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Polytopes and Optimization:
Recent Progress and Some Challenges!

Giinter M. Ziegler?

This is a discussion of four very active and important areas of research on the (combina-
torial) theory of (convex) polytopes related to Linear Programming and to Combinatorial
Optimization. I try to give a an account of recent progress, together with a selection of
six “challenge” problems that I hope to see solved soon:

“Bad” linear programs and some combinatorial problems they pose.
Challenge: Is there a polynomial (in n and d) upper bound for the expected number
of steps of the RANDOM EDGE simplex algorithm?
Challenge: Is the expected running time of the RANDOM EDGE simplex algorithm
on the Klee-Minty cubes really quadratic?

“Worst” linear programs — extremal problems motivated by linear programming.
Challenge: The “Monotone Upper Bound Problem”: What is the maximal number
of vertices of a monotone path on a d-dimensional polytope with n facets?

0/1-polytopes and their combinatorial structure.
Challenge: The “0/1 Upper Bound Problem”: Is the maximal number of facets of
0/1-polytopes bounded by an exponential function in the dimension?

Universality Theorems for polytopes of constant dimension.
Challenge: Can all 3-dimensional polytopes with m vertices be realized with coor-
dinates of a size that is bounded by a polynomial in m?
Challenge: Provide a Universality Theorem for simplicial 4-dimensional polytopes.

In this area of research we have a wonderful mix of Optimization (the simplex algo-
rithm for linear programming, structure of 0/1-polytopes for combinatorial optimization),
Geometry (of convex polytopes) and Combinatorics (graphs, enumeration) that poses
enough challenges for the future. ..
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Disclaimer. This discussion is (solely) concerned with the combinatorial theory of
convex polytopes, and with recent progress. It is a personal selection of topics, prob-
lems and directions that I consider to be interesting, partly because of their relations to
and origins in questions that come from Linear Programming and Combinatorial Opti-
mization. It is meant to be very informal, and cannot provide more than a sketch that
hopefully makes you ask for more details and look at the references. In particular, look
out for:

e The new edition of the “classic,” Grinbaum [14],
the updates and more offered for [27] on the Web,
Ewald’s new (1996) book [9], and
Richter-Gebert’s very recent (1997) book [24].

Notation. In the following, P C R? always is a convex polytope of dimension d
(a d-polytope) with m vertices and n facets.

1 “Bad” Linear Programs: The Klee-Minty cubes

A linear program is the task to find, with respect to a linear height function c'z, a highest
vertex of the set P C RY of solutions of a set of n linear inequalities. We use here a very
geometric setting of linear programming and the simplex algorithm (as in [27, Sect. 3.2]).
That is, with the usual reductions we may assume without loss of generality that

e P is a bounded d-dimensional polytope,

e P has n facets (all inequalities are “facet-defining”),

e P is simple (“primal non-degeneracy”),

e P has no horizontal edges (“dual non-degeneracy”); in particular, the minimal and
the maximal (“optimal”) vertex with respect to c¢'z are unique, and

e the minimal vertex of P with respect to ¢’z is known (so “Phase I is done”).

Our version of the simplex algorithm starts at the minimal vertex, and a pivot rule
(which has only “local” information) chooses a path consisting of edges of P along which
the objective function ¢’z increases strictly (a monotone path) until the optimal vertex is
reached. At the core of linear programming theory we find the following two questions:

e Is there always a short (in terms of number of edges) path to the optimal vertex?
(A very strong version of the Hirsch conjecture [27, p.87] would need such a path
that has at most n — d edges.)

e Can a simplex algorithm find one?
(Is there a pivot rule for which the number of steps is bounded by a polynomial
function of n and d? This would provide a strongly polynomial algorithm for linear
programming!)

Unfortunately, virtually every known deterministic pivot rule has been shown to be
exponential in the worst case on “deformed product programs”: see Amenta & Ziegler [1].



However, it seems that this has been proved for none of the natural randomized pivot rules.
The simplest one (to state) is the RANDOM EDGE rule: at every vertex choose, with equal
probability, one of the increasing edges that leave the vertex. Easier to analyze seems to
be the RANDOM FACET rule: if the increasing edge is not unique, choose randomly one of
the facets that contains the current vertex, restrict the program to it, and solve recursively
— for this rule one can, at least, establish sub-exponential upper bounds [17] [21].

Challenge 1 Is the expected number of steps of the RANDOM EDGE simplex algorithm
bounded by a polynomial function of n and d?

Looking for especially “bad” linear programs, one is first led to the classical examples
of linear programming theory, starting with the Klee-Minty cubes, the first and most
important “deformed product programs.” The d-dimensional Klee-Minty cube is given,
for some € with 0 < ¢ < %, by

max 2 : 0 < 2 <1
erjo1 < x; < l—exj for2<j<d

To analyze this, one has the following Klee-Minty game KM, as a perfect combinatorial
model. We start with a string of d Os (corresponding to the vertex at the origin). Then
for each step, one selects one 0 in the string, and flips this 0 together with all the bits to
its right. (Here a flip changes a 0 into a 1, and a 1 into a 0.) Thus, for d = 10, we might
get a sequence whose first six steps proceed as follows:

0000009000
0090001111
0011110900
0011110111
OiOOO?lOOO
0190010111
0111101000

The game stops when one reaches the string 1111...11 that does not have a 0. We know

e the ways to play the game KM, are in bijection with the simplex paths on the
d-dimensional Klee-Minty cube,

e the shortest game, choosing the leftmost 0, ends the game after only one step,

e the longest game, obtained if one always chooses the rightmost 0, takes 2¢ — 1 steps,
and traces the “Klee-Minty path” through all the 2¢ vertices of the d-dimensional
Klee-Minty cube,

e the average length /4 of the paths, all paths taken with equal weight, is exponential
[10] (Bousquet-Mélou [6] just announced that €4 > ¢2? for some ¢ > 0!), and

e choosing for each step one of the Os at random (with equal probability, and inde-
pendently) represents the behavior of the RANDOM EDGE simplex algorithm on the
Klee-Minty d-cube.



For example, the game above was obtained by taking the 7th out of ten available (and
equally likely) Os for the first step, the 3rd out of six available Os in the second step, the
4th out of six 0s in the third step, etc.

One can show that the expected number of steps is less than .27d? for large d from
any starting vertex (an upper bound of (d'gl) is very easy to see), while it is more than
d when starting from the zero string/vertex. That leaves a gap: what is the expected
number of steps the RANDOM EDGE rule on the Klee-Minty game KMy, if one starts with
the zero string? We don’t know! However, Gértner, Henk & Ziegler [11, 10] established
that the expected number of steps is at least Wj)—l) when starting at a random starting
vertezx.

Challenge 2 Is the expected number of steps of the RANDOM EDGE algorithm on the
Klee-Minty cubes quadratic? That is, is there a constant ¢ > 0 such that the expected
number of steps of the Klee-Minty game KMy, started at the zero string, and selecting a
random 0 for each step, is at least cd®?

2 “Worst” Linear Programs: Upper Bound Problems

But what are the “worst” linear programs for the simplex algorithm? This question leads
one, for each d and n, to consider the following hierarchy of geometric extremal problems:

fi(d,n): fa(d,n): f3(d,n):
the maximal number the maximal number the maximal number
of vertices < of vertices < of vertices

of a 2-dim. projection on a monotone path

This is a very natural hierarchy: fi(d,n) is the largest number of steps for the simplex
algorithm with the Gass-Saaty/Borgwardt shadow vertex rule [5] [18], fa(d,n) is the
largest number of steps for the simplex algorithm with the most stupid choice of pivots,
and f3(d,n) is a geometric upper bound that is known, f3(d,n) = ("Id%ﬁﬂ) + ("I(gfir)l/)g/ﬁ),
by the Upper Bound Theorem. (There is a very similar hierarchy for 0/1-polytopes; see
Section 3 and [20].)

It is not at all clear whether the hierarchy collapses, that is, whether fi(d,n) =
fa(d,n) = f3(d,n) holds for all n and d. This is true for d < 3. Also the three functions
grow similarly fast — like polynomials of degree ng for constant d, and like exponential
functions for constant %. However, for d = 4 we have indications for a gap: here we
know that (among others) the polars of cyclic polytopes achieve the maximal numbers
of f3(4,n) = n=3) vertices, they do not achieve the maximal number of vertices in a

2
2-dimensional shadow: any shadow can have at most 3n vertices [1].

Challenge 3 Determine fo(d,n): what is the mazimal number of vertices of a monotone
path on a d-dimensional polytope with n facets?



Let’s look at the first interesting case, in dimension d = 4, with n = 8 facets. The
4-dimensional cube has these parameters, with 2* = 16 vertices. The 4-dimensional Klee-
Minty cube proves that, indeed, 16 vertices of a 4-dimensional polytope with 8 facets can
lie on an increasing path. A further deformation of the Klee-Minty cubes, due to Murty
[22] and Goldfarb [12] [1] even shows that all these 16 vertices of a 4-cube can appear as
the vertices of a 2-dimensional projection.

However, the Upper Bound Theorem says that a 4-polytope with 8 facets can have as
many as 20 vertices: take, for example, any “polar of a cyclic polytope” — a polytope
denoted Cy(8)2 in [27]. Such a polytope can, for example, be written down explicitly by
using facet coordinates on the Carathéodory curve, as

cos( )y + sin(5)yr + cos(2%57)wy +sin(25 )y, < 1
Cyu(8 A = y Y1, ’ S ]R4 ? ’ i ; .
4( ) {('Tl Y1, T2 y2) for k € {071’2,...,6, 7}

(If you don’t like irrationals in your linear programs, and you shouldn’t, then there is no
problem in rounding %\/5 to %, etc.) The problem is that we do not know how to choose
a linear objective function such that we get a strictly monotone path that reaches more
than 16 vertices. In this range of parameters we might even be able to find a 2-dimensional
shadow of this polar-of-cyclic polytope that has more than 16 vertices, but we haven't,
yet.

Putting all this together we get that

16 < f1(4,8) < fo(4,8) < fa(d,n) = 20,

so the gap is evident. (Thus the gap appears well within the range of computer experi-
mentation!)

3 Extremal Properties of 0/1-Polytopes

A 0/1-polytope is a polytope of the form P = conv(V'), where V is a set of 0/1-vectors,
V C {0,1}% Every v € V is a vertex of P = conv(V), and thus P is what one calls a
subpolytope of the usual unit cube, conv({0, 1}%).

N

As an example, our figure shows an octahedron that arises as a 0/1-polytope in the unit
3-cube. However, in the study of 0/1-polytopes one should not rely too much on low-
dimensional geometric intuition: things only become interesting (and complicated) in high
dimensions.



About “general” 0/1-polytopes not much is known. However, there is a lot of details
known about the “special” 0/1-polytopes that are associated with problems of Combina-
torial Optimization such as the Travelling Salesman Problem (see Grétschel & Padberg
[13]) and the Max-Cut Problem (see Deza & Laurent [8]). However, the division be-
tween “general” and “special” 0/1-polytopes is somewhat artificial, since a recent result
of Billera & Sarangarajan [2| shows that every 0/1-polytope is (affinely equivalent to) a
face of some asymmetric TSP-polytope.

The study of general 0/1-polytopes gets some of its motivation from core problems of
Combinatorial Optimization such as TSP and Max-Cut: for example, one would like to
know to what extent the special 0/1-polytopes are “typical.” For that, it is interesting to
describe the properties of “random 0/1-polytopes” as well as extremal properties, such as
the following innocent(-looking) little “upper bound problem”:

Challenge 4 How fast does f(d) grow with d, the maximal number of facets of a d-
dimensional 0/1-polytope? In particular, is there a constant C' such that f(d) < C¢ for
all d?

For small d, one can enumerate all possibilities, and this yields f(d) = 2¢ for d < 4
and f(5) > 40. The known general bounds

et < f(d) < (d—1D)[(d-1)! +2] for all sufficiently large d

derived in [20] leave a huge gap. Here the lower bound, recently improved to 3¢ by R. Seidel
(personal communication) is derived from direct sums of “centered” 0/1-polytopes. The
upper bound uses a volume argument of I. Barany.

How can one obtain 0/1-polytopes with “many” facets? It may well be that “random”
0/1-polytopes — with the right number of vertices — have many facets, but that may be
hard to verify.

Perhaps one has more luck with very explicit constructions, such as cut polytopes?
CUT(k) C R(2) is the convex hull of the incidence vectors of all cuts of a complete
undirected graph Kj. After all, for small k£ the cut polytopes CUT(k) have “many”
facets: CUT(7) has dimension d = (}) = 21 and (1.743)¢ facets, CUT(8) has dimension
d = () = 28 and at least (1.985)" facets, while CUT(9) is currently outside the range of
computation; See Christof’s library of small polytopes SMAPO [7].

4 Universality

Realization spaces of point configurations (matroids resp. oriented matroids) as well as
of polytopes appear in various places throughout Mathematics (under different names:
moduli spaces, configuration spaces, etc.). In Optimization they appear, for example, in
the stability analysis for linear and non-linear optimization, see e.g. Giinzel, Hirabayashi
& Jongen [16].

The realization space R(P) of P is the space of all matrices that coordinatize a polytope
that is combinatorially equivalent to P, modulo affine equivalence. This space can be
presented as a space of all matrices that satisfy a certain set of “determinantal” equations
and strict inequalities, as in our example.



Example 4.1 (Pentagon) We will construct R(Cy(5)), where Cy(5) C R? is a convex
pentagon with vertices labelled 1,2,3,4,5 in counter-clockwise order. The affine equiva-

lence allows one to fix the first three vertices, for example as (Zi) = (?), (zz) = (8), and

(52) = ((1)) With this we can write down the realization space of this pentagon as
xy >0, x5 > 0,
1
REGED =3 (1 0 o 2 %) w>0  wws—wstas—wi> 0§ CRE
L0 0 ys us
Ta+ys >0, TaYs — Tsys +Ya —ys >0

Equivalently, one could fix the affine basis by explicitly fixing x1, x2, x3 and y1, Yy, y3 and
then using the conditions

1 1 1
det | =, x; x4 > 0 forall i<j<k.
Yi Yi Yk

In our figure, assume that the points 1,2,3 have been fized. The coordinate axes together
with the dashed line bound an open polyhedron, which is the set of possible positions for
the point 4. After that point has been fized, the y-azis together with the two dotted lines
bound the possible positions for 5, which again is an open polyhedron. From this one can
see that R(Cy(5)) is a 4-dimensional open semialgebraic set that has the topological type
of an open 4-ball. Also, we can inductively construct rational coordinates (with “small”
denominators and numerators) for the vertices of a pentagon. Similarly, for all m > 3
we get that R(Ca(m)) is a topological 2(m — 3)-ball with “small rational points.”

Steinitz’s fundamental and classical theorem of 1922 [26, 24] states that the realization
spaces of 3-polytopes are as “nice” as in the 2-dimensional case: they have the topological
type of (e — 6)-dimensional open balls (where e(P) denotes the number of edges).

On the algebraic side, one can derive (not from Steinitz’ proof!) that there is a
singly-exponential bound for the vertex coordinates of 3-polytopes [23]. For example, all
combinatorial types of rational 3-polytopes that have a triangle face can be realized with
their m vertices placed in {0,1,2,...,43™}3, as shown by Richter-Gebert [24]. The lower
bound for the coordinate size needed is embarassingly low: of order Q(m?%?), which is
what one needs for a pyramid over an (m — 1)-gon. This leads us to our first challenge
problem.

Challenge 5 Can all the combinatorial types of 3-dimensional polytopes be realized with
integral coordinates whose size is bounded by a polynomial in the number of vertices?

The situation in dimensions d > 4 is radically different from the 3-dimensional case.
Mnév’s Universality Theorem (1988) implies that for polytopes with d + 4 vertices the
realization spaces are “universal.” However, this does not answer the question for the
situation in any fixed dimension.

I will not give a definition of “universal” here — this is usually expanded into “can
be stably equivalent to an arbitrary primary semialgebraic set defined over Z.” Thus
“universal” implies “(nearly) arbitrarily bad,” in at least three respects:
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e in terms of topology: all homotopy types of finite simplicial complexes do occur,

e in terms of singularities: all types of singularities of primary semialgebraic sets
(defined over Z) come up, and

e in terms of arithmetic properties: rational coordinates do not always exist, and no
finite-dimensional extension of QQ suffices to find coordinates for all combinatorial

types.

[ want to emphasize here that the “right” (in many respects) definition of stably equivalent
and hence of universal is very important and original work by Richter-Gebert [24, 25];
all the previously used notions are either too strong to yield correct theorems, or they
are too weak to derive all the three types of consequences, or they are unnatural or too
difficult to handle.

In 1994, Richter-Gebert completed a result that was long sought-after: a Universality
Theorem for polytopes of some fixed dimension. (See also Giinzel [15].)

Theorem 4.2 [Richter-Gebert [24]] The realization spaces of 4-dimensional polytopes are
universal.

Challenge 6 s there a Universality Theorem for the realization spaces of simplicial
4-polytopes?

Richter-Gebert’s method cannot be applied here, since it depends on incidence the-
orems in the 2-skeleton, where simplicial polytopes don’t have any. One can, however,
expect that the realization spaces of simplicial 4-polytopes are not nice in general: on the
one hand, the realization spaces of simplicial d-polytopes with d + 4 vertices are compli-
cated (in the topological sense) [4, Sect. 6.2]; and furthermore (exactly) one “non-trivial”
example of a simplicial 4-polytope is known, the BEK polytope [3] [4, Sect. 6.2] with a
disconnected realization space.

Richter-Gebert’s work started with the analysis of some other very “small” and special
4-polytope. The crucial building block for his constructions turned out to be the 4-
dimensional polytope P with 8 facets and 10 vertices whose polar is given by this affine
Gale diagram:

The polytope P has a hexagon 2-face whose vertices necessarily (in every realization!) lie
on an ellipse, thus answering (in the negative) a problem posed in [27, Problem 5.11%].
See Richter-Gebert [24] and Richter-Gebert & Ziegler [25] for a primal picture (Schlegel
diagram) of this polytope. However, our little picture here may illustrate the power of the
theory of Gale diagrams (most of it due to Perles [14], see [27, Lecture 6]): it allows one to
analyze this interesting 4-dimensional polytope P in terms of a really simple 2-dimensional
picture!
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