Shellability of complexes of trees
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We show that for all k¥ > 1 and n > 0 the simplicial complexes 771(]“) of all leaf-labelled
trees with nk + 2 leaves and all interior vertices of degrees kl + 2 (I > 1) are shellable.
This yields a direct combinatorial proof that they are Cohen-Macaulay and that their
homotopy types are wedges of spheres.

Introduction.

A very interesting abstract simplicial complex 771(16) has faces in bijection with the trees with
at most n interior vertices, all of which have degrees at least k + 2 and congruent to 2 mod &,
and whose leaves are labelled by the distinct integers in {0,1,...,m}, where m + 1 := nk + 2
is the number of leaves (n > 0, k¥ > 1). Thus the facets of Tk correspond to the leaf-
labelled trees with n interior vertices of degree exactly k+ 2, while the vertices of the complex
correspond to the trees with exactly one interior edge, and two internal nodes of degrees kl+2
and k(n —1) + 2, with 1 <1 < n — 1. The partial order on these trees that is induced by
contraction of interior edges corresponds to inclusion relation between faces of the complex
7% The complex T has sl (kl"il) vertices. Its dimension is n — 2.

For example, for n = 3 and £ = 2 we obtain a 1-dimensional simplicial complex (i.e., a
graph) with (?7)) + (g) = 56 vertices corresponding to graphs with one interior edge as depicted

on the left of our picture, and %(g) (g) facets (graph edges) as depicted on the right.
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For k = 1, the complex 7}(1) triangulates the “space of fully grown trees” of Boardman [5];
see Adin & Blanc [1] for a recent appearance of this space in a homotopy theory setting.

From a representation theory point of view, the complex 7;Z(k) has an interesting action
of &1, which induces an interesting representation of G,, 1 on the homology of 'ﬁl(k). For
this purpose it was determined that

e for k = 1, the complex 7}(1) has the homotopy type of a wedge of n! (n — 2)-spheres
(Robinson [8, 9]).

e also for k£ > 1, the spaces 7;(]6) are Cohen-Macaulay; Hanlon’s proof [6] has two parts:
(i) all the links in a tree complex are themselves joins of tree complexes, and

(ii) 7;(16) has the homotopy type of a wedge of (n — 2)-spheres: Robinson’s topological
argument can be extended to the case k > 1, according to J.-L. Loday (unpublished).

(k)

In this context a combinatorial argument for the shellability of the simplicial complexes T,
is desirable (see [6, p. 305]!), since from this one obtains

e the homotopy type (as a wedge of spheres),
e the Cohen-Macaulay property (over Z),

e and the homology (whose rank is the number of spheres in the wedge, i.e., the dimension
of the representations studied).

In this note we provide a shellability proof.

(Note: Hanlon [6] works with the order complex A(E%k)) of the face lattice £ of 7;2(k),
which is the barycentric subdivision of the complex 'ﬁl(k) that we study in this paper. Thus
shellability of 7;(16) implies “dual CL” shellability, cf. [4], of Hanlon’s complex A(Eglk)). It also
implies Cohen-Macaulayness of 7;(k), which is equivalent to that of A(Eglk)).)

Additionally we obtain, in the last section, an explicit set of 57(119) facets that yields a basis

(k)

for the (co)homology of the complex 7,"’. This basis is equivalent to the basis constructed

by Hanlon & Wachs [7, Sect. 2] for the multiplicity-free part F[1] of the free Lie k-algebra.

(With hindsight, one might perhaps have guessed the correct way to shell 7}L(k)

constructions of [7, p. 218]?)

from the

For small n and for small k&, we derive explicit formulas for the dimensions ﬂ,gk):
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Reverse lexicographic order.

For the following & > 1 and n > 0 are fixed integers. We use the notation [n] for {1,2,...,n}.
The symbol C denotes strict inclusion of (finite) sets. The set of all subsets of V' is written
as 2V, while (‘r/) is the collection of all r-element subsets of V. On finite sets (of integers),
we use < to denote the reverse lezicographic total order defined by

A<B :<— max((A\B)U(B\A)) € B.
We will use only two (obvious) properties of this order:
ACB = A<B
max(A4) < max(B) — A< B,

so any other order that satisfies these two properties would also be fine for our purposes.



Simplicial complexes and shellings.

All the complexes that we consider are finite, abstract, pure simplicial complexes represented
by their collections of facets.

Definition 1 Let C be a pure simplicial complex (given by a finite collection of finite sets of
the same cardinality, the facets of C).

A shelling of C is a linear order “<” on the set of facets such that for any two facets
C'" < C there is some facet C” of the complex as well as an element z € C such that
(S1) C" < C,
(S2) z ¢ C', and
(S3) C\z C C".

The three conditions of this definition imply that
C'nC=C"\z)nC=C"n({C\z)cC'nc”"cc”

and hence

(S1*)yc'nCccc’"nc,

(S2*) C" < C, and

(S3*) ¢" differs from C' in only one element, C"\C = {z},

which are the conditions that are usually used to define shellings [3, 4]. Conversely, if we have
C" < C such that C'NC C C"NC and C"\C = {z}, then the conditions (S1) to (S3) are
also satisfied.

Leaf-labelled trees.

Let T be a k-tree of size n: a tree with n interior (non-leaf) vertices, each of degree exactly
k 4+ 2. Such a tree has n — 1 interior edges and nk + 2 leaf edges. Our trees are leaf-labelled:
their

m+1 = nk+2

leaf vertices (of degree 1) are injectively labelled by nonnegative integers, where one leaf must
have the label 0.

We associate with every edge e of T the set [(e) of labels of all the leaves that e separates
from the leaf labelled 0. Thus I(e) is a subset of M. By E(T) we denote the set of all edge
labels of T': this includes the sets {i} (i € M) and M of sizes 1 or m associated to the leaf
edges, as well as the n — 1 sets I(e) of sizes 1 < |l(e)| < m associated to the interior edges
of T. Let L(T) be the collection of label sets of interior edges, such that

L(T) = L(T) @ {{i}:ie M}u{M}.

In the following, 7) (M) denotes the (finite) set of all k-trees of size n whose set of leaf-
labels is {0} W M. Thus, in particular, Tk = T®)([m]) is the abstract simplicial complex
described in the introduction.

Our next figure shows an example tree for K = 1 and n = 3, with m+1 = 5 leaves. Its label

sets are L(T) = {{1,2,4},{1,2}} and L(T) = {{1}, {2}, {3}, {4}, {1,2,3,4}, {1,2,4}, {1,2}}.



In the figure the edge labels are shown without set brackets:

The edge labels of a leaf-labelled k-tree allow one to reconstruct the tree uniquely — this
is an important observation that allows us to describe and handle trees in terms of (only)
their label sets.

Every k-tree with more than one edge can be decomposed into k + 1 subtrees, which are
trees of their own: If My,..., My are the (disjoint!) maximal sets in E(T)\{M}, then the
subtrees are given by E(TZ) ={N e E(T) : N C M;} = E(T) N2Mi, We will always order the
k + 1 subtrees by using reverse lexicographic order on their labels sets, that is, the subtrees
Ty, ..., Ty are named such that their label sets My, M1, ..., M, satisfy My < ... < M.

Our next figure displays the tree (with M = [4]) that we have looked at before. It is now
displayed with the leaf labelled 0 as the root at the top, and with the k + 1 subtrees at each
interior node displayed left-to-right (here we have k = 1, with My = {3} and M; = {1,2,4}):

which splits into T
the following 1'
two subtrees:

Tree complexes.

By ?(k)(M ) we denote the complex of edge label sets of k-trees with label set {0} U M, while
by T*)(M) we denote the complex of interior label sets of k-trees with label set {0} U M:

TE(M) = {L(T):T is a k-tree with leaf-labels {0} U M}

T®(M) = {L(T):Tis a k-tree with leaf-labels {0} U M?}.

Deletion of label sets from L(7T) corresponds to contraction of interior edges of 7. Thus
the faces of the complex 7*)(M) can be identified with the set of all leaf-labelled trees with
label set {0} U M and with all vertex degrees = 2 mod k, ordered by contraction.

Since the label sets of leaf edges are the same for all trees with the same label set {0} UM,
we find that the complex 7*) (M) is just a multiple cone over the complex T*)(M).

N C M can occur as an edge label for a tree in 7*)(M) if and only if IN| = 1 mod k.
Thus 7*®) (M) is a simplicial complex of dimension n(k + 1) on Y oiso (kﬁl) vertices. The
complex 7) (M) has m + 1 vertices less, but only dimension n(k +1) — (m +1) = n — 2.



Theorem 2 For any k > 1, n > 1 and any label set M C N of size m = nk + 1, the set
families T®) (M) and T®) (M) are the facet systems of shellable simplicial complezes.

Cone vertices are irrelevant for shellings, so 7*) (M )_is shellable if and only if T®E) (M) is
shellable. For convenience we work with the complex 7*)(M) when proving Theorem 2 in
the following.

Shelling.

Now we simplify the notation by identifying each tree with its set of labels, that is, by writing
T instead of L(T).

Definition 3 The linear order “<” on 7®) (M) is trivial on 7® ({i}). For [M| > 1 and dif-
ferent trees T',T € T®) (M), let T, ... , T} and Ty, . .., T}, denote the corresponding subtrees.

MJ, < Mj or
M;=M; and T; <Tj,
where j := max{i : T} # T;} is the index of the rightmost subtree in which T' and 7" differ.

We define recursively: T' < T : <= {

Our example shows two trees T/, T € T®)([4]) with k = 1. We have j = 1 with M| =
{4} < {1,2,4} = M, and hence T" < T

Theorem 4 For all k > 1 and n > 1, the linear order < is a shelling order for ?(k)(M).

Proof. For |M| =1 this is trivial. Thus we assume that 7" < T, where T” and T split into
subtrees as above.

Case 1: M < M;. We first verify three claims (a)-(c).

(a) j > 0: This holds since MyW...w M, and MyW...w M, are partitions of the same set M.
(b) M; is not the label of an edge of T': Otherwise we would have some ¢ with M; C M.
But the sets M; are ordered by their maximal elements, so max(M;) = max(M]) by definition
of j. This would imply ¢ = 5 and M; C M ]’-, and hence M; < M J’-, which cannot be.

(c) In particular, we have |M;| > 1.

With (a)-(c) we have verified all we need for the exchange step. From T', we will exchange
the element z := M;. By (c) this is not the label of a leaf edge, so T} is composed of k + 1
maximal subtrees; let Tj.; denote the right-most subtree of T}, that is, the subtree with
max (M;.;) = max(M;).



We construct T from T' by removing the edge label set M, and adding the set M} :=
(M;\Mj.;) U M;_,. That is, the tree T" is obtained from T by exchanging the subtree T},
by the subtree T;j_;. This subtree exists, since we know j > 0, by (a). The new tree T”
will again be composed of k + 1 subtrees, where M ]’.' contains the largest element of M;, and
M}_ contains (the largest element of) M;_1, while T;" = T; for i ¢ {j,j — 1}. This implies
M} | < M}, and our labelling is again “correct” in the sense that we have Mg < ... < M}

Our next figure shows the construction of 7" from T for the above example: here j = 1,
the subtree T} has label set M; = {1,2,4}, its subtree T7.; (enclosed in a dotted box) with
the highest label consists of just one edge, and has label set My.; = {4}, and this is exchanged
for the subtree T, which has label set My = {3}:

__ Now we can verify the shelling conditions. We have found a new facet T" of our complex
T®) (M), and an element = = M; of T. This element is not contained in 7", by (b), so we
have (S2). Condition (S3) is satisfied by construction. For (S1) we observe that 7" = T;
holds for i > j, while for the index j we have M} C M;, implying 7" < T, as required.
Case 2: M} = M;, T; < T}.

In this case we can exchange within the subtree T);. In fact, we have TJ'-,Tj € '?‘(k)(M *) for
M* := M} = M;. By induction (|M*| < [M]) we get a new subtree T} € T®) (M*) which
satisfies T;' < T} and arises from T by a legal shelling exchange, T;'\N]' = T;\N; with
N; ¢ Tj.

Using this we can define 7" := (T'\{N;}) U {N}'}. Then we have 7" < T' (S1): because
of Mj = M; again T} is the jth subtree of 7". Also we have N; ¢ T' (S2), otherwise we
would have N; € T} because of N; C M; = M. Condition (S3), T\N; C T", is satisfied by
construction. N

Computing the g*).

Corollary 5 The geometric realization of T (M) has the homotopy type of a wedge of ﬂT(lk)
(n — 2)-spheres,

IT® M)~ \/ sm2 x(T®M)) = (-1)msP,

(k)
n

where ﬂT(lk) is the number of k-trees with n internal nodes (with label set [m]) for which none
of the internal edges is leftmost.



Proof. See Bjorner [3] [2, Sect. 7.7] and Ziegler [10, Sect. 1] for the homotopy types and the
cohomology of shellable complexes. We have to identify the facets T" such that for all elements
(internal vertices) M; € T, there is some smaller facet 77 < T' such that T\M; C T". Now if
J >0, i e. if Mj is not a leftmost edge, then we can construct 7" < T by replacing T;_; with
the largest subtree of T}, as in the previous proof.

If 5 = 0, then a suitable T" < T cannot exist: indeed, using induction we may assume
that we are considering the node at the leaf with label 0, that is, M = My U ... U M. The
sets My, ..., M}, label internal edges for both T and T”; no two of these labels can occur in a
common subtree, since in this case we would get 7" > T. Thus My,..., M} label the stems
of subtrees of T', and the partition property then implies My € T": contradiction. N

The trees where no internal edge is leftmost appear as k-brushes in Hanlon & Wachs [7,
Definition 2.5]. Counting them is equivalent to computing the dimension of the corresponding
k-tree representation, and also to determining the dimension of the multiplicity free part F[1]
of the free k-ary Lie algebra, by [7, Theorem 2.6]

For k£ = 1 the trees that we get this way are the “right combs” of the form

and thus 57(21) =(m—1)!=nl

Proposition 6 For k=2 we get

B2 = 12.32.. . (2n—1)® = <@>2

2nn!

Proof. A 3-brush with n + 1 internal nodes (and 2(n + 1) + 1 leaves) decomposes into three
subtrees, where T is just a leaf, 77 has some i internal nodes and 2i + 1 leaves (for some
0 <i<n), and Ty has n — i internal nodes and 2(n — i) + 1 leaves: see the figure below.

To determine one particular such tree, we first choose 4; then there are (22((22))) choices for
the leaf-labels of T3, which must include the largest label m, and then there are 2i 4+ 1 choices
for the label of T} (which can be any but the largest among the remaining labels). Once the
label sets are chosen, one has 51(2) choices to determine 75 and @(f_)z choices to determine T3.
This yields the recursion

A = Sy (20 D)

1=0

n (2)

@) .2 _ Q2@+ 1 B B2,
B i = 2 Zi—i—l (20)! (2(n —1))!

1=0

for n > 0, with 562) = 1. Using the substitution G, = (22;1;!@(,2) resp. BI(,Z) = (2253’6*,,, this
reduces to

n

1
1 _ . .
Gy = 12—0: 7 0iCnni

7



for n > 0, with Gy = 1. To solve this, we note that G, = (21;”) fits the recursion.

n+1

T T3
Namely, the number of monotone lattice paths in an n x (n + 1) grid is (Q"n_l) =3 (2272) By
counting the paths at the first edge where they cross the diagonal (at 27 = i), we get

1

(20 _ z”: 1 (20 (2(n—1i)

2\ 2 — 1+ 1\ ¢ n—i )’
using that the number of subdiagonal lattice paths in an (i x 7)-square is the Catalan number
Ci=:5(%). 0

For small n, we analogously get ﬁék) = B{k) =1 and
2k+1
6= () -
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