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The Integral Cohomology Algebras ofOrdered Configuration Spa
es of SpheresEva Maria Fei
htner and G�unter M. ZieglerRe
eived: August 12, 1999Communi
ated by Ulf RehmannAbstra
t. We 
ompute the 
ohomology algebras of spa
es of or-dered point 
on�gurations on spheres, F (Sk; n), with integer 
oeÆ-
ients. For k = 2 we des
ribe a produ
t stru
ture that splits F (S2; n)into well-studied spa
es. For k > 2 we analyze the spe
tral sequen
easso
iated to a 
lassi
al �ber map on the 
on�guration spa
e. In both
ases we obtain a 
omplete and expli
it des
ription of the integer 
o-homology algebra of F (Sk; n) in terms of generators, relations andlinear bases. There is 2-torsion o

uring if and only if k is even. Weexplain this phenomenon by relating it to the Euler 
lasses of spheres.Our rather 
lassi
al methods un
over 
ombinatorial stru
tures at the
ore of the problem.2000Mathemati
s Subje
t Classi�
ation: Primary 55M99; Se
ondary:57N65, 55R20, 52C35Keywords and Phrases: spheres, ordered 
on�guration spa
es, sub-spa
e arrangements, integral 
ohomology algebra, �bration, Serrespe
tral sequen
e1 Introdu
tionThe spa
e of 
on�gurations of n pairwise distin
t labelled points in a topologi
alspa
e X , F (X;n) := f(x1; : : : ; xn) 2 Xn jxi 6= xj for i 6= jg � Xn ;is 
alled the n-th (ordered) 
on�guration spa
e of X .A systemati
 study of these spa
es started with work by Fadell & Neu-wirth [FaN℄ and Fadell [Fa℄ in the sixties. They introdu
ed sequen
es ofDo
umenta Mathemati
a 5 (2000) 115{139
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htner and G�unter M. Ziegler�brations for 
on�guration spa
es and mainly 
on
entrated on des
ribing theirhomotopy groups for various instan
es of X . In 1969 Arnol0d [Ar℄ derived theinteger 
ohomology algebra of F (C ; n) | the group 
ohomology of the 
oloredbraid group | and thereby initiated still ongoing resear
h on the 
ohomologyalgebras of 
omplements of linear subspa
e arrangements.Broader interest in the 
ohomology algebras of 
on�guration spa
es 
ame upin the seventies: The 
ohomology of F (X;n) for a manifold X appeared asa basi
 ingredient in the E2-terms of spe
tral sequen
es for the Gelfand-Fuks
ohomology of the manifold [GF℄ and for the homology of 
ertain fun
tionspa
es [An℄. Cohen [C1, C2℄ studied various aspe
ts of the 
ohomology of
on�guration spa
es of Eu
lidean spa
es in view of its relation to homology op-erations for iterated loop spa
es [C3℄. Cohen & Taylor [CT1, CT2℄ des
ribedthe 
ohomology algebras of 
on�guration spa
es of spheres with 
oeÆ
ients ina �eld of 
hara
teristi
 di�erent from 2. Re
ently, 
ompa
ti�
ations of 
on-�guration spa
es of algebrai
 varieties have been 
onstru
ted by Fulton andMa
Pherson [FM℄. As an appli
ation, they determine the rational homotopytype of 
on�guration spa
es of non-singular 
ompa
t 
omplex algebrai
 vari-eties F (X;n) in terms of invariants of X. Compare also work of Kriz [Kr℄ andTotaro [T℄, where alternative minimal models for F (X;n) are used.In 
ontrast to these results on the rational homotopy type of 
on�gurationspa
es, it seems that so far Arnol0d's 
omputation of the integer 
ohomologyalgebra of F (C ; n) remained the only instan
e where the integer 
ohomologyalgebra of an ordered 
on�guration spa
e was fully des
ribed.Re
ently, Raoul Bott asked about the integer 
ohomology algebra of the ordered
on�guration spa
e of the 2-sphere. We are able to answer his question bydes
ribing a produ
t de
omposition for F (S2; n):F (S2; n) �= PSL(2; C ) � M0;n;where M0;n, the moduli spa
e of n-pun
tured 
omplex proje
tive lines, is ho-motopy equivalent to the 
omplement of an aÆne 
omplex hyperplane arrange-ment. We dedu
e that H�(F (S2; n);Z) has (only) 2-torsion that 
an be tra
edba
k to H2(PSL(2; C );Z) �= Z2 (Se
tion 2).For spheres of higher dimension we use spe
tral sequen
es to obtain an analo-gous de
omposition on the level of 
ohomology algebras:H�(F (Sk; n);Z) �= (Z�Z) 
 H�(M(A(k)n�2);Z) for odd k ;H�(F (Sk; n);Z) �= (Z�Z2�Z) 
 H�(M(A�3);Z) for even k ;where M(A(k)n�2) is the 
omplement of a 
ertain arrangement of real linearsubspa
es A(k)n�2 and M(A�3) is the 
omplement of an arrangement of aÆnesubspa
es that is naturally related to the linear arrangement A(k)n�2. For botharrangement 
omplements the integer 
ohomology algebra is torsion-free andwe have expli
it des
riptions in terms of generators, relations and linear bases.In the following all (
o)homology is taken with Z-
oeÆ
ients.Do
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 117The key for our approa
h is a family of lo
ally trivial �ber maps on 
on�gurationspa
es that appears already in the work by Fadell & Neuwirth [FaN℄ andFadell [Fa℄. The maps are given by \proje
tion to the last r points" of a
on�guration. For 
on�guration spa
es of spheres F (Sk; n) and 1 � r < n theproje
tion �r reads as follows:�r = �r(Sk; n) : F (Sk; n) �! F (Sk; r)(x1; : : : ; xn) 7�! (xn�r+1; : : : ; xn) :We derive the integer 
ohomology algebra of F (Sk; n) for k > 2 by a 
ompletedis
ussion of the Leray-Serre spe
tral sequen
e asso
iated to the �ber map�1(Sk; n). Our su

ess with this rather 
lassi
al approa
h depends on the fa
tthat the �bers of �1(Sk; n) are 
omplements of linear subspa
e arrangements.Their 
ohomology algebras are well-studied obje
ts both from topologi
al and
ombinatorial viewpoints [GM, BZ, Bj, DP℄. The �bers of �1(Sk; n) are in fa
tthe 
omplements of 
odimension k versions of the 
lassi
al braid arrangements,and thus they are parti
ularly prominent examples of arrangement 
omple-ments. This paves the way for a 
omplete dis
ussion of the asso
iated spe
tralsequen
e (Se
tion 3).A distin
tion between the 
on�guration spa
es of spheres of odd and evendimension emerges from the only possibly non-trivial di�erential of the spe
tralsequen
e. We present two methods to 
ompute this di�erential (Se
tion 4).(1) It 
an be derived from one parti
ular 
ohomology group of F (Sk; n). Toobtain the latter we use an independent, rather elementary approa
h tothe 
ohomology of 
on�guration spa
es, whi
h may be of interest on itsown right.(2) We show that the di�erential 
an be interpreted as a map that is indu
edby \multipli
ation with the Euler 
lass of Sk." It is well-known that theEuler 
lass depends on the parity of k.To get the �nal tableau of the spe
tral sequen
e, and to derive the integer
ohomology algebra of the 
on�guration spa
e F (Sk; n), we use 
ombinatorially
onstru
ted Z-linear bases for the 
ohomology of the �ber (Se
tion 5).In the last se
tion of this paper we 
onsider the bundle stru
tures on F (Sk; n)given by the �ber maps �r(Sk; n), 1 < r < n. We show that the asso
iatedspe
tral sequen
es 
ollapse in their se
ond terms unless k is even and r equals 1or 2. For some parameters we 
an de
ide the triviality of the bundle stru
ture,whi
h in general is a diÆ
ult question.For 
on�guration spa
es of 
losed manifolds other than spheres, in prin
ipleone 
an attempt to follow the approa
h taken in this paper. However, withthe 
ohomology of the manifold (i.e., of the base spa
e of the 
onsidered �bermap) getting more 
ompli
ated, the 
orresponding spe
tral sequen
e will beless sparse, and thus more non-trivial di�erentials will have to be 
onsidered.Even more importantly, if the manifold is not simply 
onne
ted, then it is notstraightforward, and not true in general, that the system of lo
al 
oeÆ
ientsDo
umenta Mathemati
a 5 (2000) 115{139
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ed by the �ber map is simple. Already the entries of these
ond sequen
e tableau thus will be mu
h harder to 
ompute.A
knowledgment: We are grateful for dis
ussions with Ezra Getzler thatin
uen
ed the 
ourse of these investigations. Also, we wish to thank RaoulBott who asked us about 
onne
tions to the Euler 
lasses of spheres.2 Configuration spa
es of the 2-sphereWe �rst 
omment on some spe
ial 
ases for small values of n and on the 
on-�guration spa
e of the 1-sphere. For n = 1, we see from the de�nition thatF (X; 1) = X for all spa
es X . For n = 2, we 
onsider the proje
tion �1, send-ing a 
on�guration in F (Sk; 2) to its se
ond point. We obtain a �ber bundlewith 
ontra
tible �ber ��11 (x2) = F (Sk nfx2g; 1) �= Rk , hen
e F (Sk; 2) ' Sk.In fa
t, F (Sk; 2) is equivalent to the tangent bundle over Sk.For the 
on�guration spa
e of the 1-sphere, F (S1; n), we state an expli
it triv-ialization of the �ber bundle given by �1, the proje
tion to the last point ofa 
on�guration. Using the group stru
ture on S1 we de�ne a homeomorphismwhi
h shows that �1(S1; n) is a trivial �ber map:'1 : F (S1 n feg; n� 1)� S1 �! F (S1; n)((x1; : : : ; xn�1) ; y) 7�! (yx1; : : : ; yxn�1; y) :For r > 1, the �ber of �r(S1; n) is homeomorphi
 to the spa
e of 
on�gura-tions of n � r points on r disjoint 
opies of the unit interval. We obtain ahomeomorphism'r : F (Ur (0; 1) ; n� r) � F (S1; r) �! F (S1; n)that trivializes the bundle by \inserting" the points x1; : : : ; xn�r from Ur (0; 1)into the r open segments in whi
h the points of the 
on�guration (y1; : : : ; yr)in F (S1; r) separate S1.Compared to 
on�guration spa
es of higher dimensional spheres we gain themain stru
tural advantage for the 2-dimensional 
ase from the fa
t that the2-sphere S2 is homeomorphi
 to the 
omplex proje
tive line CP 1. We willfreely swit
h between the resulting two viewpoints on the 
on�guration spa
ein question.The group of proje
tive automorphisms PSL(2; C ) of CP 1 a
ts freely onthe 
on�guration spa
e F (CP 1; n) by 
oordinatewise a
tion, thus exhibitingF (CP 1; n) as the total spa
e of a prin
ipal PSL(2; C )-bundle for n � 3 [Ge℄.We identify the base spa
e | the spa
e of n-tuples of distin
t points on the 
om-plex proje
tive line modulo proje
tive automorphisms | as the moduli spa
eM0;n of n-pun
tured 
omplex proje
tive lines. Compa
ti�
ations of M0;n andtheir 
ohomology algebras are the fo
us of re
ent resear
h; for a brief a

ountand further referen
es see [FM, p.189℄.Do
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 119Theorem 2.1 The 
on�guration spa
e F (C P 1; n) of the 
omplex proje
tiveline is the total spa
e of a trivial PSL(2; C )-bundle over M0;n for n � 3; hen
ethere is a homeomorphismF (CP 1; n) �= PSL(2; C ) � M0;n :Proof. The automorphism group PSL(2; C ) a
ts sharply 3-transitive on CP 1.In parti
ular, we obtain a homeomorphism between the 
on�guration spa
e ofthree distin
t points on CP 1 and the automorphism group PSL(2; C ):� : F (CP 1; 3) �! PSL(2; C ) :Here (x1; x2; x3) 2 F (CP 1; 3) is mapped to the unique automorphism thattransforms x1 to �10�, x2 to �01�, and x3 to �11�, i.e., to the \standard proje
tivebasis" of CP 1.Given a 
on�guration x = (x1; : : : ; xn) of n distin
t points on CP 1, the groupelement �(x1; x2; x3) transforms x to a 
on�guration on CP 1 that has thestandard proje
tive basis in its �rst three entries. We des
ribe the resulting
on�guration by the 
olumns of a (2� n)-matrix:�(x1; x2; x3) Æ x = � 1 0 1 z3 : : : zn�10 1 1 1 : : : 1 � ,where zi 2 C nf0; 1g for 3 � i � n � 1, zi 6= zj for 3 � i < j � n� 1, and the
olumns are understood as ve
tors in C 2nf0g that represent elements in CP 1.Lifting an element �x 2M0;n to its \normal form" �(x1; x2; x3) Æ x in the totalspa
e F (CP 1; n) de�nes a se
tion for the PSL(2; C )-bundle. Hen
e, the prin
i-pal bundle is trivial [St, Part I, Thm. 8.3℄. The resulting produ
t de
ompositionon F (C P 1; n) 
an be des
ribed expli
itly by the homeomorphism� : F (CP 1; n) �! PSL(2; C ) � M0;n(x1; : : : ; xn) 7�! (�(x1; x2; x3) ; �x ) : 2Remark 2.2 An analogous argument is not possible for S4, sin
e there are nosharply 3-transitive group a
tions in the 
ase of a non-
ommutative �eld su
has H . The stru
tural reason for this 
an be tra
ed ba
k to a theorem by vonStaudt, see [P, Kap. 5.1.4℄.In view of a des
ription of the integer 
ohomology algebra of F (CP 1; n) we usethe intimate relation of the base spa
e M0;n to a 
omplex hyperplane arrange-ment | the 
omplex braid arrangement ACn�2 of rank n� 2 in C n�1 given bythe hyperplanes zj � zi = 0 for 1 � i < j � n� 1 :This arrangement is a key example in the theory of hyperplane arrange-ments and initiated mu
h of its development [Ar, OT℄. Its 
omplement,M(ACn�2) := C n�1nSACn�2, 
oin
ides with F (C ; n � 1), the 
on�gurationspa
e of the 
omplex plane.Do
umenta Mathemati
a 5 (2000) 115{139



120 Eva Maria Fei
htner and G�unter M. ZieglerThe base spa
e M0;n is homotopy equivalent to the 
omplement of the aÆnearrangement a�ACn�2, whi
h is obtained from ACn�2 by restri
tion to the aÆnehyperplane fz2 � z1 = 1g �= C n�2 . A 
omplete des
ription of the integer
ohomology algebra of the 
omplement M(a�ACn�2) := C n�2nS a�ACn�2 is pro-vided by general theory on the topology of 
omplex hyperplane arrangements[OS, BZ, OT℄. The des
ription depends only on 
ombinatorial data of thearrangement, i.e., on the semi-latti
e of interse
tions L(a�ACn�2) whi
h is 
us-tomarily ordered by reverse in
lusion.Proposition 2.3 The base spa
e M0;n is homotopy equivalent to the 
omple-ment of the aÆne 
omplex braid arrangement of rank n� 2, sin
eM0;n � C �= M(a�ACn�2) :Its integer 
ohomology algebra is torsion-free. It is generated by one-dimen-sional 
lasses ei;j for 1 � i < j � n� 1, (i; j) 6= (1; 2), and has a presentationas a quotient of the exterior algebra on these generators:H�(M(a�ACn�2)) �= ��Z(n�12 )�1 = I ;where I is the ideal generated by elements of the formei;l ^ ej;l � ei;j ^ ej;l + ei;j ^ ei;l for 1 � i < j < l � n� 1; (i; j) 6= (1; 2) ;e1;i ^ e2;i for 2 < i � n� 1 :Proof. We 
onsider the homeomorphi
 image of M0;n under the se
tion de-�ned in the proof of Proposition 2.1:M0;n �= (� 1 0 1 z3 : : : zn�10 1 1 1 : : : 1 � ����� zi 2 C nf0; 1g; zi 6= zj for i 6= j)�= f (z1; : : : ; zn�1) j zi 2 C ; zi 6= zj for i 6= j; z1 = 0; z2 � z1 = 1g :From this des
ription we see that M0;n is homeomorphi
 to the 
omplementof the aÆne braid arrangement a�ACn�2 interse
ted with the hyperplane fz1 =0g. This interse
tion operation is equivalent to a proje
tion parallel to theinterse
tion of all the hyperplanes in ACn�2, TACn�2 = fz1 = : : : = zn�1g. The�bers of this proje
tion map are 
ontra
tible: they are translates of TACn�2.Hen
e the proje
tion does not alter the homotopy type, and we 
on
lude thatM0;n is homotopy equivalent to M(a�ACn�2).The presentation of the integer 
ohomology algebra follows from general re-sults on the topology of the 
omplements of 
omplex hyperplane arrangements(
ompare [OT℄). 2We have seen that the �ber PSL(2; C ) is homeomorphi
 to F (C P 1; 3), resp.F (S2; 3). By a result of Fadell [Fa, Thm. 2.4℄ there is a �ber homotopyDo
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 121equivalen
e between F (Sk; 3) and Vk+1;2, the Stiefel manifold of orthogonal2-frames in Rk+1 . The 
ohomology of the latter is well-known, see [Bd, Ch.IV, Exp. 13.5℄.Combining the produ
t stru
ture on F (C P 1; n) obtained in Theorem 2.1 withthe information on the 
ohomology algebras of base spa
e and �ber we 
on
lude:Theorem 2.4 The 
ohomology algebra of F (S2; n) with integer 
oeÆ
ients isgiven byH�(F (S2; n)) �= H�(F (S2; 3)) 
 H�(M(a�ACn�2))�= �Z(0)�Z2(2)�Z(3)� 
 �� M(n�12 )�1 Z(1) = I ;where G(i) denotes a dire
t summand G in dimension i, and I is the ideal ofrelations des
ribed in Proposition 2.3.3 A spe
tral sequen
e for H�(F (Sk; n))Our approa
h for k > 2 uses the Leray-Serre spe
tral sequen
e asso
iated withthe proje
tion �1: �1 : F (Sk; n) �! Sk(x1; : : : ; xn) 7�! xn :For the 
onstru
tion and spe
ial features of Leray-Serre spe
tral sequen
es werefer to Borel [Bo2, Se
t. 2℄. Sin
e the base spa
e of the 
onsidered �berbundle is a sphere we 
ould equally work with the Wang sequen
e [Wh, Ch.VII, Se
t. 3℄, a long exa
t sequen
e 
onne
ting the 
ohomology of the total spa
eand of the �ber. However, the derivation of the multipli
ative stru
ture of the
ohomology algebra gets more transparent with spe
tral sequen
e tableaux.Moreover, this approa
h extends to proje
tions �r for r > 1 (see Se
tion 6).We meet espe
ially favorable 
onditions in the se
ond tableau of the Leray-Serrespe
tral sequen
e asso
iated to the �ber map �1(Sk; n): The base spa
e Sk issimply 
onne
ted for k � 2, hen
e the system of lo
al 
oeÆ
ients on Sk indu
edby �1 for k � 2 is simple. As the �ber over xn 2 Sk we obtain:��11 (xn) = f(x1; : : : ; xn�1) 2 (Sk)n�1 jxi 6= xj for i 6= j;xi 6= xn for i = 1; : : : ; n�1g�= f(x1; : : : ; xn�1) 2 (Rk )n�1 j xi 6= xj for i 6= jg :This is the 
omplement of the real k-braid arrangement A(k)n�2 of rank n�2whi
h is formed by linear subspa
es Ui;j in (Rk )n�1, 1 � i < j � n�1,Ui;j = f(x1; : : : ; xn�1) 2 (Rk )n�1 jxi1 = xj1 ; : : : ; xik = xjkg :Do
umenta Mathemati
a 5 (2000) 115{139



122 Eva Maria Fei
htner and G�unter M. ZieglerThis arrangement, a dire
t generalization of the real and 
omplex braid arrange-ments, is a k-arrangement in the sense of Goresky & Ma
Pherson [GM,Part III, p. 239℄: the subspa
es have 
odimension k, and the 
odimensions oftheir interse
tions are multiples of k. Su
h arrangements have 
ombinatorialproperties analogous to those of 
omplex hyperplane arrangements, whi
h isre
e
ted by strong similarities in their topologi
al properties: The 
ohomol-ogy algebras of real k-arrangements are torsion-free [GM, Part III, Thm. B℄;they are generated in dimension k � 1 by 
ohomology 
lasses that naturally
orrespond to the subspa
es of the arrangement [BZ, Se
t. 9℄.The 
omplement of the real k-braid arrangement A(k)n�2 is an ordered 
on�gu-ration spa
e: the spa
e F (Rk ; n�1) of 
on�gurations of n�1 pairwise distin
tpoints in Rk . The following thus 
omplements work by Cohen [C1, C2℄, whodis
ussed the 
ohomology of F (Rk ; n� 1) in 
onne
tion with homology opera-tions for iterated loop spa
es.Proposition 3.1 The integer 
ohomology algebra of M(A(k)n�2) is generatedby (k � 1)-dimensional 
ohomology 
lasses 
i;j , 1 � i < j � n � 1. It has apresentation as a quotient of the exterior algebra on these generators:H�(M(A(k)n�2)) �= ��Z(n�12 ) = I ;where I is the ideal generated by the elements(
i;l^
j;l) + (�1)k+1(
i;j^
j;l) + (
i;j^
i;l) for 1 � i < j < l � n�1 :Remark 3.2 The generating 
ohomology 
lasses 
i;j , 1� i< j�n�1, are de-�ned by restri
ting 
ohomology generators b
i;j for the subspa
e 
omplementsM(fUi;jg) ' Sk�1 to the 
omplement of the arrangement. A 
anoni
al 
hoi
eof the generators b
i;j results from �xing the natural \frame of hyperplanes" inthe sense of [BZ, Se
t. 9℄.Proof. Bj�orner & Ziegler [BZ, Se
t. 9℄ derived a presentation for the
ohomology algebras of real k-arrangements up to the signs in the relations.For the real k-braid arrangement their presentation spe
ializes up to signs tothe one stated above.Consider the relation for a triple 1 � i < j < l � n� 1:"1(
i;l ^ 
j;l) + "2(
i;j ^ 
j;l) + "3(
i;j ^ 
i;l) = 0 ; "r 2 f�1g for r = 1; 2; 3 :Transpositions of (i; j) and (i; l) and of (i; l) and (j; l) in the linear (lexi
o-graphi
) order of the subspa
es in A(k)n�2 lead to similar relations among the
ohomology 
lasses 
i;l ^ 
j;l, 
i;j ^ 
j;l, and 
i;j ^ 
i;l:"1(
i;j ^ 
j;l) + "2(
i;l ^ 
j;l) + "3(
i;l ^ 
i;j) = 0"1(
j;l ^ 
i;l) + "2(
i;j ^ 
i;l) + "3(
i;j ^ 
j;l) = 0 :Anti-
ommutativity of the exterior produ
t yields the signs in the relations.2Do
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 123We obtain the following tensor produ
t de
omposition on the E2-tableau ofthe Leray-Serre spe
tral sequen
e asso
iated with the �ber map �1(Sk; n):
k � 10 0 k

H�(M(A(k)n�2))E�;�23k � 32k � 2 dk
Ep;q2 �= Hp(Sk) 
 Hq(M(A(k)n�2)) ;p; q � 0 :The lo
ation of non-zero entries shows that there is only one possibly non-trivialdi�erential on stage k of the sequen
e.4 The k-th differentialThe tableaux of a 
ohomologi
al spe
tral sequen
e are bigraded algebras. Thedi�erentials respe
t their multipli
ative stru
ture. In parti
ular, the di�eren-tials are determined by their a
tion on multipli
ative generators of the sequen
etableaux. Thus, it suÆ
es in our 
ase to des
ribe dk on the multipli
ative gen-erators 
i;j , 1 � i < j � n� 1, of E0;�k �= H�(M(A(k)n�2)) in dimension k � 1.A
tually, we 
an restri
t our attention even further to the a
tion of dk on onesingle generator, say on 
1;2: The permutation of the �rst n � 1 points of a
on�guration in F (Sk; n) by Sn�1 gives a group a
tion on the 
onsidered �berbundle and hen
e indu
es a Sn�1-a
tion on the spe
tral sequen
e. The groupSn�1 a
ts transitively on the generators 
i;j of E0;k�1k , whereas it keeps Ek;0k�xed. We 
on
lude thatdk(
i;j) = dk(
1;2) for 1 � i < j � n� 1 :In the following we provide two independent ways to evaluate dk.4.1 . . . via a homology group of the dis
riminant.Here the key observation is that knowing Hk(F (Sk; n)) is suÆ
ient to deter-mine dk. To obtain this spe
i�
 group, we use a \Vassiliev type" argumentthat allows one to 
ompute, in favorable situations, some 
ohomology groupsof 
on�guration spa
es. Using a smooth 
ompa
ti�
ation, in our 
ase given byF (Sk; n) � (Sk)n, we setF (Sk; n) = (Sk)n n �n = (Sk)n n [1�i<j�n(�n)i;j ;Do
umenta Mathemati
a 5 (2000) 115{139



124 Eva Maria Fei
htner and G�unter M. Zieglerwhere (�n)i;j = f(x1; : : : ; xn) 2 (Sk)n jxi = xjg for 1 � i < j � n :The idea is to use duality theorems in (Sk)n for transferring homology infor-mation about the dis
riminant �n to the 
ohomology of F (Sk; n). For this, wepro
eed in three steps.Step 1. Determine H�(�n) in dimensions (n� 1)k and (n� 1)k � 1.The spa
es (�n)i;j are homeomorphi
 to (Sk)n�1; they interse
t in spa
es home-omorphi
 to (Sk)n�2, hen
e in dimension k(n� 2). By a Mayer-Vietoris argu-ment we obtain the top two homology groups of the dis
riminant:H(n�1)k (�n) �= M1�i<j�nH(n�1)k((�n)i;j) �= Z(n2)H(n�1)k�1 (�n) = 0 :Step 2. Determine the relative homologyH�((Sk)n;�n) in dimension (n�1)k.The relevant part of the long exa
t sequen
e in homology for the pair((Sk)n;�n) is the following:! H(n�1)k (�n) i�! H(n�1)k ((Sk)n) ! H(n�1)k ((Sk)n;�n) ! H(n�1)k�1 (�n) !We had 
omputed that the last group is zero, and thusH(n�1)k ((Sk)n;�n) �= 
oker i� ;where i� is indu
ed by the in
lusion i : �n ,! (Sk)n. We intend to write i�as a (n � �n2�)-matrix over Z and to read the 
okernel from its Smith normalform [Mu, x 11℄. For this we 
hoose Z-bases for the homology groups that areinvolved, and determine i� in terms of these bases.A

ording to the K�unneth Theorem, H(n�1)k((Sk)n) has a basis that 
onsistsof tensor produ
ts of k-dimensional 
lasses !j , j = 1; : : : ; n, of the form�i = !1 
 : : :
 b!i 
 : : :
 !n ; i = 1; : : : ; n ;where !j is an orientation 
lass for the j-th fa
tor in (Sk)n, and b!i denotesthat we omit the i-th 
lass.Generating homology 
lasses of �n in dimension (n� 1)k are given by the �n2�generating homology 
lasses for the spa
es (�n)i;j , 1 � i < j � n. These spa
esare produ
ts of k-spheres,(�n)i;j �= Si;j � S1 � : : :� bSi � : : :� bSj � : : :� Sn ;with Sl denoting the l-th k-sphere appearing as a fa
tor in (Sk)n, whereas Si;jdenotes the k-sphere diagonally embedded in the i-th and j-th k-sphere. Agenerating homology 
lass for (�n)i;j in dimension (n � 1)k 
an be des
ribedas �ij = !ij 
 !1 
 : : :
 b!i 
 : : :
 b!j 
 : : :
 !n ; 1 � i < j � n ;where !ij is a homology generator for Si;j in dimension k.Do
umenta Mathemati
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Cohomology Algebras of Configuration Spa
es . . . 125To understand how i� maps su
h generators �ij we use the following lemma.It tells how to des
ribe the homology generator of the diagonal in Si � Sj interms of homology 
lasses of the produ
t.Lemma 4.1 Let ! denote a generating homology 
lass in dimension k for thek-sphere. Under the diagonal map � : Sk ! Sk�Sk, �(x) = (x; x) for x 2 Sk,the homology 
lass ! is mapped to��(w) = ! 
 1 + 1
 ! :Proof. By the K�unneth Theorem the two summands form a basis ofHk(Sk � Sk), so ��(!) is a Z-linear 
ombination of those. Moreover, the di-agonal map 
ombined with one of the proje
tions pri to the respe
tive fa
toris the identity map on Sk. Hen
e the result follows from (pri)� Æ ��(!) = !for i = 1; 2. 2We 
on
lude thati�(�ij) = �(!i 
 1) + (1
 !j)� 
 nOl=1l6=i;j !l ; 1 � i < j � n :To write this in terms of the generators �i for H(n�1)k ((Sk)n) we have topermute the fa
tors of the underlying produ
t spa
e to the order used abovein the de�nition of the 
lasses �i. The tensor produ
t of homology 
lassesis anti-
ommutative [FFG, Ch. II, x16℄; i.e., under the transposition map � :X �X �! X �X , (x1; x2) 7! (x2; x1), a produ
t of homology 
lasses � 
 �,�; � 2 H�(X), is mapped to��(� 
 �) = (�1)deg(�) deg(�)� 
 �:This is the point where the distin
tion between odd and even dimensions 
omesup:i�(�ij) = � (�1)i�1�j + (�1)j�2�i for odd k ;�j + �i for even k (1 � i < j � n):Writing i� as a (n � �n2�)-matrix M(n) we obtain the (unsigned) in
iden
ematrix of 2-element subsets of an n-set for even k, whereas for odd k a 
ertainsign pattern o

urs on the matrix entries. For example,M(3) = 0� 12 13 231 1 (�1)k 02 1 0 (�1)k3 0 1 (�1)k1A ;
M(4) = 0BB� 12 13 14 23 24 341 1 (�1)k 1 0 0 02 1 0 0 (�1)k 1 03 0 1 0 (�1)k 0 14 0 0 1 0 (�1)k 1 1CCA :Do
umenta Mathemati
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126 Eva Maria Fei
htner and G�unter M. ZieglerWe now derive the Smith normal forms of the matri
es M(n) by des
ribingelementary row and 
olumn operations. Ordering the 
olumns of M(n) { 
or-responding to the 2-element subsets of f1; : : : ; ng { lexi
ographi
ally, we seethatM(n) = 0BBBBB� 1 � � � � � � � � � 1 0 � � � � � � � � � � � � � � � � � � 01 . . . . . . M(n�1)1
1CCCCCA for even k; and

M(n) = 0BBBBBB� 1 �1 � � � (�1)n 0 � � � � � � � � � � � � � � � � � � 01 . . . . . . �M(n�1)1
1CCCCCCA for odd k :For even k, we subtra
t the i-th row from the �rst row for i = 2; : : : ; n, andthus 
reate 0-entries in the left part of the �rst row and entries �2 on top ofthe submatrix M(n�1). Note that the 
olumn sum in M(n�1) is 2.Adding multiples of the �rst n�1 
olumns to the rest of the matrix, we trans-formM(n�1) to 0. The remaining entries in the �rst row 
an be redu
ed to onesingle entry 2, and after swit
hing rows and 
olumns we obtain the followingSmith normal form:SNF(M(n) ) = 0B� 1 . . . 01 2 1CA for even k.For odd k, we add the t-th row multiplied with (�1)t�1 to the �rst row fori = 2; : : : ; n. This 
reates 0-entries in the �rst row. This is obvious for the �rstn�1 
olumns. For an entry on top of a 
olumn of the submatrix �M(n�1)whi
h 
ontains entries in its i-th and j-th rows, we obtain(�1)i � (�(�1)j�2) + (�1)j � (�(�1)i�1) = 0 :As before, we transform the submatrix �M(n�1) to 0 by adding multiples ofthe �rst n�1 
olumns. Thus, after swit
hing rows, we obtain:SNF(M(n) ) = 0B� 1 . . . 01 0 1CA for odd k.We read o� the 
okernel of i� asH(n�1)k ((Sk)n;�n) �= � Z for odd k ;Z2 for even k :Do
umenta Mathemati
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Cohomology Algebras of Configuration Spa
es . . . 127Step 3. Apply Poin
ar�e-Lefs
hetz duality between relative homology of thepair ((Sk)n;�n) and 
ohomology of F (Sk; n).Proposition 4.2 The k-th 
ohomology group of F (Sk; n), k > 2, n > 2, isgiven by Hk(F (Sk; n)) �= � Z for odd k ;Z2 for even k :Remark 4.3 In prin
iple, the dis
riminant approa
h 
an be used to determinethe 
ohomology of F (Sk; n) as a graded group. However, to 
ompute H�(�n)is diÆ
ult and requires extra tools (interpretation of �n as a homotopy limit ofa diagram of spa
es, study of a spe
tral sequen
e 
onverging to the homologyof a homotopy limit [Z�Z, Se
t. 3(e)℄). Also, the study of the pair sequen
e gets
onsiderably more involved. Moreover, be
ause of the use of Poin
ar�e-Lefs
hetzduality the multipli
ative stru
ture of H�(F (Sk; n)) seems out of rea
h for thisapproa
h.The partial result of Proposition 4.2 allows us to determine the di�erential inthe spe
tral sequen
e asso
iated to �1(Sk; n). Taking 
ohomology of E�;�k withrespe
t to the di�erential dk leads to the �nal sequen
e tableau E�;�k+1:
0 0 0k� Hk(F (Sk; n))

E�;�k+1k � 1 dk E�;�k 0
0 k
i;j ker dkk � 1 
oker dk

Sin
e there is only one non-zero entry on the k-th diagonal for k > 2,Hk(F (Sk; n)) 
an be read from E�;�k+1:Hk(F (Sk; n)) �= 
okerdk :Our result on Hk(F (Sk; n)) in Proposition 4.2 implies thatdk(
1;2) = dk(
i;j) = � 0 for odd k2� for even k ;where � is a generator of Hk(Sk).Do
umenta Mathemati
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128 Eva Maria Fei
htner and G�unter M. Ziegler4.2 . . . via an interpretation in terms of the Euler 
lass.Our se
ond approa
h to the di�erential dk stays within the setting of �berbundles. We study an in
lusion of �ber bundles and transfer information onthe di�erentials via the indu
ed homomorphism of spe
tral sequen
es. We will�nd that the di�erential is determined by the Euler 
lass of the base spa
e Sk,whi
h depends on the parity of k.Consider, for n � 3, the following spa
e of point 
on�gurations on Sk, k > 2:bF := f(x1; : : : ; xn) 2 (Sk)n jx1 6= x2; xj 6= xn for j = 1; : : : ; n� 1g :Proje
tion of a 
on�guration to its last point, b� : bF ! Sk, makes it the totalspa
e of a �ber bundle with spheri
al �ber: the 
omplement of the 
odimensionk subspa
e U1;2 in (Rk )n�1,b��1(xn) = f(x1; : : : ; xn�1) 2 (Sk)n�1 jx1 6= x2; xj 6= xn for 1 � j � n�1g�= f(x1; : : : ; xn�1) 2 (Rk )n�1 j x1 6= x2g= M(fU1;2g) :The spe
tral sequen
e bE� asso
iated to b� has an bE2-tableau of the formbEp;q2 �= Hp(Sk) 
 Hq(M(fU1;2g)) ;p; q � 0 : k � 10 k0
bE�;�2bdk>From the lo
ation of non-zero entries in bE�;�2 we easily see that there is onlyone possibly non-trivial di�erential bdk on stage k of the sequen
e.The in
lusion of F (Sk; n) into bF is a map of �ber bundles.bFSkF (Sk; n)SkM(A(k)n�2) M( fU1;2g )

The homomorphism of spe
tral sequen
es indu
ed by the in
lusion of the �berbundles fa
tors on the bEk-tableau into the indu
ed map between the 
ohomol-ogy of the �bers and the identity on the 
ohomology of the base spa
e [Bo1,Exp. VIII, Thm. 4℄. The map i� between the 
ohomology of the �bers mapsDo
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 129the generator b
1;2 of Hk�1(M(fU1;2g)) to 
1;2 in Hk�1(M(A(k)n�2)) (
ompareRemark 3.2). Hen
e, we are left to determine the a
tion of the k-th di�erentialon bE0;k�1k :
dk i�kbE�;�kE�;�k


1;2 id�
b
1;2 bdk

dk(
1;2) = dk(i�(b
1;2)) = bdk(b
1;2) :Proposition 4.4 The �ber bundle bF over Sk is �ber homotopy equivalent toVk+1;2, the Stiefel manifold of orthogonal 2-frames in Rk+1 , 
onsidered as �berbundle over Sk.Proof. bF is �ber homotopy equivalent to F (Sk; 3), both spa
es 
onsideredas �ber bundles over Sk. The �ber homotopy equivalen
e is realized by theproje
tion of 
on�gurations in bF to their �rst, se
ond and last points. Inturn, F (Sk; 3) is �ber homotopy equivalent to the Stiefel manifold Vk+1;2 [Fa,Thm. 2.4℄. 2For a simply 
onne
ted, k-dimensional, orientable manifoldM the only possiblynon-trivial di�erential in the spe
tral sequen
e asso
iated to the unit tangentbundle 
an be des
ribed as a 
up produ
t multipli
ation with the Euler 
lassof the manifold: dk(x
 �) = dk(�) ^ x = �M ^ x ;where � is a generator of Hk�1(Sk�1), x 2 H�(M), and �M denotes the Euler
lass of the manifold (
ompare [MS, Thm. 12.2℄).The Stiefel manifold Vk+1;2 
oin
ides with the unit tangent bundle on Sk.Given an orientation on Sk and a generator � of Hk(Sk) that evaluates to 1on the orientation 
lass, the Euler 
lass of Sk is given by�Sk = � 0 for odd k ;2� for even k :We 
on
lude that in the spe
tral sequen
e for bF the di�erential bdk maps thegenerator b
1;2 of Hk�1(M(fU1;2g)) to the Euler 
lass � of the base spa
e, on
ean orientation for the base Sk and with it the Euler 
lass have been 
hosenDo
umenta Mathemati
a 5 (2000) 115{139



130 Eva Maria Fei
htner and G�unter M. Zieglerappropriately. In parti
ular, bdk is the zero-map for odd k. For our initial �berbundle we thus derivedk(
i;j) = dk(
1;2) = � 0 for odd k ;2� for even k ;where 2� is the Euler 
lass of the k-sphere under appropriate orientation.5 Re
overing H�(F (Sk; n)) from the spe
tral sequen
eFor 
on�guration spa
es of odd-dimensional spheres we now have enough in-formation to derive a 
omplete des
ription of the integer 
ohomology algebra.In the previous se
tion we showed that the k-th di�erential is trivial on multi-pli
ative generators of the sequen
e tableau E�;�k , therefore it is trivial on all ofE�;�k . The spe
tral sequen
e 
ollapses in its se
ond term; a favorable lo
ation ofnon-zero tableau entries allows us to get both the linear and the multipli
ativestru
ture of H�(F (Sk; n)) dire
tly from the se
ond tableau:Theorem 5.1 For a sphere Sk of odd dimension k � 3, and n � 3, the integer
ohomology algebra of F (Sk; n) is given byH�(F (Sk; n)) �= H�(Sk) 
 H�(M(A(k)n�2))�= (Z(0)�Z(k) ) 
 �� M(n�12 )Z(k� 1) = I ;where I is the ideal des
ribed in Proposition 3.1. In parti
ular, the 
ohomologyis free.For the 
ase of even-dimensional spheres the 
onsiderations in the previousse
tion show that the k-th di�erential is non-zero. We have to des
ribe thekernel and 
okernel of that di�erential and with it the �nal sequen
e tableauE�;�k+1 in a manageable form.The 
ohomology algebra of the �ber, hen
e of the left-most 
olumn of the se
-ond, resp. k-th tableau, is given by Proposition 3.1. A linear basis for thisalgebra is given by the produ
ts of (k � 1)-dimensional 
lasses 
i;j asso
iatedwith the fa
es of the broken 
ir
uit 
omplex BC(L) of the interse
tion lat-ti
e L = L(A(k)n�2) [BZ, Se
t. 9℄:BBC = f
�1 ^ : : : ^ 
�t j f�1; : : : ; �tg 2 BC(L)g :Here is a di�erent basis whi
h enables us to des
ribe the kernel of dk both asa dire
t summand and as a subalgebra of H�(M(A(k)n�2)):Proposition 5.2 The following set is a Z-linear basis for H�(M(A(k)n�2)) :B0 = f
1;2 ^ (
�1 � 
1;2) ^ : : : ^ (
�t � 
1;2) j f�1; : : : ; �tg 2 BC(L); �i 6= (1; 2)g[ f(
�1 � 
1;2) ^ : : : ^ (
�t � 
1;2) j f�1; : : : ; �tg 2 BC(L); �i 6= (1; 2)g :Do
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 131Proof. Ea
h element in BBC 
an be written as a linear 
ombination of el-ements in B0. This is true for ea
h element having 
1;2 as a fa
tor be
ausethose are themselves elements in B0. For 
�1 ^ : : :^ 
�t , f�1; : : : ; �tg 2 BC(L),�i 6= (1; 2), (
�1 � 
1;2) ^ : : : ^ (
�t � 
1;2) = 
�1 ^ : : : ^ 
�t + � ;where � is a linear 
ombination of produ
ts 
ontaining 
1;2, hen
e of elementsin B0. Thus 
�1 ^ : : : ^ 
�t 
an be written as a linear 
ombination of those. 2Let T � denote the submodule of H�(M(A(k)n�2)) generated by those elements ofB0 that 
ontain 
1;2 as a fa
tor, whereas T Æ denotes the submodule generatedby all other elements of B0:H�(M(A(k)n�2)) �= T Æ � T � :Obviously, multipli
ation within T � is trivial, whereas for T Æ we 
an state thefollowing:Proposition 5.3 The submodule T Æ is a subalgebra of H�(M(A(k)n�2)) gener-ated by the elements �
i;j := (
i;j � 
1;2) in dimension k � 1, 1 � i < j � n� 1,(i; j) 6= (1; 2). It has a presentation as a quotient of the exterior algebra onthese generators: T Æ �= ��Z(n�12 )�1 = J ;where J is the ideal generated by elements of the form(�
i;l ^ �
j;l) + (�1)k+1(�
i;j ^ �
j;l) + (�
i;j ^ �
i;l) ; 1 � i < j < l � n�1 ;(i; j) 6= (1; 2) ;(�
1;i ^ �
2;i) ; 2 < i � n�1 :Proof. It is 
lear that T Æ has a presentation as a quotient of the exterioralgebra on the generators �
i;j = (
i;j � 
1;2), 1 � i < j � n� 1, (i; j) 6= (1; 2).Moreover, it is easy to 
he
k that the proposed relations hold in H�(M(A(k)n�2)).To see that they generate the ideal for a presentation of T Æ note that they allowone to write ea
h produ
t in the generators �
i;j as a linear 
ombination ofelements from the linear basis for T Æ: Assume that for a produ
t of generators�
�1 ^ : : : ^ �
�tall produ
ts with lexi
ographi
ally smaller index set 
an be written as a linear
ombination of basis elements from T Æ. If this produ
t is not itself a basiselement then f�1; : : : ; �tg 
ontains a broken 
ir
uit of L(A(k)n�2): In 
ase (1; 2)extends it to a 
ir
uit the produ
t is zero by a relation of the se
ond type.Otherwise, a relation of the �rst type allows to write it as a linear 
ombinationof produ
ts with lexi
ographi
ally smaller index set, and hen
e as a linear
ombination of basis elements. 2Do
umenta Mathemati
a 5 (2000) 115{139



132 Eva Maria Fei
htner and G�unter M. ZieglerOur results on dk now read as follows:dk(
1;2) = 2 �dk(
i;j � 
1;2) = 0 for 1 � i < j � n� 1 ;where � is a generator of Hk(Sk). Evaluating dk by the Leibniz rule on thebasis elements of B0 we exhibit T Æ as the kernel of dk, whereas im dk = 2 T Æ,and hen
e 
oker dk �= T Æ=2T Æ � T � . We thus obtain the �nal sequen
etableau E�;�k+1 with entries E0;�k+1 = T Æ and Ek;�k+1 = T Æ=2T Æ � T � .From the sequen
e tableau E�;�k+1 we 
an read the 
ohomology algebra ofF (Sk; n): Free generators for T Æ = E0;�k+1 are lo
ated in E0;0k+1 and E0;k�1k+1 .Together with the free generator in Ek;k�1k+1 and the generator of order two inEk;0k+1 they generate T Æ=2T Æ � T � = Ek;�k+1.T Æ E�;�k+1T Æ=2T Æ � T �2k � 20k � 13k � 3
0 k �=2�10


1;20k � 1 
i;j � 
1;2
kLinearly, the 
ohomology of F (Sk; n) is isomorphi
 to a tensor produ
t of twofree generators in dimension 0 and 2k� 1 and a generator of order 2 in dimen-sion k � 1 with the algebra T Æ:H�(F (Sk; n)) �= (Z(0)�Z2(k)�Z(2k� 1)) 
 T Æ :This isomorphism is an algebra isomorphism: This is obvious for multipli
ationamong elements represented by entries in the left-most 
olumn E0;�k+1. Also,multipli
ation between entries of E0;�k+1 and Ek;�k+1 is 
orre
tly des
ribed in theproposed tensor produ
t. Moreover, the trivial multipli
ation among entries inEk;�k+1 has its 
orresponden
e in the tensor algebra sin
e multipli
ation withinthe left-hand fa
tor is trivial. We 
on
lude:Theorem 5.4 For a sphere Sk of even dimension, k � 4, the integer 
ohomol-ogy algebra of F (Sk; n), n � 3, is given byH�(F (Sk; n)) �= (Z(0)�Z2(k)�Z(2k� 1)) 
 T Æ�= (Z(0)�Z2(k)�Z(2k� 1)) 
 �� M(n�12 )�1Z(k� 1) = J ;where J is the ideal des
ribed in Proposition 5.3.Do
umenta Mathemati
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Cohomology Algebras of Configuration Spa
es . . . 133In the next se
tion we will give a topologi
al interpretation for this produ
tde
omposition of the 
ohomology algebra (see Remark 6.1).6 A family of fiber bundlesThe bundle stru
ture on F (Sk; n) given by the proje
tion �1 was the key todetermine the integer 
ohomology algebra of F (Sk; n). This proje
tion �1 isone instan
e from a family of �ber maps �r = �r(Sk; n), 1 � r < n, that aregiven by proje
tion of a 
on�guration in F (Sk; n) to its last r points. In thisse
tion we will have a 
loser look at these �ber maps, at their spe
tral sequen
es,and at the question whether the indu
ed bundle stru
tures are trivial.For the �ber map �r(Sk; n), 1 � r < n, we obtain the following spa
e as the�ber over a point 
on�guration q = (q1; : : : ; qr) on Sk:��1r (q) = f(x1; : : : ; xn�r) 2 (Sk)n�r jxi 6= xj for i 6= j; xi 6= qtfor i = 1; : : : ; n� r; t = 1; : : : ; rg :This spa
e is again a 
on�guration spa
e:��1r (q) = F (Sk n fq1; : : : ; qrg; n� r ) :Con�gurations on Sk that avoid r � 1 (�xed) points q1; : : : ; qr are equivalentto 
on�gurations in Rk that avoid r�1 points q1; : : : ; qr�1. Thus the �ber of �ris homeomorphi
 to the 
omplement of the arrangement A�r(Sk;n) of (aÆne)subspa
es in Rk(n�r) given byUi;j = f(x1; : : : ; xn�r) 2 (Rk )n�r j xi = xj g; 1 � i < j � n� r;U ti = f(x1; : : : ; xn�r) 2 (Rk )n�r j xi = t � (1; 0; : : : ; 0)T g;1 � i � n� r; 0 � t � r � 2 :For r = 1, the arrangement A�1(Sk;n) 
oin
ides with the k-braid arrangementA(k)n�2 | a fa
t that we used extensively in the previous se
tions. For r > 2,A�r(Sk;n) 
ontains aÆne subspa
es, the subspa
es U ti for 0 < t � r � 2. Inthe 
omplex 
ase, for k = 2, these arrangements were extensively studied byWelker [We℄.6.1 The spe
tral sequen
esWe proved in the previous se
tions that the spe
tral sequen
e E�(�1) asso
iatedto the �ber map �1(Sk; n) 
ollapses in E2 for odd k, and in Ek+1 for even k.We obtain a similar pi
ture for the spe
tral sequen
e E�(�2) asso
iated to the�ber map �2(Sk; n): The base spa
e F (Sk; 2) is homotopy equivalent to Sk.Hen
e, it is simply 
onne
ted for k � 2, and the system of lo
al 
oeÆ
ients onSk indu
ed by �2 is simple. The �ber M(A�2(Sk;n)) is homotopy equivalentto the 
omplement of the k-braid arrangement A(k)n�2. In fa
t, the homotopyDo
umenta Mathemati
a 5 (2000) 115{139
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e is realized by proje
tion of M(A(k)n�2) along TA(k)n�2 on the linearsubspa
e U0n�1 = f (x1; : : : ; xn�1) 2 (Rk )n�1 jxn�1 = 0 g :Thus, the E2-tableaux of the spe
tral sequen
es indu
ed by �1 and �2 
oin
ide.For dimensional reasons, the 
ollapsing results onE�(�1) translate to analogous
ollapsing results on E�(�2).The pi
ture 
hanges for the spe
tral sequen
es E�(�3) asso
iated to �3(Sk; n).In fa
t, we have all arguments at hand to dis
uss them brie
y: The basespa
e F (Sk; 3) of the �ber map �3(Sk; n) is homotopy equivalent to the Stiefelmanifold Vk+1;2 of orthogonal 2-frames in Rk+1 [Fa, Thm. 2.4℄, hen
e it issimply 
onne
ted for k � 2. We 
on
lude that the system of lo
al 
oeÆ-
ients on F (Sk; 3) indu
ed by �3 is simple. We have seen above that the �berof �3 is homeomorphi
 to the 
omplement of the (aÆne) subspa
e arrange-ment A�3(Sk;n). Comparison to the 
omplement of the k-braid arrangementA(k)n�2 yields a homotopy equivalen
e,M(A�3(Sk;n)) 'M(A(k)n�2dU ) ;where A(k)n�2dU denotes the restri
tion of the k-braid arrangement to the aÆnesubspa
eU = f(x1; : : : ; xn�1) 2 (Rk )n�1 jxn�2 � xn�1 = (1; 0; : : : ; 0)T g :The homotopy equivalen
e is realized by proje
tion of M(A(k)n�2dU ) along theinterse
tion TA(k)n�2 to the linear subspa
eU0n�1 = f(x1; : : : ; xn�1) 2 (Rk )n�1 jxn�1 = 0 g :The aÆne arrangement A(k)n�2dU is asso
iated to the k-braid arrangement in thesame way as we asso
iated before an aÆne 
omplex hyperplane arrangementto the 
omplex braid arrangement (
ompare Se
tion 2). This analogy allowsone to state a presentation for its 
ohomology algebra in terms of generatorsand relations. In fa
t, one obtains an algebra presentation that 
oin
ides withthe one that we stated for T Æ in Proposition 5.3:H�(M(A(k)n�2dU )) �= T Æ :In parti
ular, H�(M(A(k)n�2dU )) is torsion-free and it is generated in dimensionk � 1 by 
ohomology 
lasses that are in one-to-one 
orresponden
e with thein
lusion maximal subspa
es of the arrangement.For both odd and even k the E2-tableaux of the spe
tral sequen
es asso
iatedto �3(Sk; n) 
arry the stru
ture of tensor produ
ts. We 
ontent ourselves withDo
umenta Mathemati
a 5 (2000) 115{139
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es . . . 135dis
ussing the spe
tral sequen
es for k � 3; for k = 2, we already showed inSe
tion 2 that the bundle stru
ture indu
ed by �3 is trivial.

0
T Æ T Æ T Æ T Æ

0 dk�1dk
E�;�2 (�3)k odd3k � 32k � 2k � 1 kk�1 2k�1 0

T Æ T ÆT Æ 
 Z2 E�;�2 (�3)k even
dk dk�13k � 32k � 2k � 10 2k�1kEp;q2 (�3) �= Hp(Vk+1;2) 
 Hq(M(A(k)n�2dU )) ; p; q � 0 :It is easy to see that E�(�3) 
ollapses in its se
ond term for both odd andeven k: The lo
ation of non-zero entries in the respe
tive tableaux suÆ
es tosee the triviality of di�erentials dr with r 6= k. The k-th 
ohomology group ofF (Sk; n) 
an be read already from the k-th diagonal in Ek+1(�3). Our resultson Hk(F (Sk; n)) (Proposition 4.2) allow to dedu
e triviality of the di�eren-tial dk as we did in Se
tion 4.1.Remark 6.1 There is a topologi
al explanation for the produ
t de
ompositionof the integer 
ohomology algebra of F (Sk; n) for even k that we obtained inTheorem 5.4: The fa
tors are the 
ohomology algebras of base spa
e and �berfor the �ber bundle stru
ture on F (Sk; n) given by �3. We showed above thatthe asso
iated spe
tral sequen
e E�(�3) 
ollapses in its se
ond term, whi
hexplains the produ
t stru
ture in 
ohomology.The 
ollapsing result on E�(�3) extends to the spe
tral sequen
es asso
iatedto the �ber maps �r for r > 3, and we 
an summarize as follows:Proposition 6.2 The spe
tral sequen
e E�(�r) of the �ber map �r(Sk; n)on the 
on�guration spa
e F (Sk; n) 
ollapses in its se
ond term unless k iseven and r equals 1 or 2. For those parameters the spe
tral sequen
e 
ollapsesin Ek+1.Proof. We are left to show the triviality of the spe
tral sequen
e E�(�r)for r > 3. This we will derive from the triviality of E�(�3), thereby involvingseveral appli
ations of the following Lemma.Lemma 6.3 [Bo2, Ch. II, Thm. 14.1℄ Let F i,! E �! B be a �ber bundlewith path-
onne
ted base B and assume that the 
ohomology of the base orthe 
ohomology of the �ber is torsion-free. Then the following assertions areequivalent: Do
umenta Mathemati
a 5 (2000) 115{139



136 Eva Maria Fei
htner and G�unter M. Ziegler(1) The system of lo
al 
oeÆ
ients on B indu
ed by � is simple and theasso
iated spe
tral sequen
e with integer 
oeÆ
ients 
ollapses in its se
ondterm.(2) The indu
ed map i� : H�(E)! H�(F ) is surje
tive.Consider the map of �ber bundles between �r(Sk; n) and �3(Sk; n) given by(id;�3(Sk; r)). For simpli
ity of notation we denote with Qt a �xed set ofpairwise distin
t points fq1; : : : ; qtg in Sk and thus write F (SknQt; n � t) forthe respe
tive �bers. The �bers are 
omplements of aÆne k-arrangements, thustheir 
ohomology algebras are torsion-free. F (Sk; n)�rF (Sk nQr; n� r) idi
F (Sk; r)

F (Sk nQ3; n� 3) i�3i�r F (Sk; n)�3F (Sk; 3)�3The 
on�guration spa
e F (Sk; 3) is simply 
onne
ted for k � 2, due to thehomotopy equivalen
e with the Stiefel manifold Vk+1;2. With the 
ollapsingresult on E�(�3) we dedu
e that i��3 is surje
tive by the equivalen
e statedabove. We are left to show that the in
lusion i between the �bers indu
es asurje
tive homomorphism in 
ohomology. Then i��r = i� Æ i��3 is surje
tive, andanother appli
ation of Lemma 6.3 yields the 
ollapsing result on E�(�r).To see that i� is surje
tive we interpret i as a 
on
atenation of in
lusions ina sequen
e of �ber maps. Namely, we 
onsider the sequen
e of �ber mapsobtained by su

essively proje
ting F (Sk nQ1; n�1) to its last 
oordinate. Wepi
ture the part of this sequen
e whi
h is relevant to our investigation:F (SknQr; n� r) jr�1�! : : : j4�! F (SknQ4; n� 4) j3�! F (SknQ3; n� 3)?????y p4 ?????y p3Sk nQ4 Sk nQ3The base spa
es of the �ber bundles given by pt, 1 � t � n � 2, are simply
onne
ted for k > 2, thus the systems of lo
al 
oeÆ
ients are simple. The sameholds for k = 2, whi
h is a result of Cohen [C2, Lemma 6.3℄. The �bers are
omplements of aÆne k-arrangements, thus their 
ohomology groups are non-trivial only in dimensions that are multiples of k � 1 [GM, Part III, Thm. B℄.For dimensional reasons, the asso
iated spe
tral sequen
es E�(pt) 
ollapse intheir se
ond terms and we 
on
lude by Lemma 6.3 that the j�t are surje
tivefor 1 � t � n�2. Thus, i� = j�r�1 Æ : : :Æj�3 is a surje
tive map, whi
h 
on
ludesour proof. 2Do
umenta Mathemati
a 5 (2000) 115{139



Cohomology Algebras of Configuration Spa
es . . . 1376.2 Triviality of the fiber bundlesThe �ber bundle stru
ture indu
ed by �3 on F (S2; n) for n � 3 is trivial(Theorem 2.1). One is led to ask: For whi
h parameters do the �ber maps �rindu
e a trivial �ber bundle stru
ture on F (Sk; n)?We observed in Se
tion 2 that the bundle stru
ture on F (Sk; 2) given by �1is equivalent to the tangent bundle over Sk. Thus, �1(Sk; 2) is a trivial �bermap if and only if Sk is parallelizable (see Hirzebru
h [H℄). This indi
atesthat the triviality question for the �ber maps �r is diÆ
ult in general.Our results on the 
ohomology algebra of F (Sk; n) for even k, k � 2, ex
ludea trivial bundle stru
ture on F (Sk; n) indu
ed by �1: There is 2-torsion inH�(F (Sk; n)) while the 
ohomology algebra of the 
artesian produ
t of basespa
e and �ber is torsion-free. However, the 
ohomology algebra of F (Sk; n)for odd k 
oin
ides with the 
ohomology algebra of the 
artesian produ
t ofbase spa
e and �ber. Su
h produ
t de
omposition might as well hold beyondthe level of 
ohomology.Re
all from previous arguments that F (Sk; 3) is �ber homotopy equivalent tothe Stiefel manifold Vk+1;2 of orthogonal 2-frames in Rk+1 , both 
onsidered as�ber bundles over Sk. Fiber bundles are trivial if and only if their asso
iatedprin
ipal bundles are trivial [St, Part I, Cor. 8.4℄. Hen
e, Vk+1;2 is a trivial�ber bundle if and only if O(k+1), 
onsidered as a �ber bundle over Sk, admitsa se
tion | whi
h again is the 
ase i� k = 1; 3 or 7. Moreover, Vk+1;2 is �berhomotopy equivalent to a trivial bundle if and only if it is trivial itself, hen
ei� k = 1; 3 or 7 [Ja, Thm. 1.11℄. We 
on
lude that F (Sk; 3) is a non-trivial�ber bundle over Sk for k 6= 1; 3 or 7.For the 1-sphere we have shown triviality of F (S1; n) as a �ber bundle over S1 inSe
tion 2. Analogously, we obtain a trivialization of the �ber bundle stru
tureon F (S3; n) given by �1, using the group stru
ture of S3. The 7-sphere doesnot 
arry the stru
ture of a topologi
al group [Bd, VI, Cor. 15.21℄. However,one 
an establish an expli
it equivalen
e of �ber bundles between F (S7; 3) andV8;2 � R7 � R, both 
onsidered as �ber bundles over S7 in the natural way.As mentioned above, V8;2 is a trivial �ber bundle over S7, and we 
an thus
on
lude triviality of F (S7; 3) over S7.Thus it remains to de
ide whether the bundle stru
ture on F (Sk; n) indu
edby �1 is trivial for n > 3 and odd k � 5.We have seen in Se
tion 2 that �3 indu
es a trivial bundle stru
ture onF (S2; n). Our 
ollapsing results on the spe
tral sequen
es E�(�3(Sk; n)) forboth odd and even k would be 
onsistent with triviality of the �ber bundlestru
ture given by �3. However, ex
ept for k = 2 this leaves us with an openquestion.Remark 6.4 After 
ompletion of this paper, we learned about re
ent workby Fadell & Husseini [FaH℄ whi
h addresses the question of 
on�gurationspa
e bundles being (�ber-homotopi
ally) trivial. The paper is mostly 
on-
erned with 
on�guration spa
es of Eu
lidean spa
es; a 
omplete dis
ussion forDo
umenta Mathemati
a 5 (2000) 115{139
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