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Abstract

We give a lower bound of Q(fl%2]) for the number of vertices of a d-
dimensional polytope with f facets which can appear on the outer boundary of
a projection to any dimension 2 < k < d. By duality, this implies a lower bound
of Q(n'%2]y for the number of facets in a k-dimensional slice of a d-dimensional
polytope with n vertices. At the same time, the Upper Bound Theorem pro-
vides an O(n!%2!) upper bound for this quantity. For cyclic polytopes, however,
we show an upper bound of O(n) on this quantity in dimension 4.

1 Introduction

A d-dimensional polytope with f facets may have no more than

i = (1) (1ol

vertices, which is O(fL%J); this is the dual statement of the Upper Bound Theorem
for polytopes. This bound is achieved by the duals of the cyclic polytopes, defined
below. The shadow of a d-dimensional polytope P is the set of points (z1,x2) such
that some point (zq,xs,...,z4) belongs to P, or, equivalently, the projection of P
to the (z1,xy)-plane. The shadow is a convex polygon. How many vertices can the
shadow of a d-polytope with f facets have? This question can be generalized in the
obvious way, to k-dimensional shadows (k-shadows) for 2 < k < d — 1, where it also
makes sense to ask for the number of i-faces, 0 < < k — 1.

It is not inherently unreasonable to hope that the complexity of the shadow of
P might be asymptotically less than that of P itself. We show, however, that the
k-dimensional shadow of a polytope with f facets in d dimensions might, in the worst
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case, have complexity Q(fL2)). Let My(f,d) denote the maximal number of vertices
in the shadow (i.e., of any 2-dimensional projection) of a simple d-polytope with f
facets. Then My (f,d) < M(f,d) is immediate. We show that both functions have
the same order O(f.%2l) for fixed d. This is somewhat puzzling, since our results on
projections of duals of cyclic polytopes suggest that My(f,d) may not coincide with
M(f,d) even for d = 4.

Shadows are natural objects in combinatorial geometry, and they have a number
of algorithmic applications. Perhaps most importantly, the shadow vertex algorithm
for linear programming chooses a simplex path by following a two-dimensional shadow
[GS, Borg]. Lower bounds on the size of the two-dimensional shadow provide lower
bounds for this algorithm. Exponential lower bounds in the special case f = 2d were
given by Murty [Mu] and Goldfarb [Goll, Gol2]; our example handles the case where d
is fixed and provides worst-case bounds of ©(f1%/2). This is in contrast to the results
of Borgwardt [Borg], who has established a polynomial bound of at most O(d*f)
for the expected number of steps of the shadow vertex algorithm on random linear
programs. A randomized version of the shadow-vertex rule that may be polynomial
on every linear program was suggested by Gértner & Ziegler [GZ].

The case of fixed dimension is important also for other optimization problems
involving shadows. One natural optimization problem is the maximization of a convex
function in k variables xi,...,x; over a polytope P. The maximum is achieved
at some vertex of the k-shadow For example, [AAAS] applies this maximization to
finding the largest similar copy of one convex polygon contained in another, a problem
with applications in vision and robotics. Sometime the shadow itself is an object of
interest. In another robotics application, [PoFa] computes the three-shadow of a five-
polytope representing the set of stable three-finger grasps of a polygon, with friction.
They give an algorithm for computing k-shadows, and cite some other applications
in artifical intelligence. [Chan] remarks that output-sensitive convex hull techniques
can be applied to the output-sensitive computation of shadows.

This particular question about shadows is only interesting in dimensions four and
higher. In three dimensions, it is not too difficult to construct simple polytopes in
which every vertex appears on the shadow. Other questions concerning the shadows
of three-dimensional polytopes are considered in [CEG].

2 Results

We relay on the following observation.

Observation 1 A lower bound on the complexity of the two-dimensional shadow of
a polytope also is a lower bound on the complexity of any k-shadow.

This becomes obvious when we imagine doing the projection to two dimensions by
projecting first to dimension k£ and then to the plane. Any vertex which shows up on
the planar shadow has to correspond to at least one vertex on the k-shadow.



To prove the theorem, then, it is sufficient to exhibit a d-dimensional polytope
with f facets which has a two-dimensional shadow with O(fL%2]) vertices. Our con-
struction of such a polytope essentially follows an example by Klee and Minty [KIMi]
of a polytope with a long monotone path. We do the construction so as to be able to
project the whole path to the plane. This gives us our main theorem.

Theorem 2 For all d, there is a d-dimensional polytope P with f facets, such that
the k-shadow of P has O(f%/%]) vertices.

This result answers an equally natural question in the dual setting. The dual of
a polytope P with f facets is a polytope with f vertices. But what is the dual of
the k-shadow? The (d — 1)-dimensional shadow of P is the intersection of the linear
halfspaces parallel to the x; axis containing P. In the dual, this is the intersection of
the dual of P with the hyperplane x4 = 0. So the dual of the k-shadow of a polytope
is the intersection of the dual polytope with a k-dimensional hyperplane.

Corollary 3 For all d, there is a d-dimensional polytope P with n vertices, and a
k-dimensional plane p in R?, such that the intersection p(\ P is a k-polytope with
O(nl4/21) facets.

Recall that the projection of the lower envelope of a polytope to RY™! is a regular
(d — 1)-dimensional triangulation of the projected vertices of the lower envelope. If,
in the example above, we consider a projection to IR ! in any direction parallel to
p, we get the following configuration.

Corollary 4 There is a regular triangulation T of a set of n points in R4, and a
(k — 1)-plane p, which intersects O(n!%?!) of the simplices of T.

The cyclic polytope duals maximize the number of vertices over all d-dimensional
polytopes with f facets, providing the lower bound example matching the Upper

Bound Theorem. Somewhat surprisingly, we show the following upper bound on the
complexity of the shadow of a cyclic polytope dual.

Theorem 5 The projection of the dual of a 4-dimensional cyclic polytope with f
facets to the plane can have at most 3f vertices.

We also give an example of a projection of a 4-dimensional cyclic polytope dual

which achieves 3f — 11 vertices on the boundary of the projection.

3 The fourth dimension

In this section we develop the 4-dimensional case in detail. In the following section,
we give the higher dimensional generalization.
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Theorem 6 There is a 4-dimensional polytope P with 2m facets, such that the
shadow of P has m(m + 1)/2 vertices.

Proof: We construct P in three steps: first, we take the cross-product of two m-
gons to get a 4-dimensional polytope P'. Then we deform P’, without changing its
combinatorial structure, to make a new polytope P”. Finally we perform a projective
transformation of P” to get P.

Let A be an m-gon, m divisible by 4, in the (x;, x2) coordinate plane, with vertices
evenly spaced on a circle, so that vertex v;(A) = (cos(ic), sin(ia)) for & = 27 /m and
i=0...m—1, and edge ¢;(A) = v;v;11 (i + 1 is taken mod m, here and throughout;
that is, the edge v;v;41 might be v,v;). Let B be the same m-gon in the x3, x4
coordinate plane. The cross-product of A and B (the set of all points with xy, 25 in
A and z3,4 in B) is a 4-dimensional polytope P'.

A facet of P’ is the cross-product either of A with an edge of B (an A-facet), or of
B with an edge of A (a B-facet), so P’ has 2m facets, each a cylinder over an m-gon.
There are two kinds of two-faces. The cross-product of an edge of A with an edge of

Figure 1: A facet of P’

B is a square, a side of a cylindrical three-face. (The topologically inclined may note
that these square faces are a polygonalization of the flat torus.) The cross-product
of B with a vertex v;(A) is a copy of B in the two-flat (z1,22) = v;(A). We will
call these m-gonal faces B-ridges; the A-ridges are defined similarly. There are m
B-ridges, each containing m distinct vertices, so P’ has m? vertices. We write u; ; for
the vertex which is the cross product of v;(A) with v;(B).

For a fixed ¢, the orthographic projection to the (z1, z5)-plane takes all the vertices
in a single B-ridge B; to a single point (see Figure 3). We now deform P’ into P”,
so that these vertices are distributed along a line segment in the projection, without
disturbing the combinatorial structure of the polytope.

We do this by tilting each of the B-facets of P’. All the B-facets are parallel
to the x3 and x4 axes. For i even, we tilt the supporting three-plane of the B-facet
containing edge e;(B) in towards the positive x3 axis, maintaining the incidence with
e;(B) and keeping it parallel to the z4 axis. For i odd, we tilt it towards the negative
x3 axis in the same way and by the same amount. We use a gentle enough angle,
defined precisely in a moment, so that the combinatorial structure of P” remains the
same as that of P’.



After the tilting, the three-planes supporting the B-facets are defined by linear
equations in (z1,Z2,z3). Each B-ridge lies in the intersection of two B-facets. Alge-
braicly, we can use this intersection to eliminate the x3 variable, which means that
a B-ridge lies in a three-plane determined by a linear equation in (z1,xs), so that it
does indeed project to a line segment in the z, z5 plane.

In order to verify that we can accomplish this tilting without changing the struc-
ture, we consider the motion of the vertices induced by the tilting. A vertex is the
intersection of two adjacent A-facets and two adjacent B-facets. The intersection of
two adjacent A-facets is a two-plane with constant x3, x4 coordinates, so tilting the
B-facets will not affect the z3, z, coordinates of the vertices.

Let us consider the extremal two-plane p,,,, in the positive x3 direction containing
A-ridge Ay. The intersection of p with any plane supporting a B-facet is a line, and the
intersections of all of the positive halfspaces of these lines is Ay, an m-gon. For even
i, the tilting causes the line corresponding to the B-facet through e;(B) to move in its
normal direction towards the origin. For odd 7, the line moves away from the origin.
So the edges of Ay corresponding to even ¢ get longer, and the edges corresponding
to odd i get shorter. The behavior of A,,/» on the the extremal two-plane in the
negative x3 direction is just the opposite; even edges get shorter and odd edges get
longer. See Figure 2.

Figure 2: Ay and A,, /), after tilting

In the central two-planes containing ridges A,, /4 and Az, 4, there will be no motion
at all, and the intermediate two-planes will exhibit more moderate behavior than the
extremal ones.

We claim that so long as we tilt the the three-planes supporting the B-facets by
a small enough amount so that none of the shrinking edges of the A-ridges disappear
entirely, the combinatorial structure of the resulting polytope P” remains the same
as that of P'.

A combinatorial change would occur if the orientation between a vertex and one
of the three-planes supporting a facet changed. This cannot happen in the case of
the A-facets, since they are supported by planes defined by a single linear equation
in x3, x4, and the x3, x4 coordinates of all the vertices do not change. In the case
of the B-facets, the orientation of all the vertices in each A-ridge remains the same
with respect to each three-plane supporting a B-facet, since each A-ridge remains a
convex m-gon. This establishes the claim.



The final step in the construction is simply a projective transformation. For some
very small constant €, we multiply every point in the space by the matrix

1 0 0 € 0
01 0 € O
00100
00010
0 00O0°1

The resulting polytope is P. The projection of P” to the x1, z, plane took every B-
ridge B; to a line segment. This transformation “adds back” some of the x4 coordinate
of each 4-dimensional vertex to its x1, x> coordinates, so that the vertices of B; lie on
an ellipse in the projection, with the arc containing vertices u; 1, ..., Ujm/2—1, Where
x4 is positive, curving away from the origin and onto the convex hull. See Figure 3
once again. The constant ¢ can be chosen small enough so that the angle formed,

D0.

Figure 3: The projections of the ridges B; in P’, P”, and P

in the projection, between wu;_; , u; 0, ;1 remains smaller than 7. In that case, the
vertices u;, . . ., Uj,m/2 appear on the boundary of the projection, for every B;, giving
the shadow a total of m(m + 1)/2 vertices. O

We note that B might be replaced with a roughly semi-circular (m/2+1)-gon, the
convex hull of vertices vy, ..., vy/2, giving a polytope with fewer facets but the same
number of vertices on the shadow. This improves the constants in the construction
but makes it uglier.

4 Main theorem

We now generalize the 4-dimensional construction to any higher dimension d. Ba-

sically, we replace B in the construction above with a (d — 2)-dimensional polytope
whose shadow has O(f%2~1) vertices.

Theorem 7 For all d, there is a d-dimensional polytope P with f facets, such that
the shadow of P has O(fL4%) vertices.

Proof: Let A be a planar f/2-gon in z,25. We recursively construct a d — 2-
dimensional polytope B in x3, ..., x4, with f/2 facets, such that the shadow of B in
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the (3, 74)-plane has O(f%271) vertices. For simplicity, we also stipulate that the
shadow is a polygon symmetrical about the x3 and z, axes, with a unique maximal
and minimal vertices in x3, properties that this construction recursively ensures.

We take the cross-product P’ of A and B. The A-facets P’ are the cross-products
of A with the facets of B, and the B-facets are the cross-products of B with the edges

of A, so P’ has f facets. A B-ridge is again the cross-product of B with a vertex of
A.

We now deform P’ into P”. For even edges i of A, we tilt the corresponding
B-facet slightly towards the positive x3 axis, maintaining its contact with the edge ¢
and keeping it parallel to the x4, ..., 2z, axes. For odd edges 7, we similarly tilt the
corresponding B-facet towards the negative x3 axis.

We argue again that a small enough tilting leaves the combinatorial structure of P”
the same as that of P’. An A-facet is supported by a half-space orthogonal to a facet
of B, a linear equation in x3,...,z4s. The A-facets are unmoved, and the intersection
of d — 2 of them is a two-plane with constant xs, ..., x4 coordinates. A vertex is the
intersection of d — 2 A-facets and two B-facets, so the x3,..., x4 coordinates of each
vertex are unchanged by the tilting, and the relationship of each A-facet with the
vertices is undisturbed.

Now consider the two-spaces formed by the intersection of the hyperplanes sup-
porting d — 2 adjacent A-facets (the facets are adjacent if they are the cross-product
of a single edge of A with the d — 2 facets of B meeting at a vertex). The intersection
of the halfspace supporting a B-facet with such a two-plane is a half-plane. Before
the tilting, the intersections of these f/2 halfplanes form an f/2-gon identical to A.
Consider the minimal and maximal two-faces with respect to x3 coordinate, p,,;, and
Prmaz- 1N Pmaz, the tilting again moves the even edges of these f/2-gons in towards
the origin, and the odd ones outwards, and it does the opposite in p,,;,. Again, if we
tilt the B facets gently enough so that all of these two-faces remain convex f/2-gons,
no combinatorial change can occur between a B-facet and a vertex as a result of the
tilting.

Finally, we apply the projective transformation

100e 0 -+ 00
01 0e 0 --00
0010 0 00
0000 0 -~ 10
0000 0 -0 1]

to P” to produce P. This “adds back” some of the z, coordinate of each vertex to
the (x1, z3)-coordinates, causing every B-ridge to project to a convex polygon in the
(21, 22)-plane. Again, € can be chosen small enough so that half of the vertices of
every B-ridge end up on the boundary of the shadow. O



5 The shadow of a cyclic polytope

The dual of a cyclic polytope has the maximum number of faces of all dimensions
among polytopes with f facets. We show, however, that the duals of cyclic polytopes
do not maximize the complexity of the shadow among all polytopes with f facets.
In fact we show that the shadow of a 4-dimensional cyclic polytope dual must have
asymptotically fewer vertices than the polytope itself.

Let us review the definition and properties of a cyclic polytope; for more details,
see [Z]. Let C be a curve of order d in IR?, meaning that any (d — 1)-plane intersects
C'in at most d points. The convex hull of any set of n points on C'is a d-dimensional
cyclic polytope P;. In four and higher dimensions, every pair of vertices in P, is
connected by an edge, in dimension six or higher every triple form a two-face, and so
on.

A facet of Py is supported by a (d — 1)-plane which passes through d vertices. Let
us index the vertices v, ..., v, along C. If C passes outside a facet at a vertex v;,
it must come back inside at v;;1, since otherwise v;;; would be outside P;. So the
set of vertices determining a facet is made up of adjacent pairs v;, v;1;. Every face
of smaller dimension is determined by a subset of the set of vertices determining a
facet. In four dimensions this means that every two-face of P, is the convex hull of
three vertices {v;, v;41,v,}, with v; distinct from both v; and v,y (recall that i + 1 is
taken mod n, as above).

Theorem 8 Let Py be any cyclic polytope in R* with n vertices, and let P} be the
dual of Py. The shadow of P} in R? may have at most 3n, and might have at many
as 3n — 11, vertices.

Proof: Any projection of the dual P} into IR? is the dual of the the intersection of
the cyclic polytope P, with some two-plane F5,. This intersection is a convex polygon
P, in F;,. We show that P, has at most 3n, and might have as many as 3n — 11,
vertices.

Consider the 3-polytope P; formed by the intersection of P, with any three-plane
F3 containing F5. A vertex in P, is the intersection of F, with an edge of Ps, which
in turn is the intersection of a two-face of Py with F3.

Consider each possible vertex v; in turn. There are at most n — 2 edges of P;
induced by 2-faces of P, involving v;, one for each possible v;. Construct a three-
plane F,, through F; and v;; if the edge of P induced by {v;, vi11,v;} is cut by Fy,
then the edge {v;,viy1} is cut, in Py, by the halfspace of I, bounded by F; and not
containing v;. This is easy to see by projecting the situation from R* to R? along
F;, as in Figure 4.

The vertices v; and v;; are connected by a segment of C; if one of them lies
below F,, and the other lies above it, this segment of C' must also cross F,, at least
once. But any three-plane intersects C' at most four times; and for F,,, one of those



Figure 4: Projection to IR? along F,. F, projects to a point.

intersections is v;. Hence there are at most three pairs v;, v;;1 separated by F,,, there
are at most three edges of P; cut by Fj, and there are at most three vertices of P,
for every vertex v;. This gives the upper bound of 3n.

Now we construct a cyclic polytope that realizes the lower bound. Select three
three-planes Fj, F, and F), all intersecting in a common two-plane F5. Figure 5

Figure 5: Projection to IR? along Fb.

again represents the projection from IR* to IR? along F,. Select an order four curve
C such that intersections of the 3-flats with C' occur in the order indicated.

Let v, be the intersection of F;, with C, vs be the intersection of F,, with C,
and put vertices vg,...,v,_1 along C, between vs and v,. Finally, position vertices
vy through v, on C' as shown, so that the segments connecting the adjacent pairs
{v1,v9}, {v2,v3} and {ws3,v4} all cross both F,, and F, .

Every 2-face of Py formed by {vy,vs}, {vs,v3} or {vs,vs}, together with any one
of the vertices vs, ..., v,, crosses Fy. This gives 3(n — 4) vertices in P,. In addition,
the two-face {vy, vy, vs} also crosses Fy, for a total of 3n — 11. O
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