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Abstract. We provide lower and upper bounds for the maximal number of facets of a
d-dimensional 0/1-polytope, and for the maximal number of vertices that can appear in
a 2-dimensional projection (“shadow”) of such a polytope.

1. Introduction

The combinatorics of 0/1-polytopes is at the core of many investigations of Combinatorial
Optimization. In fact, the field of “Polyhedral Combinatorics” is concerned with classes
of facets and other combinatorial structure of “special” 0/1-polytopes that are given as
the convex hulls of the characteristic vectors of solutions of certain problem classes. In
particular — just to mention one well-studied classical case — quite a lot is known about
the facet structures of traveling salesman polytopes: see Grötschel and Padberg [7].

Much less is known about “general” 0/1-polytopes. However, it seems that the “spe-
cial” polytopes of Combinatorial Optimization can’t be much simpler: so Billera and
Sarangarajan [2] have recently demonstrated that in the very special class of asymmetric
traveling salesman polytopes one encounters every 0/1-polytope as a face.

In the following, we discuss two classes of extremal problems for general 0/1-polytopes
that arise from complexity considerations in Combinatorial Optimization.

1.1. The maximal number of facets. The first section of the Grötschel and Padberg
chapter on “Polyhedral Computations” for the traveling salesman problem [7] is titled
“1.1: The number of facets of TSP polytopes and algorithmic implications.” Grötschel
and Padberg note that traveling salesman polytopes have “many” facets. To get a better
notion of “many,” estimates on the numbers of facets of general 0/1-polytopes are needed.
Grötschel and Padberg use a very crude upper bound, namely that a d-dimensional 0/1-
polytope cannot have more than

f(d) ≤
(

2d

d

)
≈ 2d

2

facets, since every facet is determined by a set of d vertices. A much better bound was
given by Bárány [13, Problem 0.15*]: f(d) ≤ d!+2d. Below — in Section 2 — we slightly
improve Bárány’s bound, to

f(d) ≤ d!− (d−1)! + 2(d−1)

for d ≥ 3.
Still, all the lower bounds we can offer are singly exponential. While f(d) ≥ 2d is easy

to see (from the cross polytopes realized as 0/1-polytopes), we obtain

f(d) ≥ (2.76)d
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for all sufficiently large d.
So, what does “many facets” mean? Let’s take the (symmetric) traveling salesman

polytopes Qn
T as our benchmark, a polytope of dimension d = n(n− 3)/2 with (n− 1)!/2

vertices. For n = 8 this is a 20-dimensional polytope with 194 187 ≈ (1.8383)20 facets [5],
while we can construct a polytope T20 of dimension 20 with as many as

f(20) ≥ 690 953 796 ≈ (2.76)20

facets. Still, the upper bound we have gives

f(20) ≤ 2 311 256 907 767 808 038 ≈ (8.2)20.

Similarly, in the case of 120 city problems, the TSP-polytope Q120
T has dimension d =

7020. The number of facets of this polytope is not known; Grötschel and Padberg note
that a class of more than 2·10179 ≈ (1.0606)d facets (“comb constraints”) is known. At
the same time, we can construct a 0/1-polytope T7020 of the same dimension that has
more than 6·103101 ≈ (2.76)d facets.

1.2. The size of a 2-dimensional shadow. For any class of polytopes P one has the
following quantities:

M(P): the maximal number of vertices,
H(P): the maximal number of vertices on a path that is strictly increasing with

respect to a linear function (an increasing path),
Hsh(P): the maximal number of vertices on a 2-dimensional projection (“shadow”).

For the class Pd of all d-dimensional 0/1-polytopes we have

1

2
Hsh(Pd) + 1 ≤ H(Pd) ≤ M(Pd) = 2d.

(For the class P(d, n) of d-dimensional polytopes with at most n facets the corresponding
hierarchy was analyzed in [1].)

In Section 3 we give exponential (lower and upper) bounds for the quantity Hsh(Pd).
The motivation for this study comes from Linear Programming. The number of non-
degenerate pivots that the simplex algorithm with the shadow boundary (or Gass-Saaty)
pivot rule [4] can take on a 0/1 problem is bounded by d1

2
Hsh(Pd)e from below and

Hsh(Pd) − 1 from above. This is 1 less than the maximal number of different basic
solutions (i.e., vertices of the polytope) that the algorithm may visit. (However, since
0/1-polytopes are in general very degenerate, this does not bound the maximal number
of pivots, or of basic solutions encountered.)

Is there any polynomial augmentation method on 0/1-polytopes? This is of interest
since edge paths of polynomial length can be constructed from any augmentation oracle
(i.e., a subroutine that provides a “better” vertex for any non-optimal input, as in [11])
that would output only augmentation vectors that correspond to edges. Is there any
strategy that on a 0/1-polytope would need only a polynomial number of non-degenerate
pivots?

2. The maximal number of facets

Let f(d) be the largest number of facets of a d-dimensional 0/1-polytope. It is easy to see
that it is sufficient to consider d-dimensional 0/1-polytopes that are subsets of Rd. We
call a 0/1-polytope P ⊆ Rd centered if (1

2
, . . . , 1

2
) is in its interior. Let f ′(d) be the largest

number of facets of a centered d-dimensional 0/1-polytope; we have f ′(d) ≤ f(d) for all d,
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by definition. For small dimensions we have the following values (derived below):

f ′(d) = f(d) = 2d for d ≤ 4,
40 ≤ f ′(5) ≤ f(5) ≤ 104,

121 ≤ f ′(6) ≤ f(6) ≤ 610.

We use the following “direct sum” construction.

Proposition 2.1. For i ∈ {1, 2} let Pi = conv(Vi) ⊆ Rdi be di-dimensional centered
0/1-polytopes. Then there is a centered (d1 + d2)-dimensional 0/1-polytope, denoted

P1 ⊕ P2 := conv(V1)⊕ conv(V2) ⊆ Rd1+d2 ,

called the direct sum of V1 and V2, that has

fd1+d2−1(P1 ⊕ P2) = fd1−1(P1) · fd2−1(P2)

facets.

Proof. We use the embedded 0/1-cubes

conv({x ∈ {0, 1}d1+d2 : x1 = x2 = . . . = xd1 = xd1+1}) =: C ′d2
∼= Cd2

conv({x ∈ {0, 1}d1+d2 : 1− xd1 = xd1+1 = . . . = xd1+d2}) =: C ′d1
∼= Cd1

in the (d1+d2)-dimensional 0/1-cube that are positioned in two orthogonal affine subspaces
of Rd1+d2 that intersect in (1

2
, . . . , 1

2
). Lifting P1 and P2 to 0/1-subpolytopes of C ′d1 resp.

C ′d2 we obtain the usual “free sum” construction for polytopes (cf. [8, 9]) as a construction
for centered 0/1-polytopes.

Starting from C1 = [0, 1] ⊆ R and f ′(1) = f(1) = 2 we thus obtain a d-dimensional
0/1-polytope

C∆′
d := C1 ⊕ C1 ⊕ · · · ⊕ C1

with 2d facets that realizes the d-dimensional cross polytope as a 0/1-polytope:

C∆
d
∼= conv({e1, . . . , ed,1− e1, . . . ,1− ed})
= conv

({∑
i∈A
ei : |A| ∈ {1, d− 1}

})
.

This yields
f(d) ≥ f ′(d) ≥ 2d

for all d. The fact that equality f(d) = 2d holds for d ≤ 4 is checked by complete
enumeration. Such an enumeration (not complete) provided also the example that proves
f ′(5) ≥ 40, here given as PORTA-input:
DIM = 5

CONV_SECTION

0 0 0 0 0

1 0 1 0 0

1 1 1 0 0

0 1 0 1 0

0 1 1 1 0

0 0 1 0 1

0 0 1 1 1

1 0 0 1 0

1 0 0 1 1

0 1 0 0 1

1 1 0 0 1

1 1 1 1 1
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END

For d = 6, 7, and 8 the polytopes with the most facets that we know are obtained by
the following construction:

Sd :=


either |A| ∈ {1, d− 1},∑

i∈A
ei or |A| > 0 is even and A ⊆ {1, 2, . . . , bd

2
c},

or |A| > 0 is even and A ⊆ {bd
2
c+ 1, . . . , d}.


By computing the convex hull of S10, which is indeed 10-dimensional, we find 10 829 ≈
(2.531971631)10 facets.

In higher dimensions, d ≥ 9, both R. Seidel and one of the referees noted that it is
better to take a “random” polytope. By computing the convex hull of a set of 88 random
0/1-vectors in Rd we found a centered polytope R10 having 26 286 ≈ (2.7667661)10 facets.
For the coordinates and data of our best examples of 0/1-polytopes with many facets,
including R10, we refer to [10].

Taking an appropriate direct sum

Td :=
⊕
bd/10c

R10 ⊕
⊕

d mod 10

C1

we obtain the following.

Corollary 2.2. For d ≥ 0 one has

f(d) ≥ f ′(d) ≥ (26 286)bd/10c2d mod 10.

Thus f(d) > (2.76)d for all sufficiently large d.

Upper bounds for f(d) can be obtained from a volume argument due to I. Bárány [13,
p. 25, Problem 0.15*] that we slightly refine with

Theorem 2.3. The maximal number of facets f(d) of a d-dimensional 0/1-polytope sat-
isfies

f(d) ≤ d!− (d−1)! + 2(d−1), for d ≥ 3.

Proof. Let P be a d-dimensional 0/1-polytope. We can obtain conv({0, 1}d) from P
by successive addition of 0/1-vertices, thus destroying all but the “trivial” facets of P .
However, whenever a facet Fi of P is “destroyed” a cone over Fi is added. This cone is
a d-dimensional 0/1-polytope, whence its volume is at least 1/d!. Since the process stops
at the d-dimensional 0/1-cube with 2d facets and volume 1, we get

fd−1(P ) ≤ 2d+ d! (1− vol(P )).(1)

On the other hand, P can be triangulated without new vertices, say into t simplices of
dimension d. Each of these simplices has volume at least 1/d!, hence

t ≤ d! vol(P )

Each simplex has d+ 1 facets. The dual graph of the triangulation is connected; it has t
nodes, hence at least t − 1 edges. From this we get that at least 2(t − 1) simplex facets
are between simplices, so at most t(d+1)−2(t−1) simplex facets are in the surface of P .
Since each facet of P is a union of simplex facets, we obtain

fd−1(P ) ≤ t(d− 1) + 2

and hence
fd−1(P ) ≤ 2 + (d− 1)d! vol(P ).(2)
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Figure 1: The subset P of the 22 × 24-grid.

Addition of inequality (2) to the (d − 1)-fold of (1) cancels the summands that involve
the volume; we obtain

dfd−1(P ) ≤ 2 + 2d(d−1) + (d−1)d!.

Division by d and rounding down the right-hand side (since the left hand side is integral)
yields the result.

3. The complexity of two-dimensional shadows

The fact that H(Pd), the maximal number of vertices on an increasing path, is exponen-
tial follows already from the fact that there are 0/1-polytopes with exponentially many
vertices, such that any two vertices are adjacent. So, for any generic linear function there
is an increasing path through all the vertices. For an example “occuring in nature” (where

the natural place for polytopes is Combinatorial Optimization) put P := conv(V ) ⊆ Rk2 ,
with

V := {xxt : x ∈ {0, 1}k, xk = 1}.
This yields the boolean quadric polytope or cut polytope P of dimension d < k2 with 2k−1

vertices, of which any two are adjacent [3]. In fact, for any yyt, zzt ∈ V we can find a
linear function x 7−→ atx such that aty = atz = 0, but atx 6= 0 for any x ∈ {0, 1}k with
xk = 1 and x 6= y, z. The scalar product with aat defines a linear function on P, where

〈aat, xxt〉 :=
k∑
i=1

k∑
j=1

(aat)ij(xx
t)ij =

( k∑
i=1

aixi

)( k∑
j=1

ajxj

)
= (atx)2 ≥ 0,

with equality if and only if x = y or x = z. This gives us H(Pd) ≥ 2
√
d. See below for an

improvement that yields a genuinely exponential lower bound.

3.1. A lower bound for Hsh(Pd). We give a proof for a lower bound on the maximal
number of extremal vertices in the two-dimensional shadow of a 0/1-polytope. It relies
on a special projection of the d-cube Cd onto a regular grid. We will choose a suitable
subset of the projected points that lies in convex position.

Let us consider the following projection π : Rd → R2 for d = 3k and k a positive
integer: The first k coordinates xi are projected to (2i−1, 0) for 1 ≤ i ≤ k. The remaining
2k coordinates xi are projected to (0, 2i−(k+1)) for k + 1 ≤ i ≤ d. By π we obtain a
bijection between the vertices of the d-cube and the vertices of a 2k × 22k integer grid G.

Now we take the subset of vertices of Cd which corresponds to the subset S of the grid
with

S = {(i, i2) | 0 ≤ i ≤ 2k − 1} ∪ {((2k − 1− i), 22k − 3− i2) | 0 ≤ i ≤ 2k − 1} ⊆ G.

S is the set of grid points of a standard parabola, together with a rotated copy (see
Figure 1).

It is obvious that this subset yields a projection with all vertices being extremal, and
since we have |P | = 2 · 2k we have a lower bound for the maximal number of extremal
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Dimension Lower Bound Construction Upper Bound
d (for all d, Thm. 3.1) (for small d only) (Corollary 3.3)

1 — 2 4
2 — 4 6
3 — 6 10
4 8 10 16
5 8 14 24
6 8 18 38
7 16 22 58
8 16 32 88
9 16 42 138
10 32 52 210
11 32 66 320
12 32 82 500

Table 1: A comparison of the lower bound valid for all d, an ex-
plicit construction given by the projection vectors (2i, 2d−i−1) for
i = 0, . . . , d−1 that we could only calculate up to d = 12, and the
upper bound as given by Corollary 3.3, where the minimization
step was done explicitly.

vertices in the two dimensional projection of a d-dimensional 0/1-polytope Hsh(Pd) ≥
2k+1. This bound may be refined either by using the slightly less growing convex function
i 7→

(
i
2

)
instead of the parabola, or by simply using the fact that the least significant bit

(LSB) in the bit representation of i resp. i2 is the same and the second LSB of i2 is always
0, which we can use to squeeze the number of bits needed to represent the parabola and
its mirror image, given d ≥ 4. This yields

Theorem 3.1. The maximal number of extremal vertices Hsh(Pd) of the two-dimensional
shadow of a d-dimensional 0/1-polytope is bounded from below for d ≥ 4 by

2b
d+5
3
c ≤ Hsh(Pd).

We would like to mention a rather similar, although more indirect method to show the
same asymptotic lower bound. For this, project Cd for d = 2k to a regular 2k × 2k-grid
with projection vectors (2i, 0) and (0, 2i) for i = 0, . . . , k − 1. Using [12, Satz 4.1.9] we

find a convex polygon with 12
(2π)2/3

n2/3 +O(n
1
3 log n) extremal vertices on the grid, where

n = 2k. However, comparison of the explicit calculations for certain grid sizes as worked
out by Thiele with the bound given by Theorem 3.1 shows no substantial difference, while
there are constructions that yield much better lower bounds (see Table 1).

The same technique as shown above can be used to prove an truly exponential bound for
H(Pd), as was pointed out by one referee: Take a projection of the (d=10k)-dimensional
cube to the 2k × 22k × 23k × 24k integer grid and choose 2k vertices on the grid which
are the vertices of a cyclic 4-polytope. The convex hull of the preimages of these is a
1-neighborly 0/1-polytope, and so H(Pd) > 2d/10.

3.2. An upper bound for Hsh(Pd). We derive upper bounds for Hsh(Pd) by relating
this to a problem on set systems.

A collection of sets S ⊆ 2[d] is said to have property (SYM) if the pairs (A\B,B\A)
are distinct for all A,B ∈ S with A 6= B. We define

X(d) = max{|S| : S ⊆ 2[d] satisfies (SYM)}.
We note that the projection of a d-dimensional 0/1-polytope is described by a collection

of d points P = {p1, . . . , pd} in the plane. If pi is the image of the unit vector ei ∈ Rd,
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then the image of a general 0/1-vector with support S is P(S) =
∑

i∈S pi. This defines a
collection of at most 2d points

2P := {P(S)|S ⊆ [d]}.

If g(P , d) is the largest number of points in 2P in convex position, then

Hsh(Pd) = max
P

g(P , d).

For subsets S1, S2 ⊆ [d], the vector joining P(S1) and P(S2) is

P(S2)− P(S1) = P(S2\S1)− P(S1\S2)

which corresponds to the ordered pair (S2\S1, S1\S2), and at most two copies of such
a vector can appear in any (strictly convex) polygon with vertices in 2P . In fact, by
discarding half the vertices of the polygon, we ensure that each vector joining pairs of
vertices appears exactly once. Then the subsets corresponding to the vertices of the
polygon satisfy (SYM). We have thus shown that the functions Hsh(Pd) and X(d) are
related by

Hsh(Pd)/2 ≤ X(d).

Thus it suffices to find an upper bound for X(d) in order to bound Hsh(Pd). We first
establish the following simple bound for X(d): If S ⊆ 2[d] satisfies (SYM) and |S| = k,
then k(k − 1) ≤ 3d, since the total number of disjoint pairs of subsets (A,B) in [d] is 3d.
Hence X(d) ≤ 2 3d/2. We improve this bound in the following result.

Theorem 3.2.

X(d) ≤ (1 +
√

3) 2d
log 3
log 6 .

Corollary 3.3.

Hsh(Pd) ≤ 2(1 +
√

3) 2d
log 3
log 6 .

Proof. Let S ⊆ 2[d] be a collection of sets satisfying (SYM). For a k-subset T ⊆ [d], let
N(T ) be the number of pairs (A,B) with A,B ∈ S and A\B,B\A ⊆ T . Let T̄ = [d]\T
be the complement of T and let m = 2d−k. We count N(T ) by partitioning S into
subcollections S1, . . . ,Sm in such a way that A,B ∈ Si if and only if A∩ T̄ = B∩ T̄ . Thus
A,B ∈ Si implies that A\B,B\A ⊆ T . If |Si| = di, then

d1(d1 − 1) + · · ·+ dm(dm − 1) = N(T ) ≤ 3k,
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since the number of disjoint pairs of subsets in T is at most 3k. Thus, using the arithmetic-
geometric mean inequality twice, we get

|S| = d1 + · · ·+ dm

= (d1 −
1

2
) + · · ·+ (dm −

1

2
) +

m

2

= m

(
1

2
+

(d1 − 1
2
) + · · ·+ (dm − 1

2
)

m

)

≤ m

1

2
+

√
(d1 − 1

2
)2 + · · ·+ (dm − 1

2
)2

m


=

m

2
+
√
m

√
d1(d1 − 1) + · · ·+ dm(dm − 1) +

m

4

≤ m

2
+
√
m

√
3k +

m

4

≤ m+
√

3km

= 2d−k +
√

2d−k3k.

The right hand side is minimized when 3k = 2d−k. Hence choosing k = dd log 2/ log 6e
we get

|S| ≤ (1 +
√

3) 2d log 3/ log 6

as desired.

We conjecture that X(d) = 2( 1
2

+o(1))d. A lower bound of the order of 2d/2 can be con-
structed for X(d) by relating this problem to the existence of Sidon sets in the following
sense. A Sidon set is a set of integers such that all pairs have distinct sums. By associ-
ating a set S ⊆ [d] with the number 1 +

∑
i∈S 2i−1, we get a one-to-one correspondence

between the subsets of [d] and the elements of [2d]. Then, given a Sidon subset of [2d],
the corresponding collection of sets in [d] satisfy (SYM). A Sidon subset of [2d] of size
2d/2− c25d/16 has been constructed in [6]. While the lower bound for X(d) does not reveal
any further information on the shadow vertex problem, it is of interest in its own right.
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