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This is a discussion of five very active and important areas of research on the (combinato-
rial) theory of (convex) polytopes, with reports about recent progress, and a selection of seven
“challenge” problems that I hope to see solved soon:

Universality Theorems for polytopes of constant dimension: see Richter-Gebert’s work!
Challenge: Can all 3-dimensional polytopes be realized with coordinates of polynomial size?
Challenge: Provide a Universality Theorem for simplicial 4-dimensional polytopes.

Triangulations and subdivisions of polytopes.
Challenge: Decide whether all triangulations on a fixed point set in general position can
be connected by bistellar flips.

0/1-polytopes and their combinatorial structure.
Challenge: The “0/1 Upper Bound Problem”: Is the maximal number of facets of 0/1-
polytopes bounded by an exponential function in the dimension?

Neighborly polytopes Explicit constructions and extremal properties.
Challenge: Is every polytope a quotient of a neighborly polytope?

Monotone paths and the simplex algorithm for linear programming.
Challenge: The “Monotone Upper Bound Problem”: What is the maximal number of
vertices of a monotone path on a d-dimensional polytope with n facets?
Challenge: Is there a polynomial upper bound for the running time of the RANDOM-
EDGE simplex algorithm?

Disclaimer. This discussion is (solely) concerned with the combinatorial theory of convex
polytopes — recent progress, and it is a personal selection of topics, problems and directions
that I consider to be interesting. It is meant to be very informal, and cannot provide more
than a sketch that hopefully makes you ask for more details and look at some of the references.
Background material is in [16] and in [35]. Also watch for:

• The new edition of the “classic,” Grünbaum [16],

• the updates and more offered for [35] on the Web,

• Ewald’s new (1996) book [11], and

• Richter-Gebert’s very recent (1997) book [27].

Notation. In the following our notation will be that P ⊆ Rd is a convex polytope of dimension d
(a d-polytope) with m vertices and n facets.
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1 Universality.

The realization space R(P ) of P is the space of all matrices that coordinatize a polytope that is
combinatorially equivalent to P , modulo affine equivalence. This space can be given as a space
of all matrices that satisfy a certain set of “determinantal” equations and strict inequalities, as
in our example.

Example 1.1 (Pentagon) We will construct R(C2(5)), where C2(5) ⊆ R2 is a convex pentagon
with vertices labelled 1, 2, 3, 4, 5 in counter-clockwise order. The affine equivalence allows one to
fix the first three vertices, for example as

(

x1

y1

)

=
(

0

1

)

,
(

x2

y2

)

=
(

0

0

)

, and
(

x3

y3

)

=
(

1

0

)

. With this we
can write down the realization space of a pentagon as

R(C2(5)) =







(

0 0 1 x4 x5
1 0 0 y4 y5

)

:
x4 > 0, x5 > 0,
y4 > 0, x4y5 − x5y4 + x5 − x4 > 0,

x4 + y4 > 0, x4y5 − x5y4 + y4 − y5 > 0







⊆ R4.

Equivalently, one could fix the affine basis by explicitly fixing x1, x2, x3 and y1, y2, y3 and then
using the conditions

det





1 1 1
xi xj xk
yi yj yk



 > 0 for all i < j < k.

41
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In our figure, assume that the points 1, 2, 3 have been fixed. The coordinate axes together with
the dashed line bound an open polyhedron, which is the set of possible positions for the point 4.
After that point has been fixed, the y-axis together with the two dotted lines bound the possible
positions for 5, which again is an open polyhedron. From this one can see that R(C2(5)) is
a 4-dimensional open semialgebraic set that has the topological type of an open 4-ball. Also,
we can inductively construct rational coordinates (with “small” denominators and numerators)
for the vertices of a pentagon. Similarly, for all m ≥ 3 we get that R(C2(m)) is a topological
2(m− 3)-ball with “small rational points.”

Steinitz’s classical theorem of 1922 [31, 27] states that the realization spaces of 3-polytopes
are as “nice” as in the 2-dimensional case: they have the topological type of (e− 6)-dimensional
open balls (where e(P ) denotes the number of edges).

On the algebraic side, one can derive (not from Steinitz’ proof!) that there is a singly-
exponential bound for the vertex coordinates of 3-polytopes [25]. For example, all combinatorial
types of rational 3-polytopes that have a triangle face can be realized with theirm vertices placed
in {0, 1, 2, . . . , 43m}3, as shown by Richter-Gebert [27]. The lower bound for the coordinate size
needed is embarassingly low: of order Ω(m3/2), which is what one needs for a pyramid over an
(m− 1)-gon. This leads us to our first challenge problem.

Challenge 1 Can all 3-polytopes be realized with integral coordinates whose size is bounded by
a polynomial in the number of vertices?
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The situation in dimensions d ≥ 4 is radically different. From Mnëv’s Universality Theorem
(1988) one can derive that for polytopes with d+4 vertices the realization spaces are “universal.”
However, this does not answer the question for the situation in any fixed dimension.

I will not give a definition of “universal” here — this is usually expanded into “can be stably
equivalent to an arbitrary primary semialgebraic set defined over Z.” Thus “universal” implies
“(nearly) arbitrarily bad,” in at least three respects:

• in terms of topology: all homotopy types of finite simplicial complexes do occur,

• in terms of singularities: all types of singularities of primary semialgebraic sets (defined
over Z) come up, and

• in terms of arithmetic properties: rational coordinates do not always exist, and no finite-
dimensional extension of Q suffices to find coordinates for all combinatorial types.

I want to emphasize here that the “right” (in many respects) definition of stably equivalent
and hence of universal is very important and original work by Richter-Gebert [27, 28]; all the
previously used notions are either too strong to yield correct theorems, or they are too weak to
derive all the three types of consequences, or they are unnatural or too difficult to handle.

In 1994, Richter-Gebert completed a result that was long sought-after: a Universality The-
orem for polytopes of some fixed dimension. (See also Günzel [18].)

Theorem 1.2 (Richter-Gebert [27]) The realization spaces of 4-dimensional polytopes are
universal.

Challenge 2 Is there a Universality Theorem for the realization spaces of simplicial 4-polytopes?

Richter-Gebert’s method cannot be applied here, since it depends on incidence theorems in
the 2-skeleton, where simplicial polytopes don’t have any. One can, however, expect that the
realization spaces of simplicial 4-polytopes are not nice in general: on the one hand, the realiza-
tion spaces of simplicial d-polytopes with d+4 vertices are complicated (in the topological sense)
[4, Sect. 6.2]; and furthermore (exactly) one “non-trivial” example of a simplicial 4-polytope is
known, the BEK polytope [3] [4, Sect. 6.2] with a disconnected realization space.

Richter-Gebert’s work started with the analysis of some other very “small” and special
4-polytope. The crucial building block for his constructions turned out to be the 4-dimensional
polytope X∗ with 8 facets and 12 vertices whose polar is given by this affine Gale diagram:

The polytope X∗ has a hexagon 2-face whose vertices satisfy a projective condition: two “oppo-
site” edges and the corresponding diagonal intersect in one point (or are parallel), thus answering
(in the negative) a problem posed in [35, Problem 5.11∗]. See Richter-Gebert [27, p. 91] for a
primal picture (Schlegel diagram) of this polytope. However, our little picture here may illus-
trate the power of the theory of Gale diagrams (most of it due to Perles [16], see [35, Lecture
6]): it allows one to analyze this interesting 4-dimensional polytope P in terms of a really simple
2-dimensional picture!
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2 Triangulations and Bistellar Flips.

Fix a finite set V ⊆ Rd and let P := conv(V ) be its convex hull. For most of this section we will
assume that V is in general position (i.e., no d+1 of the points are contained in a hyperplane),
in order to make the following definitions as simple as possible. A triangulation of V is a
triangulation of P whose vertex set is contained in V . (A nice new survey on triangulations of
polytopes is Lee [23].)

A (bistellar) flip in a triangulation is a certain type of local change: In the general position
case this operation replaces a subcomplex that represents the d-dimensional “picture of” a front
side of a (d+ 1)-dimensional simplex by its back side.

A triangulation is regular if it is a “correct” picture of the front side of a simplicial (d+ 1)-
polytope. This is a global property that may be destroyed (or created) by a flip.

For example, our next figure represents a planar set V of 11 points, whose convex hull is
a 7-gon. The straight lines indicate a triangulation that uses only 10 of the 11 points. One
dotted line (that would replace the straight line it crosses) represents one possible flip that one
could visualize as replacing the two front faces of a tetrahedron by its two back faces. Both
triangulations of the figure (before and after the flip) are regular (Exercise!).

Triangulations are of tremendous importance for topics that range from the construction of
splines (PDE, CAD, . . . ) to algebraic geometry (the resolutions of toric varieties). In view of
this there is a surprising variety of very basic, very interesting and very open problems connected
to the set of triangulations of a finite point set V .

To describe some of these, we consider the graph G(V ) whose vertex set is the (finite) set of
all triangulations of V , and whose edges correspond to all possible bistellar flips. For example,
if V is the vertex set of a pentagon, then the graph G(V ) that one obtains is a five-cycle, as one
can see from our figure.

The induced subgraph of G(V ) that contains the regular triangulations of V and their bistellar
flips will be denoted by Gr(V ).
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Theorem 2.1 (Gel’fand-Kapranov-Zelevinsky [14]) For every set V ⊆ Rd of m > d points
the graph of regular triangulations Gr(V ) is the graph of an (m − d − 1)-dimensional polytope,
the “secondary polytope” Σ(V ).

Thus (by “Balinski’s Theorem”) the graph Gr(V ) is (m−d−1)-vertex-connected; in particular,
it is connected and its minimum degree is at least m−d−1. The following configuration (found
in 1996, see also [7]) indicates that the same is not true if we consider the complete graph G(V ).

Example 2.2 (de Loera, Santos & Urrutia [8]) For d = 3 and m = 13, let V consist of
the 12 midpoints of edges and of the center of a regular cube. Then P is a polytope (truncated
cube) whose boundary may be triangulated by adding 6 additional, independent edges, as in our
figure:

(The same figure can be found in Coxeter [6, p.152]!) From this we obtain a triangulation of P
for which every tetrahedron uses the center point of the original cube. (This is a triangulation
with 13 vertices, 30 + 12 = 42 edges, 20 + 30 = 50 triangles and 20 tetrahedra.) It is easy to
check that only 6 = m−d−4 flips are possible. (Thus, in particular, the triangulation cannot be
regular.) The point configuration can be perturbed to general position, maintaining this property.
It can also be lifted to a (d′ = 4)-configuration of m′ = 14 points in convex position R4, where
we still have only 6 = m′ − d′ − 4 flips.

This was an example with “few” flips: but is there always at least one flip possible?

Challenge 3 Given m points in Rd (in general position), is the graph of all triangulations
connected by bistellar flips?

This is known to be true for d ≤ 2. It was proved for m − d ≤ 3 by Lee [22], who showed
that then all triangulations are regular. For all cyclic polytopes Cd(m) it is true by very recent
work of Rambau [26]; except for that, the problem is open. I expect a negative answer.

In the case of cyclic polytopes one can use the “higher Stasheff-Tamari posets” introduced by
Edelman & Reiner [10], natural partial orders on the set of all triangulations of a cyclic polytope
Cd(m), by putting them into correspondence with triangulated hypersurfaces in Cd+1(m):

hypersurfaces in Cd+1(m)
l l l l

triangulations of Cd(m)

Rambau’s proof proceeds by establishing a sequence of simple properties of cyclic polytopes and
their triangulations: interestingly enough, many of them are easily seen to be false in general.
For example, a key step is to establish that for the (d + 1)-simplices of Cd+1(m), the “on top
of” relation generates a partial order. (This is false for a perturbation of the “capped prism”
of Lee [23, Sect. 3.3].) But the fact that proofs don’t generalize doesn’t show that the general
conjecture is false. . .
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3 Extremal Properties of 0/1-Polytopes.

A 0/1-polytope is a polytope of the form P = conv(V ), where V is a set of 0/1-vectors, V ⊆
{0, 1}d. Every v ∈ V is a vertex of P = conv(V ), and thus P is what one calls a subpolytope of
the usual unit cube, conv({0, 1}d).

As an example, our figure shows a square pyramid that arises as a 0/1-polytope in the unit
3-cube. However, in the study of 0/1-polytopes one should not rely too much on low-dimensional
geometric intuition: things only become interesting (and complicated) in high dimensions.

About “general” 0/1-polytopes not much is known. However, there are many details known
about the “special” 0/1-polytopes that are associated with problems of combinatorial optimiza-
tion such as the Travelling Salesman Problem (see Grötschel & Padberg [15]) and Max-Cut
Problems (see Deza & Laurent [9]). However, the division between “general” and “special”
0/1-polytopes is somewhat artificial, since a recent result of Billera & Sarangarajan [2] shows
that every 0/1-polytope is (affinely equivalent to) a face of some asymmetric TSP-polytope.

The study of general 0/1-polytopes gets some of its motivation from core problems of com-
binatorial optimization such as TSP and Max-Cut: for example, one would like to know how
“typical” the special 0/1-polytopes are. For that, it is interesting to describe the properties of
“random 0/1-polytopes” as well as extremal properties, such as the following innocent(-looking)
little “upper bound problem”:

Challenge 4 How fast does f(d), the maximal number of facets of a d-dimensional 0/1-polytope
grow with d? In particular, is there a constant C such that f(d) < Cd for all d?

For small d, one can enumerate all possibilities, and this yields f(d) = 2d for d ≤ 4 and
f(5) ≥ 40. The best known general bounds (as of January 1997),

(3.26)d < f(d) ≤ 6.4 d!√
d

for all sufficiently large d,

leave a huge gap. Here the lower bound is derived from direct sums of “centered” 0/1-polytopes,
see [21]. The constant 3.26 is derived from a specific example of a 12-dimensional 0/1-polytope
with 1489211 facets — see [20] for this and other current records in small dimensions. The upper
bound, by G. Rote [29] uses estimates for the volume and the surface area.

How can one obtain 0/1-polytopes with “many” facets? It may well be that “random” 0/1-
polytopes — with the right number of vertices — have many facets, but that may be hard to
verify.

Perhaps one has more luck with very explicit constructions, such as cut polytopes? Here

CUT(k) ⊆ R(
k

2
) is the convex hull of the incidence vectors of all cuts of a complete undirected

graph Kk. After all, for small k the cut polytopes CUT(k) have “many” facets: CUT(7) has
dimension d =

(

7

2

)

= 21 and (1.743)d facets, while CUT(8) has dimension d =
(

8

2

)

= 28 and at
least (1.985)d facets, where CUT(9) is currently outside the range of computation; See Christof’s
library of small polytopes SMAPO [5].
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4 Constructing Neighborly Polytopes.

Neighborly polytopes (4-polytopes such that any two vertices are adjacent; 6-polytopes such
that every set of three vertices determines a triangle 2-face, etc.) are important. They have a
prominent role in the theory of convex polytopes due to their extremal properties in terms of
their numbers of faces, as given by the Upper Bound Theorem of McMullen [35, Thm. 8.23],
which got a notable strengthening recently in Novik [24].

Neighborly polytopes exist; in fact, the cyclic polytopes Cd(n) — our prime examples —
are easy to write down in explicit coordinates (using the moment curve) and to analyze (using
Vandermonde determinants). Also, we know that there are really many neighborly polytopes
(Shemer [30]) and in some models of random polytopes it seems that even random polytopes are
often neighborly. Gale wrote “the likelihood of getting a neighborly polytope increases rapidly
with the dimension of the space” a long time ago [13, p. 262], but despite several attempts this
has not been proven in any form.

In fact, it is not that easy to write down many neighborly polytopes. However, in recent work
Kortenkamp [19] has provided a new method to construct neighborly polytopes with m = d+4
vertices — they can be constructed and analyzed in terms of their 2-dimensional affine Gale
diagrams. For this, take any finite configuration of m “black” points in the plane (no three on a
line). From it we get a “balanced” configuration of m+ 1 black points and m− 1 white points:

Here a configuration of points in general position is “balanced” if for every hyperplane spanned
by some of them one has

surplus of black points on one side = surplus of white points on the other side.

This condition also characterizes the Gale diagrams of neighborly polytopes, and thus (with the
usual gymnastics and formalism of Gale diagrams) our little figure proves the following theorem.

Theorem 4.1 (Kortenkamp [19]) Every simplicial d-polytope with m ≤ d+4 vertices is equi-
valent to a quotient (iterated vertex figure) of a neighborly (2d+4)-polytope with 2d+8 vertices.

To extend this result to arbitrary simplicial polytopes one “only” needs a construction that
embeds every point configuration in general position in Rd into a “balanced” configuration.

Challenge 5 (Perles [16, 32]) Is every simplicial d-polytope (with vertices in general posi-
tion) a quotient (iterated vertex figure) of a neighborly polytope?

Note, however, that some simple-sounding embedding problems are notoriously difficult, such
as the problem of embedding any matroid of rank 3 into a finite projective plane (this is believed
to be possible; see Wanner & Ziegler [34]), or the problem of embedding every line arrangement
in the plane into a simplicial line arrangement (this is believed to be impossible in general; see
Grünbaum [17, p. 9]).
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5 Monotone Paths on Polytopes.

A linear program is the task to find, with respect to a linear height function ctx, a highest vertex
of the set P ⊆ Rd of solutions of a set of n linear inequalities. We deal here with a very geometric
setting of linear programming and the simplex algorithm (as in [35, Sect. 3.2]). That is, with
the usual reductions we may assume without loss of generality:

• P is a bounded d-dimensional polytope,

• P has n facets, all inequalities are facet-defining,

• P is simple (“primal non-degeneracy”),

• P has no horizontal edges (“dual non-degeneracy”), so that in particular the minimal and
the maximal (“optimal”) vertex with respect to ctx are unique, and

• the minimal vertex of P with respect to ctx is known (“Phase I is done”).

Our version of the simplex algorithm starts at the minimal vertex, and a pivot rule (which has
only “local” information) chooses a path consisting of edges that improve the objective function
ctx (a monotone path) until the optimal vertex is reached. At the core of linear programming
theory we find the following two questions:

• Is there always a short (in terms of number of edges) path to the optimal vertex?
(A very strong version of the Hirsch conjecture [35, p.87] would need such a path that has
at most n− d edges), and

• Can a simplex algorithm find one?
(Is there a pivot rule for which the number of steps is bounded by a polynomial function
of n and d? This would provide a strongly polynomial algorithm for linear programming!)

Unfortunately, virtually every deterministic pivot rule has been shown to be exponential in the
worst case on certain “deformed product programs”: see Amenta & Ziegler [1]. However, it
seems that this has been proved for none of the natural randomized pivot rules. The simplest
one (to state) is the RANDOM-EDGE rule: at every vertex choose, with equal probability, one
of the increasing edges that leave the vertex.

Challenge 6 Is the expected number of steps of the RANDOM-EDGE simplex algorithm
bounded by a polynomial function of n and d?

Looking for especially “bad” linear programs, one is first led to the classical examples of linear
programming theory, starting with the Klee-Minty cubes: Here RANDOM-EDGE is polynomial,
with quadratic upper bound (which is easy to see) and with a nearly-quadratic lower bound
(which takes some effort to show [12]).

But what are the “worst” linear programs for the simplex algorithm? This question leads
one, for each d and n, to consider the following hierarchy of geometric extremal problems:

f1(d, n):

the maximal number
of vertices

of a 2-dim. projection

≤

f2(d, n):

the maximal number
of vertices

on a monotone path

≤

f3(d, n):

the maximal number
of vertices

This is a very natural hierarchy: f1(d, n) is the largest number of steps for the simplex
algorithm with the Gass-Saaty/Borgwardt shadow vertex rule, f2(d, n) is the largest number of
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steps for the simplex algorithm with the most stupid choice of pivots, and f3(d, n) is a geometric
upper bound that is known, by the Upper Bound Theorem. (There is a very similar hierarchy
for 0/1-polytopes; see Section 3 and [21].)

It is not at all clear whether the hierarchy collapses, that is, whether f1(d, n) = f2(d, n) =
f3(d, n) holds for all n and d. This is true for d ≤ 3. Also the three functions grow similarly fast
— like polynomials of degree ⌊d

2
⌋ for constant d, and like exponential functions for constant n

d .
However, for d = 4 we have indications for a gap: here we know that polars of cyclic polytopes
achieve the maximal numbers of f3(d, n) vertices, they do not achieve the maximal number of
vertices in a 2-dimensional shadow [1].

Challenge 7 Determine f2(d, n): what is the maximal number of vertices of a monotone path
on a d-dimensional polytope with n facets?

In this area of research we have a wonderful mix of optimization (LP: simplex algorithm),
geometry (polytopes) and combinatorics (graphs, enumeration) that poses enough challenges for
the future. . .
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[12] B. Gärtner, M. Henk & G. M. Ziegler: Randomized simplex algorithms on Klee-
Minty cubes, Preprint, TU Berlin, May 1996, 21 pages.

[13] D. Gale: Neighboring vertices on a convex polyhedron, in: “Linear Inequalities and
Related Systems” (H. W. Kuhn and A. W. Tucker, eds.), Annals of Math. Studies 38,
Princeton University Press, Princeton 1956, pp. 255-263.

9



[14] I. M. Gel’fand, M. M. Kapranov & A. V. Zelevinsky: Discriminants of polynomials
in several variables and triangulations of Newton polyhedra, Leningrad Math. Journal 2
(1991), 449-505.

[15] M. Grötschel & M. Padberg: Polyhedral Theory/Polyhedral Computations, in:
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, D. B. Shmoys (eds.), “The Travel-
ing Salesman Problem”, Wiley 1988, 251-360.
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