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Abstract

We present a construction of deformed products of polytopes that has as special cases all
the known constructions of linear programs with “many pivots,” starting with the famous
Klee-Minty cubes from 1972.

Thus we obtain sharp estimates for the following geometric quantities for d-dimensional
simple polytopes with at most n facets:

e the maximal number of vertices on an increasing path,
e the maximal number of vertices on a “greedy” greatest increase path, and
e the maximal number of vertices of a 2-dimensional projection.

This, equivalently, provides good estimates for the worst-case behaviour of the simplex al-
gorithm on linear programs with these parameters with the worst-possible, the greatest
increase, and the shadow vertex pivot rules.

The bounds on the maximal number of vertices on an increasing path or a greatest increase
path unify and slightly improve a number of known results. The bound on the maximal
number of vertices of a 2-dimensional projection is new: we show that a 2-dimensional
projection of a d-dimensional polytope with n facets may have as many as ©(nl%/2]) vertices
for fixed d. This provides the same bound for the worst-case behaviour of the simplex
algorithm with the shadow vertex pivot rule. The maximal complexity of shadows in fixed
dimension is also relevant for problems of Computational Geometry. We give a new algorithm
for the construction of the shadow of a d-dimensional polytope.

However, we find that for even d > 4 the polars of cyclic polytopes, C;y(n)®, which have
the maximal number of vertices for any given n, do not maximize the shadow: for example,
any 2-dimensional projection of C4(n)® has not more than 3n vertices.
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sitdt Berlin, supported by the DAAD, and at Xerox PARC, partially supported by NSF/CCR-9404113
**Supported by a DFG Gerhard-Hess-Forschungsférderungspreis (Zi 475/1-1) and by the German-Israeli Foun-
dation grant I-0309-146.06/93.



1 Introduction
In 1965, Victor Klee wrote:

“Before attacking a linear programming problem with the simplex algorithm, it can
be very comforting to have a good estimate of the number of iterations which may be
required in order to reach a solution. [...]| In addition to the primary interest in the
expected number of iterations, there is a strong secondary interest in the maximum
number of iterations for the problem of a given size. Here [...] the still unsolved
problem of determining the maximum number has been of central interest since the
inception of the simplex method.”  (Klee [26, p. 313])

In other words, Klee asked for the largest possible number Hp,(d,n) of bases that might be
visited by the simplex algorithm (with Dantzig’s largest coefficient rule) on a linear programming
problem that defines a (simple, bounded) d-dimensional polytope with at most n facets. This
problem is still not solved. However, obvious upper bounds are given by

HDa(dvn) < H(dan) < M(dan)a (1)

where H(d,n) is the maximal number of vertices in an increasing path on such a polytope, and
M(d,n) is the maximal number of vertices that such a polytope may have.

Quite a different line of study, questions of Computational Geometry that arise, for example,
in Robotics, lead one to ask for the maximal number of vertices that the k-dimensional projection
(“shadow”) of a d-dimensional polytope with n facets may have. If the maximal quantity is
denoted by Hy 4 (d,n), then again it is clear that one has upper bounds given by

HQ-Sh(d,’fL) S Hk_sh(d,’fb) S M(d,n) (2)

This also provides an upper bound for the worst-case behaviour of the simplex algorithm with the
shadow vertex pivot rule, which is also given by Hs gy(d,n). Thus it complements Borgwardt’s
(much lower) linear bounds for the average case behaviour of this pivot rule.

Already in 1957, T. S. Motzkin had formulated that M (d,n) is given by the number of
vertices of the polars (or duals) of cyclic polytopes Cy(n); this conjecture, which became known
as the Upper Bound Conjecture, was proved in 1970 by McMullen.

Theorem 1.1 (Upper Bound Theorem, McMullen [31] [40, Sect. 8.4])
A d-dimensional polytope with n facets has no more than

= (%1) i (”— - (%1) _ { a5 (") Jor d =2k even,
{%J 2(“7571) for d =2k + 1 odd.

vertices, where equality is attained by all polars of neighborly polytopes and only by those (in
particular, by the polars of cyclic polytopes).

M = (

This upper bound is a polynomial in n of degree ng in the case of constant dimension:
M(d,n) = O(nl2))  for fixed d.
It is exponential in the diagonal case (for constant n/d); for example, for n = 2d it grows like

M(d,2d) ~ (22)L%



The Upper Bound Theorem does not, however, answer the original questions: it only provides
a (large) upper bound. Klee & Minty’s classic 1972 paper [27] established that the quantities
Hp,(d,n) and H(d,n), at least asymptotically, grow as badly as M (d,n) — both in the diagonal
case where n/d is constant, and in the case of constant dimension.

Theorem 1.2 (Long increasing paths, Klee & Minty [27])
Increasing paths, even those followed by the simplex algorithm with Dantzig’s rule, on o d-
dimensional polytope with 2d facets may visit as many as

2d < HDa(d7 2d) < M(d7 2d)

distinct vertices (that is, exponentially many in the diagonal case), and they have a bound

1 H M
——— < liminf 7])3”(3[’ n) < liminf 7(dd’ n)
2ld/2] n—oo %] n—oo 0%

for the case of constant dimension d.

Analogous results were subsequently obtained by various authors, in particular

e by Jeroslow [24] and Blair [6] for the greatest increase rule,
e by Goldfarb & Sit [20] for the diagonal case of the steepest increase rule,
e by Avis & Chvatal [4] for the diagonal case of Bland’s least index rule,

e and by Murty [32] and Goldfarb [18, 19] for the diagonal case of the shadow vertex (Gass-
Saaty) rule.

It turns out that all these “bad examples” were constructed by (clever) variations of the Klee-
Minty method of “tilting facets” or of “deforming products”:

“Then (@ is obtained from the prism [0, 1] x P by tilting the left base {0} x P in one
way and the right base {1} x P in the opposite way.”  (Klee & Minty [27, p. 162])

“the main difficulty to overcome is to insure that the deformed polytope is combi-
natorially equivalent to V' x P.”  (Jeroslow [24, p. 370])

In view of this, it is quite surprising that a proper definition of “deformed products” apparently
has never been given. The main point of the present article is to provide such a definition —
see Section 3 — and to show that it subsumes all the main constructions of linear programs on
which the simplex algorithm with various pivot rules needs an exponential number of steps: they
are deformed products. In the process of recreating these “old examples” as deformed products,
we also sharpen the analysis, obtaining somewhat better lower bounds than were previously
available (Section 4).

As a new result, we produce, also as deformed products, d-dimensional polytopes for which
some 2-dimensional projection has as many as Hog,(d,n) = O(nl¥2]) vertices, for fixed d.
In Section 5.2 we also outline the relevance of this for questions of Computational Geometry.
The computation of k-shadows is a very natural problem also because it interpolates between
linear programming and the convex hull problem, where linear programming is concerned with
computing a 1-shadow, while a convex hull computation determines the d-shadow.

As a surprise in the investigation of shadows we find that the 2-shadows of the polars Cy(n
of cyclic polytopes have O(nud*l)/ 2J) vertices. Thus, in even dimensions, the polars of cyclic
polytopes, which provide the maximal numbers M (d,n) of vertices for any given n, do not
maximize the shadow. This suggests that the answer to Klee’s initial question will not be quite
as simple as stating Hp,(d,n) = M(d,n) for alln > d > 0, although that has not been disproved.
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2 Some Preliminaries

2.1 Polytopes

A polytope is a finite intersection of closed half-spaces in R?, that is, a bounded set of the form
P = {r € R: Az < b} with b € R* and A € R4 where Az < b is the matrix notation for
a system of n linear inequalities. Equivalently [40, Chap. 1], a polytope is the convex hull of a
finite set of points in R?, written P = conv{py,...,pm} for points p; € RY. The dimension of a
polytope is the dimension of its affine hull. A d-polytope is a polytope of dimension d.

An inequality “a’z < o” (where a and z are column vectors in R?, a’ is the transpose of a,
and « is a scalar) is valid for P C R? if it is satisfied for all z € P. The faces of P are all the
subsets of the form F = {z € P: o'z = a}, where o'z < « is a valid inequality. The faces of a
polytope are themselves polytopes. (This includes () and P as the trivial faces of P.) The faces
of a d-polytope of dimensions 0, 1, d—2 and d—1 are called the vertices, edges, ridges and facets
of P, respectively. A k-face is a k-dimensional face.

Lemma 2.1 Let P = conv{p;,...,pm} C R¢. Then for any I C {1,...,m}, the subset F :=
conv{p; : i € I} is a face of P if and only if there is a linear inequality o'z < o such that
alp; < « holds for all i, with equality if and only ifi € I.

Proof. See e.g. [40, Prop. 2.3]. U

A d-polytope is simple if every vertex lies on exactly d facets, or (equivalently) on exactly d
edges. A polar of a d-polytope P C R? is given by

rPA = {a € R%: alz <1forallz e P},

where P’ denotes a translate of P that has the origin 0 in its interior. Polars of simple polytopes
are simplicial, that is, all their proper faces are simplices.

In the following, a polytope of type (d,n) is a simple d-dimensional polytope with at most
n facets. We will usually write n > d > 0, where it is understood that the parameters n and d
satisfy n > d > 1, or (d,n) = (1,2), or (d,n) = (0,0). We refer, for example, to [40] for other
basic combinatorial properties of convex polytopes.

Definition 2.2 (Combinatorially equivalent polytopes)

Two polytopes P and @ are combinatorially equivalent if there is a bijection between their vertex
sets vert(P) = {p1,...,pm} and vert(Q) = {qi1, ..., gm} such that for any subset I C {1,...,m},
the convex hull conv{p; : 7 € I} is a face of P if and only if the convex hull conv{g; : i € I'} is a
face of Q.

Definition 2.3 (Normally equivalent polytopes)

Two combinatorially equivalent d-polytopes P,Q C R? are normally equivalent if additionally
the unit facet normals of their corresponding facets coincide, that is, if each facet conv{p; : i € I'}
of P is parallel to the corresponding facet conv{q; : i € I'} of Q.

An Isomorphism Lemma of the type below was already used by Klee & Minty [27, p. 167]
[24, p. 371] [20, p. 278]. Our version adds a dimension condition (which is essential: otherwise
see [40, p. 71] for a counterexample!), but slightly weakens the conditions otherwise.



Lemma 2.4 (Isomorphism Lemma)
Let P = conv{pi,...,pm} and Q = conv{qi...,qm} be two polytopes with dim(Q) < dim(P)
such that for each index set I C {1,2,...,m} one has

conv{p;: i € I'} is a facet of P = conv{g;: i € I} is a face of Q.

Then the correspondence p; <— q; defines a combinatorial isomorphism between P and Q,
that is, conv{p;: i € I} is a face (resp. facet) of P if and only if conv{g;: i € I} is a face
(resp. facet) of Q.

Proof. The faces are exactly the intersections of facets. Hence
conv{p;: i € I'} is a face of P = conv{g;: i € I'} is a face of Q.

Since the dimension of a face G of () is the largest [ such that there is a chain of faces of @
of the form ) C Fy C Fy C ... C F; 1 C F, = G, this implies dim(Q) > dim(P). Hence
dim(P) = dim(Q), and

conv{p;: i € I'} is a k-face of P = conv{g;: i € I'} is a k-face of Q.

In particular, all facets of P correspond to facets of Q.

Now we argue by induction on the dimension, where the situation is trivial for dim(P) =
dim(Q) < 1. Assume that some facets of () are induced by P, some are not. Since the facet
graph is connected, we can find adjacent facets G,G" of @, with G = conv{g; : j € J} and
G' = conv{g; : j € J'}, such that F := conv{p; : j € J} is a facet of P, but conv{p; : j € J'}
is not. Then the ridge

H:=GNG =conv{gj:jeJnJ'}

is a facet of G, hence (by induction applied to G) we know that K := conv{p; : j € JNJ'} is
a (dim(P) — 2)-face of P, a facet of F. Let F” = conv{p; : j € J"} be the second facet of P
that contains K. Thus G” := conv{g; : j € J"} is different from G and G’, and it contains the
ridge H: contradiction. [l

A cyclic polytope Cy(n) is a polytope that is combinatorially equivalent to the polytope

conv{y(1),7(2),...,y(n)} € R?,

where y(t) := (t,1,...,t%) denotes the moment curve in R?. The cyclic polytopes Cy(n) are
simplicial, and they are neighborly: any subset of L%j of its vertices is the vertex set of a face.
The product of two polytopes P C R? and Q C R® is given by

rea = () iE0 b

The vertex set of a product is given by

vert(P x Q) = {(pi>: pi € vert(P) }

q; q; € vert(Q)

while the facet-defining inequalities for P x @) are just the inequalities of P together with those
of Q. (Thus products of simple polytopes are simple as well.) Here (i) denotes the concatenation
of the column vectors 2 and u, and vert(P) is the set of vertices of P. Thus taking products of
polytopes the numbers of vertices are multiplied, while the numbers of facets are just added.



Example 2.5 (Polytopes with many vertices)
Polytopes with “many vertices and few facets” can be constructed by taking products of 2-
polytopes, as follows.

If d is even, assume that n is a multiple of 4. Then the product of % copies of a (%n)—gon

C>(22) is a simple d-polytope C’Q(Q”)‘Jl/2 with n facets and (2")‘7l/2 vertices.
If d is odd, assume that n — 2 is a multiple of d L. Then the product of an interval T with

d

L copies of a (= 2An— )) -gon Co (= 2An— )) is a simple d—polytope I'xCy (=5 2An— ))(d D/2 with n facets
and 2(=5 2An— ))(d 1)/2 vertices.

For instance, for n = 2d the two constructions in Example 2.5 yield the d-cubes Cy: simple
polytopes of type (d, 2d), with 2¢ vertices. Similarly, we get an exponential number of vertices
(in d) if n is any larger fixed multiple of d.

Although for fixed dimension d the products in Example 2.5 have O(n!%2]) vertices, equality
for the upper bound theorem is attained only for the polar polytopes of neighborly polytopes.

2.2 Linear Programming

In geometric terms, linear programming (via the simplex algorithm) deals with edge paths on
polyhedra that are strictly increasing with respect to some linear function ¢: R* — R. Thus
we study linear programming problems of the type

max dz: Az <b,

where ¢ € R?, b € R* and A € R"*¢, Writing a, ..., n t for the rows of A, the i-th inequality of
the system is given by alz < b;. The assignment z — c'z represents a linear objective function.
Our constructions below maintain all the following nondegeneracy assumptions, although none
of them is essential for what we do.

Feasibility: P is non-empty.

Full dimension: P := {z € RY: Az < b} is a d-dimensional polyhedron with n (distinct) facets
(that is, each of the inequalities in the system Az < b defines a facet of P, and all these
facets are distinct).

Boundedness: P is a polytope. Hence ¢z is bounded on P for every choice of ¢ € R%.

Phase I: A start vertex is given. Usually, we furthermore assume that the start vertex is the
vertex of P that minimizes the objective function.

Primal nondegeneracy: The polytope P is simple, that is, every vertex of P lies on exactly
d facets (equivalently, every vertex is adjacent to exactly d edges).

Dual nondegeneracy: No two vertices have the same objective function value c‘v. In partic-
ular, there are no horizontal edges with respect to the objective function.

With the primal nondegeneracy assumption, a vertez of the linear program is a point v € R?
that satisfies alv = b; for exactly d indices ¢ € I(v) := {i1,%2,...,%4}<, while alv < b; holds for
alli € {1,2,...,n}\I(v).

The (geometric) simplex algorithm [40, Sect. 3.2] proceeds from any vertex v to a better
adjacent vertex, that is, to a vertex v’ such that I(v) and I(v') differ in exactly one element,
and such that clv < cv'. A pivot rule determines which vertex to choose. Here we mostly
concentrate on geometrically defined rules. We do not consider randomized pivot rules, although
they are very interesting [25] [30]. The same applies for “affirmative action” pivot rules, where



exponential lower bounds in the worst case are not available [39] [15]. We do consider the
following deterministic and non-deterministic pivot rules.

Greatest increase rule: Choose the vertex v’ that gives the greatest increase in the objective

function, that is, such that c¢fv’ — clv is maximal.

Dantzig’s largest coefficient rule: Choose the vertex v’ such that I(v)\I(v') = {i}, where ;
is the largest (positive!) coefficient in the (unique) representation of the objective function
as clx = clv + D ic I(v) viatz. (The coefficients +; in this representation are known as the
reduced costs or nonbasic gradients. The positive reduced cost coefficients correspond to
the legal pivots at v [26, Sect. I] [27, Sect. 7].)

Bland’s least index rule: Choose v' such that the (unique) index in I(v)\I(v') is minimal,
that is, choose the edge that leaves the facet with the smallest number (according to the
fixed numbering of the facets resp. inequalities) [7].

The Gass-Saaty shadow vertex rule: For the starting vertex one constructs a linear func-
tional ¢ € R? such that vy (uniquely) maximizes ¢'z over P. (E. g., take ¢ := > icI(vg) %i)-
Then given that v; ; maximizes (¢ + \c)!z exactly for A € [\;_1,\;], the next vertex v;
is chosen to maximize (¢ + Ac)'z for all X € [A\;, \;11]. This is equivalent to the condition
that v; must maximize the ratio %

Thus, in geometric terms, the shadow vertex rule finds a path that projects (under

x — (c'z,c'x)) to a path on the boundary of a 2-dimensional shadow [16] [8].

Observation 2.6 (A relation between Dantzig’s and Bland’s rules)
If we multiply the i-th inequality alz < b; in a linear program by d'~% for some § > 0, then a;
is replaced by a} = §'~a;, b; is replaced by b; = §1=%b;, the polytope and the objective function
do not change at all, and the reduced costs are scaled by 7 := §*~!;. Hence, if we choose § > 0
small enough, then at every vertex we obtain 7, > 'y; whenever i,j € I(v) and 7 < j.

In other words, Dantzig’s rule follows the same sequence of pivots that is chosen by Bland’s
rule, provided that we suitably scale the inequalities.

General theory [36] [22] implies that all the constructions in the following can be realized
with small coefficients. Thus every time we exhibit for some pivot rule paths whose length is
exponential in the parameters d and n, this also provides examples for which the number of
steps is exponential if measured in the (bit) encoding length of the linear programs in question.

2.3 Some Basic Observations

Definition 2.7 (Basic counting functions)
For d-dimensional polytopes with at most n facets, and linear functions ¢ on them, we study
and relate the following quantities:

M (d,n): the maximal number of vertices,

H(d,n): the maximal number of vertices on an increasing path,

Hygi(d,n): the maximal number of vertices on a reversible greatest increase path, that is, the
maximal number [ such that the greatest increase paths with respect to ¢ and to —¢,
starting at the vertices that minimize ¢ respectively —¢, both contain at least [ vertices,

Hp,(d,n): the maximal number of vertices on a reversible path for Dantzig’s largest coefficient
rule,



Hpg(d,n): the maximal number of vertices on a reversible path for Bland’s least index rule,

Hs g, (d,n): the maximal number of vertices on a 2-dimensional projection (a “shadow”).

(Counting the vertices rather than the edges on monotone paths amounts to a shift of 1: this
simplifies some of the formulas in the following.)

Lemma 2.8 For alln >d >0,

Hgi(d,n) < H(d,n) < M(d,n) (3)
Hgi(d,n) + (d=1) < M(d,n) (4)

Hgi(d,n) < Hpa(d,n) < H(d,n) < M(d,n) (5)
Hygn(d,n) < H(d,n) < M(d,n) (6)

Proof. Inequality (4) follows from the observation that among the (at least) d neighbors of the
starting vertex, the greatest increase rule will visit only one: the one which provides the greatest
increase. Inequality (5) is a consequence of Observation 2.6. The first inequality in (6), on the
other side, follows from the following lemma. [l

Lemma 2.9 For alln > d >0, Hyg,(d,n) is the mazimal number of vertices on a simplex path
according to the shadow vertex rule on a nondegenerate linear program of type (d,n).

Proof. Every 2-dimensional k-gon @ is projectively equivalent to a k-gon @' such that all k
vertices lie on a path that is increasing with respect to a given linear function o : R2 — R. If
@ is the shadow of a d-polytope P (under the projection to the last two coordinates, say), then
the projective transformation extended to R? provides us with P’ such that Q' is the shadow
of P'. Thus there are k vertices in an increasing edge path of @), and hence also on a shadow
vertex path of P'. O

A key question, which remains open in our study, is whether we really have H(d,n) = M (d,n)
for all n > d > 0, that is, whether the only upper bound on the length of monotone paths is
restricted only by the Upper Bound Theorem, which bounds the total number of vertices. The
answer is positive for d < 3. In fact, for d =3 let m := 2n—5 and £ =0,1,...,m and define

- { (cos(km/m),sin(kw/m),sin(kr/m))t ifk=0ork=1 (mod 4),
) (cos(km/m),sin(km/m),0)! ifk=2ork=3 (mod4).

This yields a simple polytope with n facets, whose projection to the first two coordinates is “half
a regular 2m-gon,” with all its m+1 vertices on a semicircular arc. Our figure represents this

for the case m =7, n = 6.

The combinatorial type of the resulting 3-polytope is that of the polar of a cyclic polytope
Cs3(n). Hence for d = 3, the maximum of Ho ¢,(3,n) = H(3,n) is achieved by the polar of a
cyclic polytope. We will, however, see in Theorem 5.15 that the corresponding statement fails
for d = 4. Thus it is not at all clear whether H(d,n) = M(d,n) “deserves to be true” for d > 3.
Nevertheless, we prove that the quantities Hog,(d,n) and H(d,n) have the same asymptotic
growth for any fixed dimension d, in Theorem 5.3.




3 Deformed Products

Here is a simple basic version of the deformed products construction.

Definition 3.1 (Deformed products)
Let P C R? be a convex polytope, and ¢: P — R a linear functional with o(P) C [0,1]. Let
V,W C R¢ be convex polytopes. Then the deformed product of (P, ) and of (V,W) is

w0200 = () veviwew } € FT

Examples 3.2 (i) If V = W, then the deformed product is the “standard product”:

(P,o) X (V,V) = PxV.

(ii) If ¢ is constant (p(z) = A for all z € P), then the deformed product is a standard product
with an appropriate Minkowski sum:

(Po)y X (VW) = P x (AW 4+ (1 -=N)V).

(iii) If P =Q x [0, 1] with ¢(q,t) = ¢, then
Q@ xIo)X(V,IW) = @ xconv((V x{0}) U (W x {1})).

This includes the case where @ = {0} and P = [0,1] with ¢(z) = z, as illustrated in
our figure. Here the left drawing depicts a “general” case, where for the right drawing V'
and W are normally equivalent, so the resulting polytope turns out to be (combinatorially
equivalent to) a prism over V.

W W

V V

Lemma 3.3 Deformed products are convex.

Proof. Define f(z,v,w) := (v+@(xg)£(w—v))7 and let f(z',v',w') and f(z",v" , w") be two points
in the deformed product. We may restrict P to the line segment [z',z"], and verify that the
deformed product ([z, 2], ) X (V, W) is convex.

Now if ¢ is constant on [z', "] (that is, if p(z') = p(z") = Ag), then we get that
([2', 2"], ) ) (V, W) = [2/,2"] x (AW + (1 = Xo)V),

which is convex. (This is the situation of Example 3.2(ii).)



If ¢ is not constant, take X' := p(z') and X" := ¢(z") and define V' := XW 4 (1 — X)V and
W' := N'W+(1—-X")V. Both V' and W" are convex. With this notation the map (7) — (‘pgf))
provides us with an isomorphism

([2",2"], ) M (V,W) = conv((V' x {N'}) U (W' x {\"})).
(This is the situation of Example 3.2(iii).) 0

We now show that a deformed product taken with a pair of normally equivalent polytopes
is combinatorially equivalent to a regular (not deformed) product.

Theorem 3.4 (Vertices and facets of deformed products with normally equivalent
polytopes)
Let P C R? be a d-polytope, o: RY — R a linear function with o(P) = [0,1], and let V,W C R¢
be normally equivalent e-polytopes.
(i) For P = conv{pi,...,pm}, V = conv{vi,...,v,} and W = conv{wi,...,w,}, the de-
formed product is given by

U PG

(P,o) X (V,W) = conv{(vj +(p(p5i(wj —v]-)): l<i<n

In particular, the deformed product is a polytope.
(ii) If P,V and W are given by

P = {xGRd:a',;xSakforlngs},
V = {ueR:bu<pf for1 <<t} and
W = {ueR:bu<p forl<I<t},

then the deformed product is given by

(al.,0%) <z> <ap forl<k<s,
P vy = 3 (7) emies ®)
i-mep(D)<m pri<ise

(iii) The deformed product (P, ) X (V, W) is combinatorially equivalent to PxV and to PxW .

In particular, if P is a d-polytope with n wvertices and s facets, and if V. and W are e-
polytopes with m wvertices and t facets (that is, if the descriptions given in (i) and (ii)
were irredundant), then Q = (P,¢) X (V,W) is a (d+e)-polytope with nm vertices and
s+t facets, and the descriptions of Q are also irredundant: the points in the convex hull
description (7) are the vertices, and the inequalities in (8) determine the facets of Q.

Proof.

(i) Denote by Q C R4*¢ the deformed product, by R C R¥*¢ the right-hand-side of equa-
tion (7). Then clearly Q@ D R. Take an arbitrary linear functional £ = (¢!, ¢2): R+ — R,
The .maxirrllum of‘ l on Q is z.ittained by some (W(I)Wr(ﬁf@(m))v). Since 1 > ¢(z) 2 0 the
maximum is attained in vertices w € W and v € V. Since W,V are normally equivalent
the maximum of £2(o(z)w + (1 —¢(x))v), for fixed z, is attained by corresponding vertices
vj and w;. Hence we may assume that v = v; and w = w; for some 1 < 7 < n. Fixing
those, we get that £ is linear in x, and hence the maximum of £ on @) is attained for some
z = p;, where 1 < ¢ < m. Thus the maximum of £ over @ is attained for some point of R.

Since R is convex, we conclude ) C R.
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(ii) Let U C R4t denote the solution set of the inequality system in (8), that is, the right-
hand side of the equation (8). First, a simple computation shows that the inequalities in
(8) are valid for Q:

at t v = atl' (0%
S,y pr—n) = A <
and
_nal t €T —
(=800, 4 o)
(51~ B)ole) + o + (o)t ) =
(1= (@) (bfo = Bi) + B+ p(x)(bjw —B) < f

follow easily from the corresponding inequalities for P, V and W. This implies Q C U.

Furthermore, we have equality for a point of the form ( in the first case if

vy +W(pz)(wj _”J))
and only if a',;pi = @, and in the second case if and only 1f blvJ G, and bfwj = 3] : to see

this, note that in case ¢(z) > 0 we get bjv; = [, while in case ¢(z) < 1 we get bw; = [].
Finally, we know that the two conditions bfvj = 3, and bfwj = 3 are equivalent.

At this point we invoke the Isomorphism Lemma, 2.4, applied to P x V as the first polytope
and the deformed product (P, ¢) X (V, W) as the second polytope. This shows us that the
description of the deformed product in terms of inequalities (8) is complete, and it also
establishes part (iii). a

Remark 3.5 From now on we will maintain the assumptions of Theorem 3.4, namely that

e P C R? is d-dimensional (although this is not essential),

e o(P) = [0,1] (it is only important that ¢(P) C [0,1]: without this assumption the
deformed product is not usually convex, as may be seen for P = [0,1] C R', () = 2z,
V= [07 1]7 W= {0})7

e V.IW C R® are e-dimensional and normally equivalent.
Corollary 3.6 Let Q := (P, ) X (V,W) C R¥*® be a deformed product as above.

(i) The projection m : RiTe — R? to the first d components maps Q to 7, (Q) = P.
(ii) The projection mo: RIT¢ — R® to the last e components maps Q to mo(Q) = conv(V UW).

Corollary 3.7 The deformed product (P,p) X (V,W) is connected to the “standard” product
P x V in the realization space of the product.

Proof. Consider

(Bi) ) (VW) = “{(u> Zf;-ei(tl;)(}m(wj—w% 1Sjén}

for 0 < ¢t < 1. For t = 0 this realizes the standard product, for ¢ = 1 one gets the deformed
product. [l

11



Remark 3.8 R. Seidel has pointed out the following alternative way to view the construction
of deformed products (P, ) X (V,W). For this again assume that ¢(P) = [0,1]. If V and W
are normally equivalent, then conv(V x{0} U W x{1}) C R**! is combinatorially equivalent to
V x I (as in Example 3.2(iii)). Hence

C = Pxconv(Vx{0}UWx{1}) = conv(P x Vx{0}UP x Wx{1}) C RIet!

is combinatorially equivalent to P x V' x I (it is a “deformed prism” over P x V'), where

T z€P
c = ul: u=v+tlw—v),veV, weW
t tel

Now cut C' with the (d + e)-dimensional hyperplane ¢(z) = t, and project the intersection
to R*¢ by deleting the last coordinate. Call the image S. We get

5 = {(2> ziij(p(gg)(w_U),veV,weW}’

which is the deformed product. S is a convex polytope. It is combinatorially equivalent to P x V'
or P x W, since it is a slice of a (combinatorial) prism that has the top on one side and the
bottom on the other side.

Definition 3.9 (Increasing edges)

If p', p" are adjacent vertices of a polytope P C R?, then we write [p/, p] for the edge between
p' and p". We say that [p,p"] is a-increasing if a(p") > a(p') for a linear function a: R — R.
(The ordering of the vertices p', p” is relevant in this notation.)

Definition 3.10 (Deformed product programs)
With the notation and assumptions of Theorem 3.4, let

max p(z): x €P
be a linear program in R?, and let
maxa(u): u €V resp. maxao(u): ueWw

be two normally equivalent linear programs (that is, one arises from the other by changing the
right hand side, without change of the combinatorial type).

The linear function oz R® — R induces a linear function a: R*™* — R via &(}) := a(u).
Using this function, the deformed product program is given by

max &(i) = a(u): <2> €Q=(P,p) X (V,W).
For the deformed product @ = (P, ) X (V, W) of Theorem 3.4 use the notation

v(i,j) = <vj + ‘P(pgi(wj - ”j)>

for the vertices (1 <7 < m, 1 < j < n) of Q. By Theorem 3.4(iii) the edges of a deformed
product just correspond to those of the regular product. Thus @) has two types of edges:

12



e edges of the form [v(i, j),v(i", )] (called P-edges) for 1 < j < n and for any 1 <7',i" <m
such that py and p;» are adjacent vertices of P, and

e edges of the form [v(i,j"),v(i,5")] (named (V,W)-edges) for any 1 < ¢ < m and for
1 < j',j" < n such that vy and vj» are adjacent vertices of V' (equivalently, wj and w;n
are adjacent vertices of W).

Proposition 3.11 (Increasing edges of deformed products)
For any deformed product program max &(%) = a(u): (¥) € Q = (P, ) X (V,W),

e a P-edge [v(i',7),v(i",7)] is a-increasing if and only if
either [pir, pin] is p-increasing and a(w;) > a(v;),
or [pir, pir] is p-decreasing and a(w;) < a(vj),

o o (V,W)-edge [v(i,5"),v(i,5")] is @-increasing if and only if [vjr,vjn] is a-increasing.

Proof. We compute for a P-edge that

[v(i', 7),v(i", )] is G-increasing =
a(vj + @(pir)(wj —vj))  — alv; +e(ps)(w; —vj)) > 0 —
(p(pir) = p(pi))((wj) = e(vz)) > 0
which yields the claim. For a (V, W)-edge, we get
[v(4,7"),v(i,5")] is @-increasing =
O[(Uju + (p(pl)(’w]u — Uju)) — O[(Ujl + (p(pl)(w]/ — ’Uj/)) > 0 <~
e(pi)(wjr —wy) + (1 —p(pi))(vjr —vj) > 0
which implies the claim since [v;r, vj»] is a-increasing if and only if [w;/, w;r] is a-increasing. U

Corollary 3.12 (Bland’s rule on deformed product programs)

Let p1 and py, be the vertices of P that minimize resp. mazimize @, with @(p1) = 0 and
©(pm) = 1. On the deformed product program max 62(2): (i) € (P,p) X (V,W), according to
Definition 3.10, we have the following behavior.

If the inequalities of QQ are numbered such that all the inequalities of P get smaller indezes
than all the inequalities corresponding to (V,W), then the simplex algorithm with Bland’s rule
prefers P-edges over (V, W)-edges.

Hence, if Bland’s rule on P for the objective function o takes a path with k vertices from pq
to pm, and for —yp takes a path with k' vertices from pp, to p1, then for (Q,a) it will follow a
path with k vertices from v(1,7) to v(m,j) if a(v;) < a(w;), and a path with k' vertices from
v(m, §) to v(1, ) ifa(vj) > Oé(wj).

Analogous results are easy to derive for many other pivot rules — see the examples in the next
section. This is the basis for virtually all known constructions of classes linear programs on
which variants of the simplex algorithm are exponential.
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4 Some (Old) Examples

4.1 The Klee-Minty Cubes

The Klee-Minty cubes [27, Sect. 4] are classical: they can be found in any standard text on linear
programming, in Schrijver [36], in Chvatal [12], and, reluctantly, in Padberg [33, Sect. 5.7.1].

maxzg: € KMy
where KMy is, for some € with 0 < ¢ < %, given by the inequality system

0
6,’1,‘]'_1

x1§1

<
< z; < l—exj_gfor2<y<d

As deformed products, we obtain the Klee-Minty cubes recursively as

KM, = {0} CR°
KM; = [0,1] CR!
KMg,1 = (KMg,z4) X ([0,1],[,1 —¢]) C R,
The boundary case € = % is analyzed in Clausen [14]. It is not difficult to explicitly determine

both vertex coordinates and the combinatorial structure of the Klee-Minty cubes, see Avis &
Chvéatal [4], Clausen [13], and Géartner & Ziegler [17]. However, this is not necessary for us,
since the basic extremal properties follow already from the construction as deformed products.

Theorem 4.1 (The Klee-Minty cubes)
Number the inequalities of KMy in exactly the order in which they appear in the system, that is,
the i-th inequality is x; > exj_1 fori =25 —1 and x; <1 —exj_1 fori=2j. Then the simplex
algorithm with Bland’s least index rule follows an z4-increasing path through all 2% vertices of
the d-dimensional Klee-Minty cube KMy.

If we multiply the i-th inequality by '~ for some small enough § > 0, then the same is true
for Dantzig’s largest coefficient rule.

Proof. Take V' = conv{vi,ve} with v; = 0, vo = 1 and W = conv{w,ws} with w; = ¢,
wy =1 — £. The linear functional we use on KMy is ¢(z) = x4, so we get &(7) = u = z441 for
(2) € R4, Among the 27 vertices of KMy we find p; = 0 and pys = eq.

By Corollary 3.12 and induction on d, we find that starting at v(1,1) = 0 Bland’s rule on
KMg, will take a path through all the 2¢ vertices of the form v(i, 1), ending at v(2%,1) = eeqy1.
At this point all P-edges are 4 -decreasing, so the simplex algorithm takes the (unique) (V, W)-
edge to v(2%,2) = (1 — €)eqy1. After that, Bland’s rule takes a path through all the 2¢ vertices
v(7,2), ending at v(1,2) = egy1. [

Avis & Chvétal [4] proved that if we take the i-th inequality to be z; > ex; 1 for i < d
and to be z;_4 <1 —ex;_4_1 for i > d, then the Bland’s rule will follow a shorter path, whose
number of vertices is, however, still exponential. By Observation 2.6, the same is true for the
worst case of the Dantzig rule for this ordering of the inequalities.

Observation 4.2 The Klee-Minty cubes are not projectively equivalent to “standard” cubes,
as was recently stated by Gritzmann & Klee [21, p. 646]. To see this, analyze the following

picture, which represents a parallel projection of the 3-dimensional Klee-Minty cube (for e = %)
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If the Klee-Minty cube was a projective image of a regular cube, then the four “horizontal”
edges would have to meet in one point (or be parallel), which is clearly not the case.

Tm

~
%2
—]
. A
T
H

Theorem 4.3 Forn >d > 0:
HBl(d+1,n+2) Z 2HBl(d,n).

Analogous inequalities are true for the mazimal numbers of vertices H(d,n) and Hpy(d,n) on
arbitrary increasing paths resp. for paths according to Dantzig’s rule. Hence for d > 0 we have

H(d7 2d) > HDa(da 2d) > HBl(da 2d) > 2d-

Proof. Let P C R? be a simple (d,n)-polytope which achieves the maximum length for an
arbitrary increasing path (respectively of a path according to Bland’s or Dantzig’s rule), and
let p : P — [0,1] be a corresponding objective function. Then for some 0 < € < % form the
deformed product

(Pv 90) X ([Ov 1]? [5’ 1_5])

and use the same proof as for the Klee-Minty cubes. [l

4.2 The Goldfarb-Sit Cubes

Goldfarb & Sit [20] constructed linear programs — rescaled Klee-Minty cubes tailored to fool
the steepest increase rule, see also Clausen [13] — as follows. They analyzed the programs

d
maxZﬂi_lmi: x € GSy
i=1

where GS; C R? is the polytope given by
0 S I
Brj 1 < xj

where 8> 2, 0 > 2 and §; :== (§3)* L. Tt is immediate from Theorem 3.4 that we may construct
the Goldfarb-Sit cubes as deformed products

GS, = {0} CR?
as;, = [0,1] CR!
GSap1 = (GSg,za) X ([0,0441],[8,0ar1 — B]) SR

and thus that they are combinatorial d-cubes.

1
5]' —,827]',1 for 2 S] < d,

IAIN
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4.3 The Goldfarb Cubes

Murty [32] was the first to construct (in the framework of linear complementarity problems)
linear programs of type (d, 2d) that are exponential for the shadow vertex algorithm. Essentially
equivalent, but much more explicit examples (at least from a linear programming point of view)
were given by Goldfarb [18, 19]. Goldfarb’s programs are

max&y: £ € Goly

where the polytopes Goly are given by

0 < & <1
B& < & < 6-pG
B¢ —&-1 < &y < —B&+Efor2<j<d

with 8 > 2 and 6 > 28. They are deformed products! The “additional rotation” that Goldfarb
talks about [18, p. 2] is represented by a different functional ¢

Goly = {0} CRO
GOh = [0, 1] g Rl
Golgy1 = (Golg, &g — 5€4-1) X ([0,04], 18,00 — f]) € R
The (-é-scaling in these examples seems, however to be an artlfact that remained from the

previous work by Goldfarb & Sit. Setting € := g < 2, v = B5 < 45 and substituting x; := 5-511
we get

maxzg: © € Golj

where the polytopes Gol}; are given by:

0 < T <1
ery < w2 < l—ex
e(zj —yzjm1) < wjm1 < 1—e(z;—ymj) for2< 5 <d

which for v — 0 yields the Klee-Minty cube (and for £,y — 0 yields the usual 0/1-cube).
—

Golj

3

!
T Gol;,
T2

Again, these polytopes are deformed products:

Gollj = {0} CR°
Goli = [0,1] CR!
Goly,; = (Goly,zg—yza_1) X ([0,1],[e,1 —¢]) C RI*!

for0<4'y<6<%.
This simpler formulation leads to a somewhat simpler proof.
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Theorem 4.4 (Goldfarb [18, 19])
The projection m: Gol; — R2 given by 7(z) = (v4_1,74) has 2% vertices.

Proof. Our proof follows [18]. For any vertex v of Gol), let A, be the (d x d)-matrix whose
rows are the facet normals at v:

¢
o1 a%
£ g9 )
—ey ¢ o al
t
A, = —ey € o4 _ a
Od—1 :
—ey e o4 al
where o; = —1 if the i-th inequality at v is “e(z; — yz;_1) < xj41,” and 0; = +1 otherwise.

A, can be taken in this form since Gol);, is combinatorially equivalent to a d-cube. We get that
Ay < Aywv

is a system of inequalities that is valid for all z € Gol);, with equality in all components if and
only if z = v.

Now define a row vector o = (aq,...,qq) recursively by ag := 1, ay := % and ;1o =
%(601”1 + o). We verify a1 > %ai > (0 for all # > 1. This is true for s = 1,2, and for s > 3
we get

t

S 1( ) > 1 ( € ) 1 S 2 >0
o —(eajr1 — o — (a1 — =y = —q —qy
+2 = Ne 1+1 i) = e 1+1 2 1+1 27 +1 = c 1+1 )

using induction for the first and for the second inequality. Since o is a positive row vector, we
deduce that
oA,z < otAyv

holds for all z € Gol;, with equality if and only if z = v.
From a'A, = (0,0,...,0,aq_1,q) we get

(g1, aq)m(z) = ofAyz < ofAyv

with equality if and only if z = v: hence m(v) is a vertex of m(Gol}), and v is the only point of
Gol); that projects to m(v), so all the 2¢ vertices 7(v) of 7(Gol))) are distinct. a

The condition v < § that we have used in the proof (equivalent to Goldfarb’s 8 > 2) is not
the best one could do, but it is the condition that works without problems for the proofs.

The sequence in which the shadow boundary algorithm visits the vertices of the Goldfarb
cubes is the “same” as for the Klee-Minty cubes. Using that for v — 0 we get the Klee-Minty
cubes from the Goldfarb cubes, this follows from the fact that the shadow vertex rule visits the
vertices in increasing order with respect to the objective function ¢(x) = 4.

Corollary 4.5 For d >0, Hyg,(d,2d) > 2¢.
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4.4 The Klee-Minty Products

In view of the deformed product construction, it is not hard to construct polytopes with “many”
vertices on increasing paths in fixed dimension [27, Sect. 5]: we iteratively construct deformed
products with polygons (that is, we take e = 2). The single extra ingredient needed here — and
in the following constructions — is a construction of suitable polygons V, W C R?. Again, this
was first done by Klee and Minty; we replace their lemma [27, p. 165] by the following.

Lemma 4.6 Let a(z) denote a linear function on the plane (z € R?).
For each k > 4, and for each X > 0, there exist normally equivalent k-gons

V = conv{vi,..., v} and W = conv{ws,...,w}
(both labeled in clockwise order), such that
0 = a(v1) < a(w) < alwy) < a(ve) < alvy) < alws) < alws) < ...

(The sequence ends with ... < a(vy) < a(wg) =1 if k is odd, and with ... < a(wg) < a(vy) =1
if k is even.)

Proof. Take 2k—4 > 4 points equally spaced on a semicircular arc (“half a 2(2k—5)-gon”) and
label them wo, vo, v3, w3, wy .. ., ending with ... vp_1,wr_1 if k is odd and with ..., wp_1,vp_1
if £ is even. The additional points v;, wy, v and wy are then chosen appropriately on a line
that is parallel to the diameter on which the semicircular arc was based.

Our figures illustrate this in the cases k =4 and k = 7.

(%) U3
w9 w3
U1 W1y Wy V4
Note: this lemma is false for k = 3. [

Theorem 4.7 For k>4 and n>d > 0,
Hpi(d+2,n+k) > kHpg(d,n). 9)
The same recursion is valid for H(d,n) and for Hpa(d,n).

Proof. After rescaling the objective function and relabeling the vertices we may take a polytope
P of type (d,n) for which Bland’s rule, for a functional c'z = ¢(z) with o(P) = [0, 1], follows an
increasing path on [ := Hpg(d,n) vertices starting at the vertex p; with ¢(p1) = 0 and ending
at the vertex p,, with ¢(p,) = 1. Now construct the deformed product

Q = (Pe)X(V,W),
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where V, W C R? are convex k-gons according to Lemma 4.6.

By Corollary 3.12 we get that Bland’s rule, applied to @ with objective function &(7) = a(u),
first follows a P-path with [ vertices from v(1, 1) to v(m, 1), then after one (V, W)-pivot it follows
a P-path with [ vertices from v(m,2) to v(1,2), then after one (V,W)-pivot it first follows a
P-path with [ vertices from v(1, 3) to v(m, 3), etc.. The complete path will thus visit kI vertices,
arriving at v(1, k) or at v(m, k), depending on whether k is even or odd. U

Corollary 4.8 For n > 2d > 2:

o, | 4/2
{_nJ if d is even,

H(d,n) > Hpa(d,n) > Hg(d,n) J

v

and

on — 4 | L4/2]
H(d,n) > Hpa(d,n) > Hg/(d,n) > 2 {d 1J if d is odd.

Proof. Starting at Hp(0,0) = 1 and Hp(1,2) = 2, we get

HBl(Qm,km) Z K™ (10)
and
Hg(2m+1,km+2) > 2k™ (11)

for all m > 0, from (9) together with induction on m.

For even d, we use (10), and substitute m := % and k := |2] =[], where n > 2d
guarantees k > 4. For odd d, we use (11), and substitute m := 951 1
where n > 2d guarantees k > 4.

Corollary 4.9 For constant dimension d, the function H(d,n) grows like a polynomial of degree
{%J in n. Furthermore, for even d

1 .. M(d,n) I _fH(d,n) 1
(d/2)! n-Sto  pdf? = e Tndz < (d/2)4/2°
and for odd d
2 .. M(d,n) . . H(d,n) 2
@) — WM e 2 i oRr 2 e

Proof. While the upper bounds for H(d,n) are from the Upper Bound Theorem 1.1, the lower
bounds are easily derived from Corollary 4.8: for example, in the case where d is even we have
H(d,n) > (% — 1)%/2, and hence

Hidn) _ (1 2 d/2
nd-D72 = \d/2 n) °

which converges nicely for n — oo if d is fixed. [l

(This amounts to a certain improvement in comparison with the analysis in Klee & Minty
[27, p. 170].)
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4.5 The Jeroslow Construction

Jeroslow [24] gave a construction of polytopes for which the greatest increase rule makes many
pivots, which we can restate as deformed products. (Later Blair [6] proposed different programs
for a diagonal case, which are also essentially deformed products.)

In the following, we keep close to Jeroslow’s construction and notation. However, we com-
plement his remark “The reader may wish to follow our construction with paper and pencil,
since we shall refer to geometrical aspects of it.” [24, p. 372] by a suitable figure.

Lemma 4.10 Let o) denote the first coordinate for points x € R? in the plane.
For each k > 1, and for each X > 0, there exist normally equivalent (4k+2)-gons V =

conv{vg,vi,...,V4k+1} and W = conv{wg,wn, ..., wskt1}, such that, for 1 <1 < 4k,
A ifl=1mod4 A ifl=1mod 4
ot =m = 5 1 Zgmeas ™ el -w) = §0 520
1 ifl=0mod 4 3 ifl=0mod 4
and

+1 ifl =1 or 2 mod A4,
a(wy — ) :{ /

—1 ifl =3 or 0 mod 4.

Furthermore, we require that a(vi) < a(vg) < a(vz) and a(vag—1) < a(vagt1) < a(vag).

() v
A U3 4 5 Vg

() g

/

Vo Wo Wy U9

Proof. If we place the vertex vy at the origin, then the polygons V and W are, in fact, deter-
mined by k£ and A as soon as we prescribe the slopes m; of the the edges [vjv;41] and [wjw;i4]
against the r-axis.

One possible choice is to take the slopes of a regular 8k-gon, with m; = cot(w/4k): this is
what we (roughly) took for our figure, which represents the situation for £ = 2 and A = 1/4.
(In the upper lefthand corner we represent the scale of the drawing.)
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Alternatively one could for example take m; := 2k—I: this yields “small” rational coordinates
for the vertices, as is required in complexity arguments for the greatest increase pivot rule. [l

With these polygons, a recursive deformed products construction can be used to establish the
asymptotic lower bound on the length of greatest increase paths, as indicated in the next figure.
To improve the bound, Jerowlow uses the fact that the resulting plytopes are “reversible”:

Definition 4.11 (Reversible pairs, Jeroslow [24])

Let P C R" be a polytope, and ¢: R? — R a linear function with ¢(P) = [0,1] in general
position on P. Let p; denote the unique minimal vertex of P with ¢(p;) = 0, and p,, the unique
maximal vertex with ¢(pp,) = 1.

Then (P, ) is a (reversible) greatest increase pair of length [ if the greatest increase path
with respect to the objective function c'z := ¢(z) (from p; to p,,) and the greatest increase
path with respect to clz := —p(x) (from p,, to p1) both have at least [ vertices.

Thus Hgi(d,n) is the greatest length of a reversible pair (P, ¢) of type (d,n).

Theorem 4.12 For all k > 1,
Hgi(d4+2,n+4k+2) > 2k Hyi(d,n) + 2k.

Proof. For any reversible pair (P, ) of length [ of dimension d we can choose a number A > 0
such that the progress along each edge in the two greatest increase paths for ¢ and for —p on
P is larger than A. (In particular, this condition implies that A < % < 1.) Corresponding to
this value of A, construct the (4k+2)-gons V, W C R? described in Lemma 4.10. With these one
obtains a deformed product

Q = (P,(p) M (V’W)

of dimension d + 2, with n+4k+2 facets. The linear function &(%) = o(u) defines an objective
function on ) that is in general position.

We have constructed V' and W such that on every P-edge that the simplex algorithm may
encounter the progress is more than A, while the progress along a V-edge or W-edge of the
deformed product is at most A. Thus, once again, the simplex algorithm with the greatest
increase rule prefers P-edges over (V,W)-edges. Thus the greatest increase rule applied to the
objective function oo my on @ will trace a greatest increase path with [ vertices from v(1,1) to
v(m, 1), then two (V, W)-steps from v(m, 1) via v(m, 2) to v(m, 3), then trace a greatest increase
path of length [ to v(1, 3), then do two steps from v(1,3) via v(1,4) to v(1,5), etc. The vertices
Vg, Wo, V4k+1 and wgk4q are used to force the initial step of the path from v; resp. from vy to
choose the P-edge. Our figure illustrates this for the case [ = 3 and A = i.

All in all, this determines a greatest increase path that has 2k sequences of P-edges that
visit [ vertices each, and touches 2k additional vertices, namely wo, vy, ws,...,v4,. Thus the
greatest increase path on (P, «a) has 2kl + 2k vertices.

Analogously (or by symmetry), the same is true for the greatest increase path on (@, —«).
Thus (@, ) is a reversible pair of length 2k(I+1). U
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We use this lemma to derive both an exponential lower bound for Hgi(d,n) in the diagonal
case and to show that it grows like n'%2 in the case of constant dimension.

Corollary 4.13 The greatest increase rule traces, in the worst case, paths of exponential length:
Hy(d,3d —1) > 3-214/2 _2

holds for d > 1. Furthermore,

Hgi(d,n) > 2(2{ 5 J) -2 if d > 0 is even,

and

g1 L]
Hyi(d,n) > 3(2 V;(Td—nlJ) —2  ifdis odd.

Proof. The case k = 1 of Theorem 4.12, the initial conditions Hg;(0,0) = 1 and Hgi(1,2) = 2
and induction on m provide

Hyi(2m,6m) > 3-2"—2  and  Hy(2m+1,6m+2) > 4.2" —2

for all m > 0. Clearly Hyi(d,n) < Hgi(d,n+1), from which we derive the first claim.
For the second claim, we start at Hyi(0,0) = 1 and Hgi(1,2) = 2, and get by induction that

Hgi(2m, (4k+2)m) > 2(2k)™ —2
and
Hgi(2m+1, (4k+2)m+2) > 3(2k)™ -2
for all m > 0, from which the result follows via suitable substitutions (as in the proof of

Corollary 4.8). 0

With the method of Corollary 4.9 one also gets a lower bound for liﬂnf Hygi(d,n)/n4?] that
n oo
improves somewhat on that by Jeroslow [24, p. 370].
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5 Shadows

To the previous constructions that we have surveyed, we now add a new deformed product
construction, which — via Lemma 2.9 — gives a lower bound for the number of simplex pivots
required by the shadow vertex rule. We do this, of course, by constructing polytopes whose
shadows have many vertices.

5.1 Shadows of d-Polytopes

Lemma 5.1 Let a(z) denote a non-constant linear function on the plane (z € R?).
For each even k > 4, and for each A > 0, there exist normally equivalent k-gons

V = conv{vi,..., v} and W = conv{ws,...,w}
(both labeled in clockwise order), such that
0 = alv) < a(wr) < alw) < a(vy) < avy) < alwg) < ... < alwg) < afvg) =1

and such that conv(V U W) is a convex 2k-gon whose vertices appear on its boundary in the
order
U1, Wi, w2, V2,03, W3, W4, . . ., Wk, V-

Proof. Take 2k points equally spaced on a semicircular arc of radius 3 (“half a 2(2k—1)-gon”)
and label them according to the order given by this lemma.

Our figure illustrates the case k = 4. [l
U2 U3
Wa ws
w1 Wy
U1 Uy

Note: this lemma is false for all odd k.
Theorem 5.2 For all even k > 4,
Hg_sh(d+2, n+k) Z k Hg_sh (d, n)

Proof. Let P be a convex polytope with a 2-dimensional projection that has m := Hy g, (d, n)
vertices. After a projective transformation, we may assume that the projection is given by

m R — R2 x — (o(x),¢ (),

such that the image of this projection is a planar m-gon conv{ui,...,u,} (labeled clockwise)
with u; = (0,0), uy,, = (1,0), and 0 = @(u1) < p(ug) < ... < p(uy) =1, while ¢'(7) > 0 (with
equality only for ¢ = 1 and 7 = m), as in the figure:

/
xT
2 ( ) us Uy Us

U9 Ug

uy U7 o(r)

4
o

—4
—_



With this preparation, we construct polygons V,W C R? as in Lemma 5.1, and with these the
deformed product
Q = (Pp) X (V,W).

The projection of this polytope to the last two coordinates given by Corollary 3.6(ii) produces
the following picture:

V2 U3

Wa w3

w1 Wy

(] Vg

where the fat edges represent the images of the copies P; of the polytope P. In fact, if instead
we use the projection to R® given by

R R3, z — (ma(z), ¢ (z)),

then the image is a 3-dimensional polytope whose “base” is still given by this figure, while there
is a little “arc” erected above each of the fat edges. The graph of the resulting polytope,

>

in the top view (for m = 6), may look somewhat like the following:

U2 U3
W2 ws
w1 Wy
[ \
U1 ¢ $ V4

This top view corresponds to deleting the last coordinate from R?, and thus to taking the
projection o applied to (). Now we take a slightly shifted projection, namely the projection

7 RTOT R3 — R2
v (m(x),¢(z) = ma(z)+ep! (1) e

If € > 0 is chosen small enough, then all the vertices of the “arcs above the fat edges” will appear
in the shadow boundary; thus instead of the 2k vertices of the image of w5 (two for each of the
fat edges [v;, w;]), the image of the shifted projection will have mk vertices (very flat arcs with
m vertices each for each of the & fat edges).

Hence the projection 7° of @ has km = k Hy 4, (d, m) vertices. [l
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Corollary 5.3 Forn > 2d > 2,

n |\ /2
Hog(dyn) > (2 [EJ) if d is even,
and
n—9|\ /2]
Hygh(d,n) > 2 (2 {d— 1J> if d is odd.
Proof. This is (nearly) the same analysis as for Corollary 4.8. 0

For liﬂi}nf Hy.gn(d,n)/nl42] we also get the same bounds that were derived in Corollary 4.9
n o

for liminf H (d,n)/n%?!| with the same proof.
n—o0

5.2 k-Shadows and Applications

The deformed product of polytopes with “large shadows” described in the last section has a
number of applications outside of linear programming. The lower bound applies to more general
geometric constructions, thanks to the following observations.

Observation 5.4 The complexity of the shadow of a polytope on the plane (the 2-shadow) is
a lower bound on the complexity of a k-shadow (the projection of a d-dimensional polytope to a
k-dimensional subspace), since projections do not increase the number of vertices of a polytope.

A k-section of a polytope P in R? is the intersection of P with a k-dimensional hyperplane.

Observation 5.5 The polar of a k-shadow of P is a k-section of the polar of P. (For instance
the polar of a projection of P from a point z is the intersection of the polar hyperplane of x
with the polar of P.)

Analogous to Hy.gn(d,n), which denotes the maximal number of vertices of any k-shadow of a
(d,n)-polytope, let Hy sec(d,n) be the maximum, over all d polytopes with n vertices, of the
number of facets in a k-section.

Corollary 5.6 Hj.gc(d,n) = Hpgn(d,n) € O(nld/2),

The computation of shadows and sections are natural problems in Computational Geome-
try; we can think of the computation of k-shadows as an intermediate problem between Linear
Programming (the 1-shadow) and Halfspace Intersection (the d-shadow). One natural applica-
tion is the maximization of a convex function of k variables over a polytope with n facets; the
maximum is achieved at a vertex of the k-shadow.

Several researchers have studied the construction of k-shadows with respect to particular
geometric search and optimization problems. Ponce & Faverjon citePoFa compute the set of
stable three-finger grasps, with friction, of a polygon in the plane, as the 3-shadow of a 5-
dimensional polytope. This result is extended in [35], where a subset of the stable four-finger
grasps, with friction, of a polyhedron in R? is computed the as 8-shadow of an 11-dimensional
polytope. Agarwal, Amenta & Sharir [1] reduce the problem of finding the largest similar copy
of one convex polygon contained in another to the maximization of a convex function in two
dimensions over a polytope in R*: they use the particular structure of this polytope to get
an efficient algorithm for the computation of the shadow. Algorithms for the computation of
general shadows were also developed in the context of Logic Programming by Huynh, Lassez &
Lassez [23].

25



5.3 k-shadow Algorithms

In this section we consider some old and new algorithms for the problem:

Problem 5.7 (k-Shadow)
Input: A set H of n linear halfspaces in R?
Output: The projection of the polytope P = [ to the subspace spanned by e',..., e".

Corollary 5.6 settles the question of the worst-case complexity of the problem when P is a simple
polytope. But the problem remains interesting because one expects that, in most situations,
the k-shadow, k < d, will be significantly less complex than P itself. (For k& = 2 this intuition is
proved, in a probabilistic model, by Borgwardt’s analysis of the Shadow Vertex Algorithm [8].)
The goal therefore is an optimal output-sensitive algorithm. An algorithm is output-sensitive
when the running time depends on both the size of the input and the size of the output.

A hyperplane of the form {z € R? : ayz; + aszs + ... + agzp +b = 0} in R? is called
k-vertical (a k-vertical hyperplane is parallel to the xg,1,...,z, axes). We say that a face f of
P is supported by a k-vertical hyperplane H if f is contained in H and P is entirely contained in
one of the closed halfspaces bounded by H. The faces of P supported by k-vertical hyperplanes
are the faces of the k-shadow.

We begin with the obvious worst-case optimal algorithm for computing the k-shadow. This
algorithm returns a list F' of all faces of the k-shadow.

Algorithm 5.8 (Worst-case Algorithm)

1 Compute P

2 For every face f of P

3 if f is supported by a k-vertical hyperplane
4 add f to F

For Step 1, there is an asymptotically worst-case optimal algorithm, due to Chazelle [10], for
computing a simple polytope as an intersection of halfspaces, which runs in time O(nld/ 2] ). The
test in Step 3 can be performed in constant time (when d is taken to be constant). Together
with Corollary 5.6 we get the following.

Theorem 5.9 The k-shadow of a simple polytope P can be computed in O(nLd/QJ) time, and
this is optimal in the worst case.

We now turn to algorithms that achieve some degree of output-sensitivity by computing the
k-shadow of P without computing P itself. We compare the running times in terms of both the
number s of shadow facets and the number v of shadow vertices. We shall consider only the
case which P is simple. Since any vertex of a simple polytope is adjacent to exactly (kil) faces
of dimension k—1, taking d and & to be constants implies that, in the k-shadow, s = O(v). But
the only bound we have on v with respect to s is that v = O(SUC/ZJ), from the Upper Bound
Theorem. So it is possible, for large k, that v > s.

Ponce et al. [35] described and tested the following pivoting algorithm, analogous, for in-
stance, to the convex hull algorithm of Avis & Fukuda [5]. It uses two data structures, a stack S
and a dictionary D, and returns a list V' of the vertices of the k-shadow.

Algorithm 5.10 (Shadow Vertex Pivoting Algorithm)
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Find the minimum vertex pg of P w.r.t. the z; coordinate
Insert pg in S
Insert py in D
Add py to V
While S # ()
remove a vertex p from S
for each edge e adjacent to p
if e is supported by a k-vertical hyperplane
find the other endpoint p’ of e
ifp ¢ D
insert p’ in D
insert p’ in S
add p’ to V

© 0O U hAR WNH

-
- O

-
W N

Return V

Step 1 can be done by linear programming, which, when d is taken to be a constant, requires
time O(n) (although exponential in d). Step 9 is done by intersecting the ray supporting e
anchored at p with each of the input halfspaces in turn. The intersection nearest p is p’. Since
the degree of each vertex in the k-shadow is constant, the entire face structure can be derived
from the list of vertices in time O(v).

Theorem 5.11 (Ponce et. al., [35])
The k-shadow of a simple polytope given as an intersection of n halfspaces in fixed dimension
can be computed in time O(vn).

We give a different algorithm for computing the k-shadow, which is more efficient when
v > s. The algorithm operates in two phases. In the first phase, we find all the shadow facets,
rather than the shadow vertices, by pivoting. In the second phase we construct the k-shadow
as the intersection of the shadow facets using a halfspace intersection algorithm.

In a pivoting step in the first phase, we find all shadow facets adjacent to the current one.
Let f be the current shadow facet, a (k—1)-face of P that projects to a facet of the shadow.
The face f lies in the intersection G of some set G of d—k+1 input hyperplanes. For each input
hyperplane F' not in G, we replace each of the d—k+1 hyperplanes of G in turn with F, to get
a set G’ which intersects in a different (k—1)-flat G'. G’ contains a shadow facet if, first, G’
contains a (k—1)-face of P, and second, if that (k—1)-face supported by a vertical hyperplane.

The input halfspaces corresponding to G’ define an unbounded polytope P’ which contains P.
If G’, as a face of P’, is not supported by a k-vertical hyperplane, then any face of P contained
in G’ will not be supported by a k-vertical hyperplane either. In that case we know that G’
cannot contain an adjacent shadow facet.

Otherwise we run a (k—1)-dimensional linear program in the affine subspace G, minimizing
x1, to find out if G’ P = (. If the linear program is infeasible, G’ fails to intersect P; otherwise
it returns a point p which minimizes z; on an adjacent shadow facet f' induced by G’.

For each f, we run at most (d—k)n such linear programs, each requiring O(n) time. So
finding all shadow facets adjacent to f requires O(n?) time.

The algorithm for the pivoting phase again requires a stack S and a dictionary D, and returns
a list F' of shadow facets.

Algorithm 5.12 (Shadow Facet Pivoting Algorithm)

1 Find the minimum vertex py of P w.r.t. the 21 coordinate
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2 For each (k—1)-face f adjacent to py

3 if f is supported by a k-vertical hyperplane
4 insert f in S

5 insert f in D

6 add f to F

7 While S # ()

8 remove a shadow facet f from S

9 find all shadow facets adjacent to f

10 for every shadow facet f’ adjacent to f
11 if f'¢D

12 insert f' in D

13 insert f' in S

14 add f' to F

15 Return F

Step 9 is executed once for every shadow facet and requires (by the previous discussion) O(n?)
time, so the running time of the pivoting phase is O(sn?).

From the list F' of shadow facets, the entire k-shadow can be computed by a convex hull
algorithm in dimension k. Using Chazelle’s algorithm this takes time O(sl¥/2]), for an overall
running time of O(sn? 4+ s¥/2]). When s#/2] > v > s, we can do better by using Seidel’s
output-sensitive convex hull algorithm, which takes time O(s? + vlogs). The s? term in the
running time for Seidel’s algorithm comes from a first phase which finds the minimal vertex, with
respect to x1, in each facet of the final halfspace intersection. Since the Shadow Facet Pivoting
Algorithm produces these minimal vertices as a by-product of finding the shadow facets, we can
skip the first phase, for an overall running time of O(sn? + vlog s).

Theorem 5.13 A k-shadow of a polytope P, given as the intersection of an input set H of
halfspaces, can be computed in time O(an-i—min(st/QJ,Ulog s)), where n = |H|, s is the number
shadow facets, and v is the number shadow vertices.

Both pivoting algorithms run a lot of linear programs using almost identical sets of con-
straints. The running times can therefore be improved slightly using the ray-shooting data
structure of Matousek & Schwarzkopf [28, 29] (a similar observation is made in [35], and by
Chan [9]).

5.4 Shadows of Cyclic Polytopes

The polar of a cyclic polytope has the maximum number of faces of all dimensions among
polytopes with n facets. We show, however, that in even dimension the polars of cyclic polytopes
do not maximize the complexity of the shadow among all polytopes with n facets. This is
equivalent to the conclusion that for large n a monotone path through all vertices cannot be found
by the “shadow vertex algorithm,” for any realization of Cy(n)®. Equivalently, a Bruggesser-
Mani shelling of Cy(n) [40, Sect. 8.2] cannot in general be generated by a 2-dimensional section
of Cy(n) that would cut all the facets. In fact, we show that in even dimensions the shadow of
a polar of a cyclic polytope must have asymptotically fewer vertices than the polytope itself.

Let us review some properties of cyclic polytopes; for more details, see [40, Example 0.6]. A
curve C in R? is of order d if every hyperplane intersects C' in at most d points. The convex hull
of any set of n > d points that lie on a curve of order d is a cyclic polytope Cy(n). Sturmfels [38]
has shown that if the dimension d is even, then any polytope P that is combinatorially isomorphic
to a polytope Cy(n) has its vertices on some curve of order d.
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A facet of P is supported by a (d —1)-plane H which contains d vertices. Let H denote the
positive halfspace of H, which is determined by P C H™". Index the vertices v1,...,v, along a
suitable directed d-order curve C. If C leaves H' at a vertex v;, then it must reenter HT at
v;41, since otherwise v; 11 would be outside H™ and hence outside P. Thus the vertex set of any
facet of P is a union of adjacent pairs v;,v;y1 (“Gale’s evenness criterion” [40, Thm. 0.7]).

Every face of smaller dimension is determined by a subset of the vertex set of a facet. This
means that the (d — 2)-faces of P are of the form

T(i1,. .. ,id/Z) = conv{v;,, Vi, +1,Vig, Vigt1y - - - ’Uid/z}’

with i, ¢ {i;,4;+1} (and indices taken mod n). That is, there are d/2 — 1 adjacent pairs of
vertices, and then one vertex, v;, ,, which needs not be adjacent to any other. We choose our
numbering in such a way that v;, ,+1 is not a vertex of T(i1,.--,iq/2)-

Theorem 5.14 Let P C R? be a cyclic d-polytope with n vertices, where d > 4 is even, and let
P2 be a polar polytope of P. Then any 2-dimensional shadow of P® has at most

250 5) = 0w

vertices.

Proof. Using the duality between projections and sections, we consider a 2-dimensional section
F N P of the cyclic polytope P, and verify that it cannot have more than % (g/_Qd_/;) vertices.
The maximum is clearly achieved for a 2-plane that meets the interior of P, and that is in
general position with respect to P. In fact, given any 2-plane F' that meets the interior of P,
the number of vertices of F'N P cannot decrease by a sufficiently small perturbation of F.
Under these conditions, every vertex p of FN P is determined by a unique (d —2)-dimensional

face T'(i1,...,%4/2). Consider the (d — 1)-dimensional hyperplane
H(ig,...,id/Z) = aff(FU{UZ'Z,...,’Uid/Q}).

This hyperplane intersects the (d — 2)-flat supporting T'(i1,...,i4/2) in a (d — 3)-flat which
contains the vertices v;,, ..., v;, /2 There is a one-dimensional family of such (d — 3)-flats, one of
which supports the (d — 3)-face conv{v;,, vi,,...,vj,,,} and another supporting the (d — 3)-face
conv{v;, +1,...,vi,, .- The (d—3)-flats that intersect the interior of T'(i1, ... ,%4/) separate the
points v;; and v;, 1. If F hits T'(éy, ... ,iq/2) in the interior point p, then H (iz, ... ,i4/2) separates
the points v;; and v;, 41 on the moment curve. The figure represents the four-dimensional case.

vil—l—l

But every hyperplane intersects C' at most d times; and for H(iz,...,i4/2), d — 3 of those
intersections are the vertices 4, ...,44/,. Hence there are at most three possible choices for the
pair v;,, vi, +1 separated by H(ia,...,i4/2)-
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Thus we can bound the number of vertices of F'N P. There are n choices for the index 4o,
after that there are ("72(;/(;[_/572)
there are at most three choices for 4. In this count, each face appears (d/2 — 1)-times, since the

choice of 4; among {iy,... ,’id/g_l} was arbitrary. Thus there are at most

() - (i) - o

vertices p of FF'N P. U

) choices for the set set of indices {4z, ...,iq/2—1}, and after that

In dimension d = 4 this means that the 2-shadow cannot have more than 3n vertices. For
this we have an (almost) matching lower bound.

Theorem 5.15 Let P be a cyclic polytope in RY with n vertices, with 0 in its interior, and let
P? be the polar polytope of P. The shadow of P™ in R? can have at many as 3n — 10 vertices.

Proof. For the lower bound, construct a curve of degree 4, a flat ' and points vy, ..., v, on the
curve so that if you project the curve to an orthogonal complement to F', which maps F' itself
to a point, you obtain the situation in our figure.

U Uy

This can, for example, be achieved very explicitly by taking the curve C' given by 7(t) :=
(t, (é), (;), (Z)), taking w14 to be the projection to the first and fourth coordinate, and taking
F := {(3,2,y,0)}, and choosing the points on C as vy = y(—1), vo := ¥(3), v3 := ¥(2),
vg == 7(5), and v; == y(t;) with ; very close to 4, for all i (5 <i < n).

FNT(i,j) # 0 holds if and only if in the 2-dimensional projection the point 74 (F') is in the
interior of the triangle m4(7'(é, j)), which is spanned by m4(v;), T14(v;) and mT14(vj41).

Every 2-face of P formed by {v1,v2}, {va2,v3} or {vs, v}, together with any one of the vertices
Vs, ..., Up (that is, the triangles T'(¢,1), T'(¢,2) and T'(4,3) for 5 < i < n) intersect F. This gives
3(n —4) vertices in PN F. In addition, the 2-faces conv{vy,v4, v5} and conv{vy,vs,v,} (i.e., the
triangles T'(1,4) and T'(4,n)) also intersect F', for a total of 3n — 10.
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