\ 2Mi . We will always order thek + 1 subtrees by using reverse lexicographic order on their labels sets, that is, the subtreesT0; : : : ; Tk are named such that their label sets M0;M1; : : : ;Mk satisfy M0 � : : : �Mk.Our next �gure displays the tree (with M = [4]) that we have looked at before. It is nowdisplayed with the leaf labelled 0 as the root at the top, and with the k + 1 subtrees at eachinterior node displayed left-to-right (here we have k = 1, with M0 = f3g and M1 = f1; 2; 4g):
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0T : which splits intothe followingtwo subtrees: T1: T2:
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Tree complexes.By bT (k)(M) we denote the complex of edge label sets of k-trees with label set f0g[M , whileby T (k)(M) we denote the complex of interior label sets of k-trees with label set f0g [M :T (k)(M) := fL(T ) : T is a k-tree with leaf-labels f0g [MgbT (k)(M) := fbL(T ) : T is a k-tree with leaf-labels f0g [Mg:Deletion of label sets from L(T ) corresponds to contraction of interior edges of T . Thusthe faces of the complex T (k)(M) can be identi�ed with the set of all leaf-labelled trees withlabel set f0g [M and with all vertex degrees � 2 mod k, ordered by contraction.Since the label sets of leaf edges are the same for all trees with the same label set f0g[M ,we �nd that the complex bT (k)(M) is just a multiple cone over the complex T (k)(M).N � M can occur as an edge label for a tree in bT (k)(M) if and only if jN j � 1 mod k.Thus bT (k)(M) is a simplicial complex of dimension n(k + 1) on Pi�0 � mki+1� vertices. Thecomplex T (k)(M) has m+ 1 vertices less, but only dimension n(k + 1)� (m+ 1) = n� 2.4



Theorem 2 For any k � 1, n � 1 and any label set M � N of size m = nk + 1, the setfamilies T (k)(M) and bT (k)(M) are the facet systems of shellable simplicial complexes.Cone vertices are irrelevant for shellings, so bT (k)(M) is shellable if and only if T (k)(M) isshellable. For convenience we work with the complex bT (k)(M) when proving Theorem 2 inthe following.Shelling.Now we simplify the notation by identifying each tree with its set of labels, that is, by writingT instead of bL(T ).De�nition 3 The linear order \<" on bT (k)(M) is trivial on bT (k)(fig). For jM j > 1 and dif-ferent trees T 0; T 2 T (k)(M), let T 00; : : : ; T 0k and T0; : : : ; Tk denote the corresponding subtrees.We de�ne recursively: T 0 < T :() ( M 0j �Mj orM 0j =Mj and T 0j < Tj;where j := maxfi : T 0i 6= Tig is the index of the rightmost subtree in which T and T 0 di�er.Our example shows two trees T 0; T 2 bT (k)([4]) with k = 1. We have j = 1 with M 01 =f4g � f1; 2; 4g =M1, and hence T 0 < T :T 0: T :<
2 13

3

4

1234

1

123

4

2

1 3

0

12

1

1234

2

4

3 124

0

3

1

4

2Theorem 4 For all k � 1 and n � 1, the linear order < is a shelling order for bT (k)(M).Proof. For jM j = 1 this is trivial. Thus we assume that T 0 < T , where T 0 and T split intosubtrees as above.Case 1: M 0j < Mj. We �rst verify three claims (a)-(c).(a) j > 0: This holds since M 00] : : :]M 0k and M0] : : :]Mk are partitions of the same set M .(b) Mj is not the label of an edge of T 0: Otherwise we would have some i with Mj � M 0i .But the setsMi are ordered by their maximal elements, so max(Mj) = max(M 0j) by de�nitionof j. This would imply i = j and Mj �M 0j, and hence Mj �M 0j , which cannot be.(c) In particular, we have jMj j > 1.With (a)-(c) we have veri�ed all we need for the exchange step. From T , we will exchangethe element x := Mj. By (c) this is not the label of a leaf edge, so Tj is composed of k + 1maximal subtrees; let Tj:k denote the right-most subtree of Tj, that is, the subtree withmax(Mj:k) = max(Mj). 5



We construct T 00 from T by removing the edge label set Mj, and adding the set M 00j�1 :=(MjnMj:k) [Mj�1. That is, the tree T 00 is obtained from T by exchanging the subtree Tj:kby the subtree Tj�1. This subtree exists, since we know j > 0, by (a). The new tree T 00will again be composed of k + 1 subtrees, where M 00j contains the largest element of Mj, andM 00j�1 contains (the largest element of) Mj�1, while T 00i = Ti for i =2 fj; j � 1g. This impliesM 00j�1 �M 00j , and our labelling is again \correct" in the sense that we have M 000 � : : : �M 00k .Our next �gure shows the construction of T 00 from T for the above example: here j = 1,the subtree T1 has label set Mj = f1; 2; 4g, its subtree T1:1 (enclosed in a dotted box) withthe highest label consists of just one edge, and has label set M1:1 = f4g, and this is exchangedfor the subtree T0, which has label set M0 = f3g:T : T 00:=)
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Now we can verify the shelling conditions. We have found a new facet T 00 of our complexbT (k)(M), and an element x = Mj of T . This element is not contained in T 0, by (b), so wehave (S2). Condition (S3) is satis�ed by construction. For (S1) we observe that T 00i = Tiholds for i > j, while for the index j we have M 00j �Mj , implying T 00 < T , as required.Case 2: M 0j =Mj, T 0j < Tj.In this case we can exchange within the subtree Tj . In fact, we have T 0j ; Tj 2 bT (k)(M�) forM� := M 0j = Mj. By induction (jM�j < jM j) we get a new subtree T 00j 2 bT (k)(M�) whichsatis�es T 00j < Tj and arises from Tj by a legal shelling exchange, T 00j nN 00j = TjnNj withNj =2 T 0j.Using this we can de�ne T 00 := (TnfNjg) [ fN 00j g. Then we have T 00 < T (S1): becauseof M 0j = Mj again T 00j is the jth subtree of T 00. Also we have Nj =2 T 0 (S2), otherwise wewould have Nj 2 T 0j because of Nj � Mj = M 0j. Condition (S3), TnNj � T 00, is satis�ed byconstruction.Computing the �(k)n .Corollary 5 The geometric realization of T (k)(M) has the homotopy type of a wedge of �(k)n(n� 2)-spheres, jjT (k)(M)jj ' _�(k)n Sn�2; e�(T (k)(M)) = (�1)n�(k)n ;where �(k)n is the number of k-trees with n internal nodes (with label set [m]) for which noneof the internal edges is leftmost. 6



Proof. See Bj�orner [3] [2, Sect. 7.7] and Ziegler [10, Sect. 1] for the homotopy types and thecohomology of shellable complexes. We have to identify the facets T such that for all elements(internal vertices) Mi 2 T , there is some smaller facet T 0 < T such that TnMj � T 0. Now ifj > 0, i. e. if Mj is not a leftmost edge, then we can construct T 0 < T by replacing Tj�1 withthe largest subtree of Tj, as in the previous proof.If j = 0, then a suitable T 0 < T cannot exist: indeed, using induction we may assumethat we are considering the node at the leaf with label 0, that is, M = M0 [ : : : [Mk. Thesets M0; : : : ;Mk label internal edges for both T and T 0; no two of these labels can occur in acommon subtree, since in this case we would get T 0 > T . Thus M1; : : : ;Mk label the stemsof subtrees of T , and the partition property then implies M0 2 T 0: contradiction.The trees where no internal edge is leftmost appear as k-brushes in Hanlon & Wachs [7,De�nition 2.5]. Counting them is equivalent to computing the dimension of the correspondingk-tree representation, and also to determining the dimension of the multiplicity free part F [1]of the free k-ary Lie algebra, by [7, Theorem 2.6]For k = 1 the trees that we get this way are the \right combs" of the form
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and thus �(1)n = (m� 1)! = n!.Proposition 6 For k = 2 we get�(2)n = 12 � 32 � : : : � (2n� 1)2 = �(2n)!2nn! �2:Proof. A 3-brush with n+ 1 internal nodes (and 2(n+1) + 1 leaves) decomposes into threesubtrees, where T0 is just a leaf, T1 has some i internal nodes and 2i + 1 leaves (for some0 � i � n), and T2 has n� i internal nodes and 2(n� i) + 1 leaves: see the �gure below.To determine one particular such tree, we �rst choose i; then there are �2(n+1)2(n�i)� choices forthe leaf-labels of T3, which must include the largest label m, and then there are 2i+1 choicesfor the label of T1 (which can be any but the largest among the remaining labels). Once thelabel sets are chosen, one has �(2)i choices to determine T2 and �(2)n�i choices to determine T3.This yields the recursion�(2)n+1 = nXi=0(2i+ 1)�2(n+ 1)2(i+ 1)��(2)i �(2)n�i = (2(n+ 1))!2 nXi=0 1i+ 1 �(2)i(2i)! �(2)n�i(2(n� i))!for n � 0, with �(2)0 = 1. Using the substitution Gp = 22p(2p)!�(2)p resp. �(2)p = (2p)!22p Gp, thisreduces to 12Gn+1 = nXi=0 1i+ 1GiGn�i7



for n � 0, with G0 = 1. To solve this, we note that Gp = �2pp � �ts the recursion.
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nn+ 1` T2 T3Namely, the number of monotone lattice paths in an n� (n+ 1) grid is �2n�1n � = 12�2n2 �. Bycounting the paths at the �rst edge where they cross the diagonal (at x1 = i), we get12�2n2 � = nXi=0 1i+ 1�2ii ��2(n� i)n� i �;using that the number of subdiagonal lattice paths in an (i� i)-square is the Catalan numberCi = 1i+1�2ii �.For small n, we analogously get �(k)0 = �(k)1 = 1 and�(k)2 = �2k + 1k �� 1:References[1] R. Adin & D. Blanc: Resolutions of associative and Lie algebras, Preprint 1997,13 pages.[2] A. Bj�orner: Homology and shellability of matroids and geometric lattices, in: MatroidApplications (ed. N. White), Cambridge University Press 1992, pp. 226-283.[3] A. Bj�orner: Topological methods, in: Handbook of Combinatorics (eds. R. Graham,M. Gr�otschel, L. Lov�asz), North-Holland/Elsevier, Amsterdam 1995, 1819-1872.[4] A. Bj�orner & M. Wachs: On lexicographically shellable posets, Transactions Amer.Math. Soc. 277 (1983), 323-341.[5] J. M. Boardman: Homotopy structures and the language of trees, in: Algebraic Topol-ogy, Proceedings Symp. Pure Math. 22, Amer. Math. Soc., Providence RI 1971, 37-58.[6] Ph. Hanlon: Otter's method and the homology of homeomorphically irreducible k-trees,J. Combinatorial Theory Ser. A 74 (1996), 301-320.[7] Ph. Hanlon & M. Wachs: On Lie k-algebras, Advances Math. 113 (1995), 206-236.[8] A. Robinson: The space of fully grown trees, Sonderforschungsbereich 343, Universit�atBielefeld, Preprint 92-083, 1992, 5 pages.[9] A. Robinson & S. Whitehouse: The tree representation of �n+1, J. Pure Appl.Algebra 111 (1996), 245-253.[10] G. M. Ziegler: Matroid shellability, �-systems, and a�ne hyperplane arrangements,Journal of Algebraic Combinatorics 1 (1992), 283-300.8


