BASIC PROPERTIES OF CONVEX POLYTOPES
Martin Henk, Jirgen Richter-Gebert and Gilnter M. Ziegler

INTRODUCTION

Convex polytopes are lundamental geometric objects that have been Investigated
slnee antlguity. The beauty of thelr theory s nowadays complemented by thelr Tm-
portance for many other mathematical subjects, ranging fom Iotegration theoey,
algebraic topology and algebralc geometry (toele varieties) vo linear and combina-
torial optimization.

In this chapter we try to glve a short Infroduction, provide a sketch of “what
polytopes look like™ and “how they behave” with many expliclt examples, and
belefly state some maln results [where lurther detalls are In the subsequent chapters
af this handhook). We concentrate on two maln toples:

« Comblinatorial properties: faces (vertlees, edges, . .., [aceis) of polytopes and
thelr relations, with speclal treatments of the classes of “lowdimensional poly-
topes”™ and “polytopes with few vertloes;™

# Geometrie properties: volume and surface atea, mixed wolumes and quermass-
integeals, Incduding explicht formulas for the cases of the regular slmplices,
cubes and erosspolyiopes.

We rofer to Geilnbawm [16] for & comprehensive view of polytope theory, and to
Flegler [34] and Schneider [30] for recent treatments of the eombinatorial resp.
convex geomelric aspects of polytope theory.

14.1 COMBINATORIAL STRUCTURE

GLOSSARY

V-polytope: The convex hull of & finite set X = {2', .. 2"} of points in BY:
P = conw({X] = {ZA.-:" Sz Y= 1}_
il o
M- polytope: A bounded solutbon set of a fnlte aystem of linear inequalitbes:
P=PAY = {re® ajz<bhlorl<i<m},

where A € B™"*? s & real matrix with rows o), and & € B™ I8 a real vector
with enteles By, Here boundedness means that there 18 a constant & such that
|l=|| = & holds for all x € P.
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Polytope: A subset P © B that can be presented as a V-polytope or {equive-
lencly, by the Maln Theorem helow!) as an H-polytope,

Dimension:  The dimension of an arbitrary subset § © RY 1s defined as the
dimensbon of s afine hull: dim(5) = dim[afl{57).
(Recall that af[5). the afine bull of a set 5, Is {Ef—r"iﬁi" cEi e £ 8,

:.'_, Ay, = 1}, the smallest affine subspace of B containing §.)

d-Palytope: A d-dimenslonal polytope. In what follows, & subscript In the name
al a polytope wsoally denotes 18 dinension.

Imterior and relofive snferdior: The snferior ot ™) I8 the set of all polots
x £ P euch that Tor some £ 2 (), the s-ball B, () around £ 18 contalned In P.

Similarly, the relaftve interior relint () 1s the set of all polots ¢ € P sueh that
for some £ = (0, the Intersection B, (x] 0 af(P) s contalned in P

Affine equivalence:  For polytopes P C B and @ C B, an affine map n:
BY — B, r+— Ax+ b that such that « maps P bijectively to (). Note that =
need not be Injectlve or surjective. However, It has to pestrict to & bljoctlve map
afll{ P} — aff{d). In partlewlar, if P and €} are affinely equivalent, then they
have the same dimensbon.

THEOQOREM (Main Theorem of Polytope Theory (Minkowski, Weyl,. . . ))
The definitions of V-polytopes and of H-polyfopes are equivalent. That s,
every V-polytope has a descripbion by a finite systern of inequalibies, and
every H-polyfope can be obtained as the conver hull of a finite set of poinds
{ita vortioes ).

Ceometrically, a V-polytope I8 the projection of an (n—1 l-dimensional slmplex,
while an H-polytope s the bounded Intersection of m clesed hallapaces [34, Lect. 1).
T see the Maln Theorem at work, consider the lollowing two statements: the Orst
one 5 easy o see for Vepolytopes, but not for H-polywpes, and for the second
statement we have the opposite effoet.

1. Projectiona; Every Image of a polyiope P under an afline map 70 = As+b
s a palytope.

2. Imiersectiona: Any lntersectlon of a polytope with an afline subspace 18 a
Polyioge

However, the computational step from one of the Maln Theorem's deseriptlons
al polytopes o the other a “ponvex hull computation™ ia far from trivial
Essentlally, thero ave theee types of algorithms avallable: Inductive algorithms [ln-
sorting vertlees, using & so-called beneath-heyond technigue), projection resp. Inter-
section algorithms (known a8 Fourder-Motzkin elimination reap. double descrlptlon
algorithms], amnd peverse search methods (as Introduced by Avis & Fukuda). For
explicll computationg one can use public domaln codes such a5 the PORTA eode
[12] that we use here, which Implements an algorithm of the second type.

In the following definitbons of d-slmplices, d-culbes and d-crosspolviopes we glve
hoth a V- and an ‘H-presentation bn each case. From this one can seo that the H-
presentatlon can have exponentlal “sles”™ In terms of the skee of the V-presentatlon
[eng., Tor the d-eresspolytopes), and vice versga (for the d-eubes).



Basic Properties of Convex Palyvtopes 3

DEFINITION (d-Simplex) A (regular) d-dimenslonal slmplex In BY s glven by

P QY g

Ty == eonvie', e, .. e, ] |:-|=.-'+...+e"':|}

d a
= frem:¥on<l, —[l+».,-"d+1+d:|1*+21-,-5lt'urlgkgd'},
=1

where e!, ... e? denotes the coordinate unit vectors In B,

The siplices T; are regulor polytopes (with a symmetry group that is flag-
transitive — see Chapter 17): the parameters have been chosen so that all edges of
T, have langth 2. Furtheemore, the origin 0 € BY Is In the interioe of T,: this is

clear from the H-presentation.
However, for the combinatorial theoey one conslders polytopes that Jiffer only

by & change of coordinates (an affine transformation) to be equivalent. Thus, we
wiolld pefer to any d-polytope that can bhe peesented as the mnvex holl of d41
points as a d-simpler, slnee any two such polytopes are equlvalent with eapect o
an affine map. (hher standard cholees lnelude

Ay = mn-.r{ﬂ:e',e’:-..,ﬁ"}

a
- {:ER‘:EJ:,--._:L rg:_*ﬂimlf-_:kgd}.

i=l
and the {d—1)-dimenslonal simplex In B glven by
Ay = convle' €, oL eT)

d
- {:En‘:E:,:L n;nr:mg&-:_:d}.
i=1

Figure 14.1

_,,.-""f A Jesimpler, 0 d-cube, and a 3-dimen-
sionol crosspolptope foctahedron ).

DEFINITION (d-Cube and d-Crosspolytope) A d-cube (ak.a. the d-dimen-
stonal hypercube] L8

Oy = cun-.r{a,e'+n2e”+.-.+a,;e‘{:al,.-.:ade{+L—1}}
_ {J:ER‘:—IEJ:‘:ElE]l'l‘_:.EEﬁ}:
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and & d-dimenslonal crosspolytepe In B (known as the setahbedron for d = 3) 1s
glven by

d
OF = conv{te' 2et . 2T} = {tEE‘*:Z|r,-|il}r.
i=1

Apaln, theee are other very natural cholees, among them

01 = t:mv{z.ei :5C{L2,. .. d}}

s
- {:En‘:ngn 51fur15k=_:d},

the d-dimensional wmeit cube.
Az another example to Mlustrate concepts and results we will occasionally use
the posor Httle unnamed polytope with six vertices shown in Flgure 14.2.

Figure 14.2
Ohur unnamed “typical™ 3opolylope. f hos 6 merlices, 11 edpes ond 7 faceds.

Thiz polytope without & name can be presented as & V-polytope by listing
its slx wertbees. The following coordinates make It Into a subpolytope of the F
cube 5 the wertex sel conslsts of all but two wvertlees of Oy, QOur lst below
(on the left) Is In the format used as Input for the PORTA program [12], eg. in
a file nared annamedpoely . poi. From these data the PORTA program peoduces
a deseription (on the tdght) of the polyiope a5 an H-polytope, stored 1o the fle

unnamadpoly . pol.ieg

DIM = 3

CONY _SECTION INEQUALITIES SECTION
t1y 1101 [ 1} #xl = 1
tay =1-=1 1 {2} +xi = 1
t3y 1 01-1 [ 3) -x1 L |
Cd) 1-=1-=1 [ 41 =xd = 1
LBy =1 1-1 [ B} =xd <= 1
L8 =1-1-1 [ 8) —xl¢+xd+xd <= 1
END { T) +xl-xd+xd <= 1

Unbounded polyhedra can, via projective transformations, be treated as poly-
topes with a distinguished faeet (see (34, p. 75]). In this respect, we do not lose
anything on the comblnatorial level i we restrict the following discusslon to the
setting of full-dimensional convex polytopes: d-polytopes embedded in B
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14.1.1 FACES

GLOSSARY
Support function: Given a polytope P C B4, the function

WP-RE 4R h(Px) = sup(r.y) v € P},

where {x,y) denotes the nner product on BY. (Sinee P is compact one may
replace sup by max.]
Supporting hyperplane: For o € B {0} the hyporplane

H{Pv):={z e B : (x.v}) = h({P,v)}

s the supporting hgperplane of P with outer normal vector ©. Note that
H{FP pw) = H(P v for p € B u= 0 For a vector o of the (d — 1)-dimensbonal
unit sphere 541, ki P, u) 1s the slgned distaneo of the supporting plane B[P, u)
from the origin. (For o = 0 we set H{P,0) := B, which Is not a hyperplane.)

Fagce: The lntersectlon of P with a supporting hyperplane H [P ) s called a
(nontrivial) face, or more precisely a k-face I the dimension of aff{P m
H{Pw)) s k. Each face 18 itsell a polyiope.

The set of all &-laces I8 denoted by F (P and its cardinalicy by (P

I Vector: The vector of face numbers FIP) = { (P A 0P, - Qa0 [P)) as8s0-
clated to & d-polybope.

Trivial faces: The empty set § and the polyviope P sl are consldered frivial
faees of P, of dimepsions —1 and dim{ P}, eespectively. All faces other than P
are propetr faces.

Verfer, edge, focet: The faces of dimenston (0 and 1 are called verfices and
edges, reapectively. The [dim{P) — 1)-faces of 7 are callsd facets.

Facet-verter incidence matriz: The matrlx M € {0, LPa-(FI=RiF which
has an entey M{F, o} = 1 I the facet F eontalns the vertex o, and M F v =10
ol herwlse,

Graded poset: A partially ordered set (P, <) with a unlgue minimal element §,
a unlgue maximal element [, and & rank funetion v — My thai satksfies
(1) #{0) =0, and p < p' implies #(p) < +(p'), and
(2} p=p and r{p'] —r(p) = 1| lmplies that there Is a g% € P with p < p" = p'.

Lattice L: A partlally ordered sec (P, <) In which every pair of elements p. g’ € P
hias & unlgue maximal lower bound, called the meet pap’, and a unbgue minimal
upper bound, called the join pv p'.

Atom, coatom: II L 1 a graded laitice, the minimal elements of LY {0} (Le.,
the elements of rank 1) ave the atoms of L. Slmilarly, the maximal elements of
L {1} iLe., the elements of rank (1)—1) are the coatoms of L.

A graded lattice Is atemie  every element. 5 & joln of a 261 of atoms, and it Is
coatomie I every element Is & meet of et of coatoms.

Face lattice L{P): The set of all faces of P, partlally ordered by Inclusion.
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Combingtorially iacmorphic: Polyiopes whose face latilees are lbomorphlc as
abstract (unlabelled) partially ordered sets/lattices.

Equivalently, I and P' are combloatorially equivalent I thelr facet-vertox nel-
dence matrices differ only by column and row permutations.

Combingtoriel type: An equivalence class of polyiopes wonder combinatorial
equlvalenes,

THEOREM {Face lattices of polytopes) The face lattices of conver poly-
fopes are finite, graded, atomic and coafomic laftices.

The meet operation GAH iz given by inferseckion, while the join GV H s
the sntersection of all facets that contain both & and H. The rank funchion
onn LIP) ig given by #(7) = dim({7)+1.

The minimal nonempty Taces of & polytope ave s vertioes: they coreesponad
to atoms of the lattioe L{F}. Every face I8 the joln of s vertlees, hence L{P)
s atomle. Similaely, the maximal proper faces of a polytope are s eeets: they
correspond to the coatoms of L{P). Every face 5 the lntersection of the facets it I8
contained In, hence [ace lattices of polytopes are coatomlc.

Figure 143

The face lattice of our wrmomed 3-poiyiepe. The T cooforna
and the 6 cfoms fuve been labeled to cormespond o bhe dobels
in the focetoverter incidence modrir Thus, dhe dowmawords-
poth from the coatem “4° fo the atem *2° represents the foct
that e jan-.! memabered (4) condains dbe verfer (2).

The face lattiee |5 a complete encoding of the comblnatorlal steucture of a
polytope. However, ln general the encoding by a facet-vertex Incldence matrix s
menee efficient. The following matelx — also provided by PORTA — represents our
lictle unnamed Fpolytope:

=
Il

R s W KW o=

i i 0 D L e e e
e =R =N"]
e W B e B B
e = =
T e e o e e e DN
== N s

How do we decide whether a set of vertlees {v',. . v*} Is (the vertex set of) &
face of P? This s the case if and only If no other vertex o" I8 contalned in all the
facets that contaln {o', ... v*}. This eriterion makes It possible, for example, to
derlve the edges of & polytope P [rom a [aeet-verbesx matrix.
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For low-dimensional polytopes, the criterion can be slmplifled: If d < 4, then
two vertiees are connected by an edge T and only i there ave at least d — 1 different
fagets that contain them both, However, the same 18 not true any longor lor 5-
dimensbonal polytopes, where vertioes may be non-adjacent desplite being eontalned
In many commaon facets. | The best way 1o see this 1s by using polarity: see bolow. )

14.1.2 POLARITY

GLOSSARY

Polarity: If PC R s a d-polytope with the origin in its interior, then the polar
of P s the d-polyiope

PA = fyeB (o) < lforale e PL

Stellar subdivisdion: The stellar subdivision of a polytope P o a face F ls the
polytope conv( P Uz"), where £¥ Is a point of the form ™ — (g™ — 4™}, where
y¥ s in the interlor of P, ¥ Is In the relaiive Interior of F, and £ ls small enough.

Verfer figure Fjw: I[ v s a veriex of P, then Fjv := PN H s the polytope
obtalned by Intersecting P with a hyperplane K that bas ¢ on one slde and all
the other vertiees of P on the other ghde.

Cutting off a vertes: The polyiope P H ™ obtalned by Intessecting P owith a
closed hallspace H™ that does not eontaln the wertex o, hut contains all ot her
vertlees of P In its Ioterior. (In this situation, P B I8 a pyramid over the
verbex Hguee Plo)

Quotient of P: A polviope obialned fom P by taking vertex Ogures [possibly)
several thmes.

Simplicial polytope: A polytope all of whose facets {equivalently, proper faces)
are alnnplices.

Simple polgtope: A polytope all of whose vertex figures (equivalently, peoper
quotients) are slmplices.

Polarity Is a lundamental construetlon in the theory of polviopes. Ooe always
has P24 = P ynder the assumption that P has the origin in its Inteelor. This con-
dition can always he obtalned alier a change of coprdinates. In partleular, we spoak
ol (eomblnavorial) polarity between d-polytopes & and B that are comblnavorially
lsomorphic to P and P2, respectively.

Any V-presentation of P vields an H-presentation of P2, and conversely, via

P=convfe',....v"} &= P *={reR :{v'z)<lforl<ic<nal

There are hasic relations hetween polytopes and polytopal constructlons undes
podacity. For example, the fact that the d-crosspolytopes f'.'j‘ are the polars of the
d-cubes Cg 5 bullt inte our ootatlon. More genercally, the polars of slmple polytopes
are slmplicial, and conversely. This can be deduced [vom the [act that the facets
F of a polytope P correspond to the vertex figures P2 fo of s polar P2, In fact,
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F and P /v are combinatorlally polar In this situation. More generally, one has a
correspondence bptween [aces and quotlents under polarliy.

At a comblinatorial level, all this can be derived from the fact that the face
lattices LiP) and L{P*) are antl-lsomorphie: L{P®) may be obtained from L(F)
by reversing the order relations. Thus, lower Intervals in L{F). corresponding to
faces of P, translate under polarity into upper Intervals of L{P*), corresponding
to quotients of P2,

14.1.3 BASIC CONSTRUCTIONS

GLOSSARY

For the ollowlng constructbons, let
P C B be a d-dimensional polytope with n vertices and m facets, and
P B a ' <dimensional polytope with n' vertices and m' facets.

Scalar multiple: For A € B the scalar multiple AP s deflned by AP = {Ar :
x € P}. Pand AP are combinatorially (in fact, affinely) somorphic for all A # 0.
In particular, (=1)P = =P ={—p:pec P}, and [+1)F = P.

Minkowaki sum: P4+ P ={p+p' :pe Pp' € P}

It is also uselul to define the difference as P — P = P 4 (-}, The polytopes
P+ AP are combinatorially lsomorphic for all X = (0, and gimilarly for A < 0.

If P = {p'} Is one single point, then P — {p'} Is the Image of P under the
translation that takes p' to the origin.
Product: The (d4+d' )-dimensional polytope
Px P ={ipp e R .pe Py € P}
P = P has n-n' vertices and m 4+ m' facets.
Joim:  The convex hull P+ P of P U™, alier embedding P and P in a space
where thelr affine hulls are skew. For example,
PxP = conv({{p.0,0) € B+ pe PHU{(0,54,1) € B+ o £ P}
PP has dimension d40"+1 and n4n" vertices. Is k-laces ave the jolns of i-faces
of P and [(k—i—1)-laces of P', henee (P s ) = Zﬂ‘J.‘__, Jil P i (P
Free sum: The free sum is the [d4+d')-dimenslonal polytope
PP o= convi{ip,0) € B s pe PRu{(0,p) € B g £ P
Thus the ree sum P& P B a projection of the jolo P = P, If both P and P
have the orlgln in thele Interiors — this I8 the “usual” slituatlon for creatlng free
sums —, then P& P has 1 4+ 0" vertioes and i - ime® facets.
Pyramid: The joln pye(P) := P={0} of P with a peiot (& §-dimensinal polytope
P = {0} € B'). The pyramid pyr(P) has n + 1 vertices and m + 1 facets.
Priam: The product prism{P) ;= P = I, where T denotes the real Interval
I=[-1L+l|CR
Bipyramid: TP has the origin in s Interior, then the blpyramld over P I8 the
[+ 1 j-dirsensbonal polytopse constructed as the bee sum bipyr(P):=F & 1.
Lawrence extengion: I pc B I8 a polnt outslde P, then the free sum (P —
{pH &1, 2] s & Lawrence axfension of P af p. [For p € P this I8 Just & pyramid.)
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Of eourse, the many constructions lsved o the glossary above are oot Inde-
pendent of each other. For Instance, some of these constructions ave related by
polacity: for polytopes P and P with the origin in thelr Interiors, the product and
the [eee sum constructions are related by polaeliy,

.F}I:.Fr — [Pﬁ.eprd].ﬂ.:

and this speclalizes to polacity relations among the pyramid, bipyramid and priso
constructbons,

Pl = (pye(P*)® and  prlsm{P) = (hipyr(P2))*.

Sinatlarly, “cutting off a vertex™ Is polar 1o “stellar subdivislon In a facet.”

It Is Interesting to study — and this has not really been done systematically
how the hasle operatlons on polytopes generate complicated convex polytopes from
slmpler ones. For example, starting rom a one-dimensbonal polytope I = O =
[-L,+1] C B the direct product construction geneestes the cubes ©p, while free
sums geneeate the crosspolytopes OF.

Even more complicated centeally symmetsic polytopes, the Hanmer polytopes,
are obtalned om coples of the Interval T by using sums and feee sums. They arve
interestlng sinee they achieve with equality the conjectured bound that all centrally
symmetrie d-polytopes have at least 3 nonempty faces (Kalal [20]).

Ewvery polytops ¢an be viewed as a reglon of a hy peeplane arrangement: for this,
take as Ap the set of all hyperplanes of the lorm afl(F), where F Is & [acet of .
For additional points, such as the pelnts eutslde the polytope used for Lawreneos
extenslons, or those used for stellar subdivisions, it i often lmportant only In which
reghon, or in which lower-dimensional meglon, of the arrangement Ap they le.

The Lawrenee extension, by the way, may seem like quite a harmbess lictle
construcibon. Howewer, I has the amazing property that 1t can encode the structure
ol a polnt gutsde a d-polytope Into the boundary structume of a (d+1-polytope
This aceounts for a large part of the “special” 4- and 5-polytopes In the lieratuee,
such &5 the 4-polytopes for which a facet, or even a 2-lace, cannot he prescribed o
shape [26).

14.1.4 MORE EXAMPLES

There ape many interesting classes of polyiopes arlsing from diverse areas of
mathoematies (as well ag physles, optimization, eryatallography, ete. ). Sone of thoese
arg discussed below. You will find many more classes of examples dlscussed In
other chapters of this handbook. For example, regular and semiregular polyopes
arg discussed ln Chapuer 17, while polytopes that arise a8 Voronol cells of Llattices
appear in Chaptor 8.

GLOSSARY

Graph of a polytope: The graph &P} = (Vi{P), E{F)) with vertex set V(FP) =
FolP) and edge set E(P) = {{v',v*} C (}) : convfu',+*} € Fi[P)}.
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Zonotope: Any polytope £ that can be represcnted as the Image of an n-di-
mensional cube O under an affine map; equivalently, any pelyiope that can be
written as a Minkowskl sum of o line segments [1-dimensional polyiopes). The
smallest v such that £ s an lmage of Oy 15 the number of zones of 2.
Moment curve: The curve 4 in BY defined by B — B, 0 — (05, 47
Cyelic polgtope: The convex hull of a fnlte set of polnts on 8 moment. cueve, or
any polytope combinatorlally equivalent to L.
k-Neighborly polytope: A polytope such that each subset of at most kB over-
tiees forms the vertex sed of & face. Thus every polytope s L-neighborly, and &
polyvtope 5 2-nelghboely I and only §if it graph 18 complete.
Neighborly polyfope: A d-dimensional pelytope that s |d/2]-nelghbocly.
0/1-Polytope: A polytope all of whose vertex coordinates are (0 or 1, that s,
whose vertex set 1s a subset of the vertex set {0, 1} of the unli cube.
Zonotopes

Fonotopes appear o guite different disguises. They can equivalently be deflned
as the Minkowskl sums of flnlte sets of line segments | 1-dimensional polytopes), as
the afflne projections of d-cubes, or as polytopes all of whose faces (eguivalently,
all 2-faces ) exhibit central symmeiry. Thus a 2=limensional polytope 8 & sonotops
il and only If it & centeally symmetric.

Figure 14.4

A Zdimensional ond a J-dimensional zonotops, ach
eoith § zomes. [The 2-dimensienol one i3 0 projection
of the J-dimensionod one; note thot emery projection
of 0 zonolepe is @ zonotope. )

Armpong the most prominpent zonotopes ave the permutabedra: The permuta-
hedron gy §8 consteucted by taking the convex hull of all d-vectors whose oo-
ordinates are {1,2, ... d}, In any order. The permutshedron My I8 a (d—1)-
dimensbonal polytope (eontalned n the hyperplane | € R‘:Ef_, x; =did41)/2})
with d vertlees and 29 — 2 facots,

One unusual featuee of permutahedrs is that thoy are simple onotopes: these
are pare in general, and the (unsolved) problers of classilying them I8 eguivalent to
the problem of classilyving all almpliclal srrangemonts of hyperplanes {see Sectlon
T.A.3).

Zonotopes are Important becaose thele theory B equivalent to the theorbes
al vector eonflgurations (peallzable orlented matrolds) and of hyperplane arrange-
meents.  In fact, the system of line segments that generates a sonotope can be
considered a8 & vector configuration, and the hypesplanes that are orthogonsl to



Hawic Properties of Convex Polytopes 1z

Z142

Figure 145
The I-dimensional perrmdtabedron I3, (The mer
tioes are dodeied &y the pormatolions thot, wiem
applied fo the coerdinode wector in RY,  pisld
241 1214 (1,283,437 )

the line segments provide the assoclated hyperplane arrangement. We refer wo [6,
Sect. 2.2] and [34, Lect. 7).

Finally, we mention in passing a surpeising bljectlve eorvespondence hetween the
tillngs of & sonotope with smaller sonotopes and orlented matoodd lifings (Fealizable
or not | of the orlented matrold of 8 sonotope. This correspondence Is known as the
Bohne-Dress Theorem; we refer to Richter-Gebert & Ziegler [27)].

Cyclic Polytopes

Cyelle polytopes can be constructed by taking the convex hull of 1 = d polots
on the moment curve In BY. The “standard constraction™ 18 to define a cyelle
polytope Cala) as the convex hull of @ Integer points on this curve, such as

Calti) = oonv{yi(L], (2], ....9ln)}-

However, the combinatorial type of Cgin] ls glven by the — entirely comblnatorial

Gale evenness eriterione IT Cyin) = conw{y(iy), ..o} }, with &y < .00 <
L, then st ), ..., 9(ti,] determine a facet I and only I the nwmber of Indices
In {i1,...,iq} lylng between any two lndices not o that sot @8 even. Thus, the
combinatorial type does not depend on the spectie choloe of polots en the moment
curve (34, Example (0L6; Thm. 0.7).

Figure 14.8

A J-dirmensional cyclic polgtops Ch(6) with 6 verbices. (Ina
prviechion af ¢ &0 the ©iTz-plone, the curve 7 and hemee the
pertices of Ca(6) fie on the parmbolo o3 = 2.}
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The frst property of cyelie polytopes to notloe B that they are slmplicial. The
second, more surprising, property 1s that they are neighborly, This lmplies that
among all d-polytopes P owith o vertlees, the cyclic polytopes maximize the number
Fil Py ol i-dimenslonal faces for § < [df2]. The same fact holds for all i@ this is part
of MeMullen®s Upper Bound Theerem, see bhelow. In partbeular, cyclic polytopes
have a very large number of acets,

far{Caln)) = (”‘ri]) N ("—1—[%1)_

1£) |5

For example, we get that a eyelie d-polytope Oy (n) has nuin — 3)/2 lacets. Thus
(8] has 8 vertlees, any two of ther adjacent, and 20 facets [this 18 more than the
16 Laeets of the d-dimensional erosspolytope, which also has B vertioes!).

Meighborly Polytopes

Here are a lew ohservatlons about nelghhorly polytopes. For more Informatbon,
see |6, Sect. 9.4] and the references quoted there.

The first observation ks that Il a polytope 5 B-nelghborly for some & = [df2],
then it 5 a slmplex. Thus, I one gnores the simplices, then [d/2]-nelghborly
podviopes form the exteeme case, which motivates calling chem simply “nelghborly.”
However, only in even dimensions o = 2m do the nelghborly polyiopes have weey
speclal structure. For example, one can show that even-dimensional neighborly
polyviopes are necessarily simplicial, but this Is not tree In general. For the later,
note that, for example, all Fdimensional polyiopes are nelghborly by definition, and
that If P s a nelghborly polytope of dimeosion d = 3m, then pyr(P) 1s nelghborly
ol dimension 2m41.

All simplicial neighborly d-polytopes with o vertlees have the same number
ol facets (In faet, the same f-vector [fy. -0, Faop ) a8 Oyn). They constlivoe
the class of polytopes with the maximal nomber of i-fages for all 1@ thils s the
statement of MceMullen's Upper Bound Theprem. We refer to Chapier 16 Tor a
thorough diseussion of f-vecior theory.

For nn < 443 every nelghborly polytope s comblnatorially lsomorphic o a
cyelle polytope. (This covers, for Instance, the polar of the product of teo trlangles,
(Mg * Aq)®, which I8 easlly seen to be a 4-dimenslonal nelghborly polytope with
6 vertlees: seo Flgure 14.90) The frst example of an even-dimensional neighborly
polyviope that is not cyelle appears lor d = 4 and 1 = 8. It can caslly be described
In terms of its affine GGale diagram; see helow.

Nelghborly polytopes may at frst glance seom to be very pegoliar and rare
objects, but there are several Indicatlons that they are not quite as unpsual as
they seem. In fact. the class of nelghborly polytopes s belleved to be vory rich.
Thus, Shemer (28] has shown that for fixed even J the number of nos-BEomorphic
nelghborly d-polvtopes with n vertices grows supercxponentially with . Also,
many of the (fL-polytopes studied In combinatorlal optimization turn out to be
at least 2-nefghborly. Both these effecis Mlusteate that “nelghborliness™ s not an
lsplated phonomenomn.
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Three Problems

1. Can every nelghborly d-polytope P C B with n vertices be extended by a
new vertex o € BY to a neighborly polytope P = conv(P U {o}] with n+l
vartiees? (20, p. 314)

2. It 18 & classie problem of Perles whether epvery slmpliclal polyiope s a quotient
al & neighborly polvtope. (For polytopes with at most d44 vertlees this was
recently conflrmed by Hund [18].)

3. In some models of random polytopes I8 seems that

= oo obtains a nelghborly polytepe with high probability (which Increases
rapldly with the dimension of the space),

@ the most probable combinatoelal type I8 a cyclic polytope,

@ but still this probabllity of & eyelle polytope tends to sero.

However, none of this has been proved. (See Bokowskl & Sturmfels [10, p. 101]
and Bokowskl, Richter-Gebert & Schindler [7].)

0/1-Polytopes

There = a 0f1 polytope (given in terms of a V-presentation) associated with
every flnlte st system 8 C 25 (where F Is & finite set, and 2% denotes the collectlon
al all of Its subsets), via

P‘S] = mmv{ZEi:FES} c EL

ic

In combinatorial optlmization, there s an extensive liieratuee avallable on M-
presentations of special 0y 1-polyiopes, such as

+ the fmeeling aalesman polyfopes T, where £ 18 the edge set of a complete
graph K, amd F I8 the et of all (n—1)! Hamilton eyeles (slmple clocuits
through all the vertices) In E (see Gritschel & Padberg [14]),

o the eut and eguicul polyfopes, where E s agaln the edge sot of 8 eomplete
graph, and S represents. for example, the famlly of all cuts, or all equleuats,
of the graph (see Deza & Laurent [13]).

Besldes thelr lnportanee for eomblnatorial optimization, there i3 a geeat deal of
Intereating polytope theory assoclated with such polytopes. For a striking example,
see the equicut polytopes used by Kahn & Kalal [21] in thelr recent disprool of
Borsuk's oonjoectum.

Diespite the detalled structure theery for the “special™ 0/ 1-polytopes of combl-
natorlal optimization, theee & very little known about “general™ 0 1-polytopes. For
example, what Is the “typleal,” or the maximal, number of facets of a 0/ 1-polytope?
What ls the maximal number of faces In a 2-dimensional projectlon? [Such gues-
tlons are not only Intrinsieally Interesting, thedr angwers might also provide new
clucs for basie questions of lnear and sombinatorial optimization.)
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14.1.5 THREE-DIMENSIONAL POLYTOPES AND PLANAR GRAPHS

GLOSSARY

d-Commected graph: A conpected graph that remalng connected I any d—1 ver-
tiees are deleted.

Drawing of a grmaph: A representation in the plane where the vertioos are rep-
resented by distinet points, and simple Jordan ares are drawn hetween the palrs
ol adjacent vertlees.

Planar graph: A graph that can be deawn in the plane with Joedan aves that
are digjolnt except for thelr endpoints.

Realization apace: The set of all coordinatkzations of a combinatorial structuee,
mpduly afflne coprdinate transformations. [See Chapter 7, Sectlon 7.3.2).

Taotopy property: A combinavorlal structure (such a8 & combinaterial type of
polviope) has the issfopy properly I any teo peallzations can be deformed into
each oiher contlnuously, while maintalning the combinatorial type. Equivalently,
the Isovopy property holds Tor a combinatorial structuce D and onoly I s peal-
lzatlon space ls connected.

THEQOREM (5teinitz’ Theorem [32]}) For every 3-dimensional polytope P,
the graph GIP} iz g planar, 3-connected graph. Conversely, for every planar
3-connected graph there i3 g unigue combinatorial type of 3-polytope P with
QP =g,

Furthermore, the realizalion space B(P) of & combinalorial type of 3-
polytope is komeomeorphic to B9 gnd contains rational points. fn par-
Heular, 3-dimensgional polytopes have the izotopy properly, and they can be
realized with integer verfer coordinales.

Figure 14.7
A (fplonor drowing of a) d-connected, plomar, wanamed gaph. The
formidaoble task of any proof of Stemidz’ Theerem 00 do construct a 3-

paiytope with this graph.

There are two essentially diferent ways known to peove Stelnite” Theorom. The
firgt one [32] provides a constructlon sequence for any type of 3-polytope, starting
from a tetrahedron, and using only lecal operations such &g cuttlng off vertioes,
and polatity. The second type of peool reallees any comblnatorial type by a global
minkmbzation argument, which as an Intermodlate step provides a special planar
representation of the graph by a framework with a positive self-stress (25, 33
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Two Problems

Because of Stelnite’ Theorem and Its extensions and corollarbes, the theory of 3=
dimensbonal polytopes 8 guibte complete and satlsfactory. Nevertheless, some basle
agpen problems remaln.

1. It ean be shown that every combinatorial type of 3-polyiope with n vertices
can be realleed with Integer coordinates in {12, . 43"} (1. Richter-Gebert,
improving on Onn & Sturmfols [33]), but It §s not elear whether the bound of
43" can be replaced by & polynonlal boumd.

2. I P has a group G of aymmetebes, then It also has a symmedrle realkzatlon.
However, 1t & oot clear whether the space of all Gesymmetric reallzatbons
TGP Is still homeomorphie to some BE (Tt does not contaln eatlonal polnts
In general, eg. Tor the leosahedron!)

14.1.6 FOUR-DIMENSIONAL POLYTOPES AND SCHLEGEL DIAGRAMS

GLOSSARY

Schlegel diagram: A [d—1j-dimensbonal representation TR, F) of a d-dimen-
slonal polytope P, obialned a5 follows. Take a polng of view very close to (an
imterlor point of) the facet F, and let THF, F] be the decomposition of £ glven
by all the other facets of P, as secn from this polot of shews.

{d—1)-Diagram: A polytopal decompesition T of a (d—1)-polytope F such that
(1) T s a polytopal complex (Le., a finite eollectlon of polytopes closed wnder
taking faces, such that any Intersectbon of two polytopes o the complex 1s a face
al 1!&:']&]: and
(2) the intersectlon of any polytope In T with the boundaey of F 8 a fee of F
[which may be emply).

Basgic primary semialgebraic set defined over E: The solution set 5§ C B
al a Hoite set of equations and steict Inequalities of the form fi{z] = O pesp.
gilx] = 0, wherg the [ and g; are polynomials in & varlables with Integer
coeflicients.

Stable eguivalence: Egquivalence relatlon hetween semialgebrale seis generated
by ratlonal changes of coordinates and certaln types of “stable™ projectiong with
contractible fibers. (See Richter-Gebert (26, Sect. 2.5).)

In particular, I[ two sets ave stably egquivalent, then they have the same homotopy
type, and they have the same arithmetle properties with respect to subilelds of B
e, elther hoth or nelther of them contain a rational point.

The sltuation for 4-polytopes Is Tundamentally different oom that for 3-dimen-
slonal polytopes. (e vegson 5 that theee 18 no slmilar redwctbon of 4-polytope
theory Lo a eombinatorial {graph) problem.

The maln results about graphs of d-polytopes aee that they are d-onnected
(Balinskl), and that each contalng & subsdivisbon of the complete graph on d4+1
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verthees, Kaey = T (Griobaum). In particular, all graphs of 4-polytopes are
d-connected, and mone of them s planar. (See also Chapter 18.)

Schlege] diagrams provide a reasonably elfficlent tool lor visuallzation of 4-
polyviopes: we have a ghting chance o understand some of thelr theory In terms
ol the 3-dimensional ) geometry of Schlegel diagrams.

Figure 14.8
Two Schlege! diogrems of cur unnamed 3-polplope, the
first bosed om a triangle facet, the second on the “hofiom

aquare. "

Figure 14.%9
A Schiegel dingram of the product of twoe friangles. (This i a d-dimensional
polytope with § trionguler prisma o facels, ony fwo of them adjacend!)

A [d—1)p-diagram = a polytopal comples that “leoks lke™ a Schlegel diagram,
although there are diagrams [even 2-dlagrars) that are not Schlogel disgramms. The
sltuation I8 somewhat nioee for sisaple d-polytopes. These are determined by thede
graphs (Kalal), and they can be uwnderstood In terms of 3-diagrams: all slmple
JFdiagrams are peojections of genulne d-dimenslonal polytopes (Whiteley ).

The undamental difference between the theorles for polytopes In dimenslons 3
and 4 & most apparent in the contrast between Stednite” Theprem and the followlng
[wery recent ] pesult, which states simply that all the "nice”™ properties of 3-polytopes
estahlished In Stelnite” Theoren [all deamatbeally for d-dimensional polytopes.

THEOREM (Richter-Gebert's Universality Theorem for 4-Polytopes 26])
The realization apace of o A-dimensional polytope can be "arbifrarily wild":
for every basic primary semialgebraic sel 5 defined over T there 43 a 4-
dimensional polytope P|5| whose realization space R(PS]) is stably equiva-
lent ta 5.
In parficular, this implizs the following.
#® The isotopy property foils for d-dimensional polyiopes.
# There are non-rational d-polyfopes: combinatorial types that cannot be
realized with rational verter coondinates.
# The coordinates needed fo represent all combinatorial fypes of rational
A-polytopes ukth infeger vertices grow doubly-erponentially with folP).
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Figure 14.10

Sehlegel diagram of o d-dimensional polytops with 8 focets ond 12 mer-
tices, for witich the shope of the base heragon cannaot be prescribed or-
bitrarily,

The complete proof of this Universality Theorem Is given in [26). One key com-
ponent of the prool corresponds 1o ancther fallure of & 3-dimensional phenomenon
In dimension 4: for any [acet (2-face] F of & 3dimensional polytope P, the shape
al Fean bo arbitearily peescribed; In other words, the eanonleal map of reallzatlon
spaces R — R[(F) = always surjective. Richter-Gebert shows that a slmilar
statement fails In dimension 4, even If F s a 2-dimensionsl pentagonal faeo: see
Flgure 1410 for the case of & hexagon.

A problem that s left open = the strwcture of the pealization spaces of slmplicial
d-polytopes.  All that §s avallable now 8 & Universality Theorem [or slmoplicial
polyvtopes without a dimension bound (200 Section 7.3.4), and a single scample of
a simpliclal 4-polytope that vielates the lsotopy property, by Bokowskl, Ewald &
Klelnschmide [9].

14.1.7 POLYTOPES WITH FEW VERTICES — GALE DIAGRAMS

GLOSSARY

Polytope with few vertices: A polyiopes that has only a few move vertlees than
its dimension; usually a d-polyiope with at moest d44 vertlees.

(Affine) Gale diagram: A configuration of n (positive and negative) points in
affine space B~ that encodes a d-polytope with n vertices uniguely up to
projective transformations.

The computation of a Ciale dlagram ls qulte slmple linear algebra. Foo ihis,
let ¥ & B™™ be a matrlx whose columns conslst of coordinates for the vertlces
of a d-polytope. For simpliclty, we assume that P Is not a pyramid, and that the
vertlees {v',. ., v} aflinely span BY. Let ¥V ¢ B¥*U™" he obiained from 1
by adding an extra (terminal) row of enes. The veetor configuration glven by the
columns of V7 represents the oriented malroid of P see Chapter 7. _

Mow perform row operatlons on the mairdx ¥ oto get it Inoo the form Vo~
(Tg41]A), where Ty, denotes a unit matrix, and 4 € RiHU=n—d-1 |5 5 peal
matrix. [The row operations do oot change the orlented matreid.) The eolumns
of the matrix V™ := [—.=l':'-|Jr _a_1] € BRI E-NEN han represent the dual orlented
matrold. We find a vector a € "4~ that has non-zero scalar product with all the
columns of ¥, divide each column w® of ¥* by the value (o, w), and delete from
the resulting matris any pow that aflinely depends on the others, thus obtaining
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a matrix W € R"9-23*"  The columns of W glve a colored pelnt conflguration
In B2, where black polnis are used for the columns where (g, w) = 0, and white
podnts for the others. This colored point configuratlon represents an afline Gale
diagram of P,

'.f:"

~ Figure 14.11

!,/-; .|::- Two affine Gale diograms of d-dimensional polytopes:

", o for a non.cyelic neighbordy polytepe with 8 serdices, ond

- 7 for the polor fuith B verfices ) of the polgfope with 8 facets

r‘uﬂ“"FF- t\ from Figure 1010, for which the shope of o bexagon foce
] cannot be prescibed erbifraridy.

It tuens out that an affine confgueation of colomed points (consisting of n polots
that affinely span B ) represents a polytope (with « vertiees, of dimenslon n—e—2)
il and only i the lollowing criterion 5 met: For any hyperplane spanned by some
af the polots, and lor each side of L, the numbee of black polnts on this side, plus
the number of white points on the other side, 5 at least 2.

The final Information owe needs 18 how o read off peopertbes of a polytope feom
itg affine Gale diagram. Here the eriterion s that a set of podots represents a face
il and only i the lollowlng comdithon ls satlsfied: the colored points aol In the sed
support an affine dependency, with positive cocfliclents on the black polots, and
with megative coefllclents on the white points. Equivalently, the eonvex hull of all
the black polots not ln our e, and the convex hull of all the white polots not in
the sot, Intersect in thelr relative Interiors.

Affine Gale diagrams have been wery suceesslully used to study and classify
polytopes with fow vertioes.

d+1 vertices: The anly d-polytopes with d4-1 vertices are the d-slmplices.

d+2 vertices: There are exactly |d* /4] combinatorial types of d-polytopes with
d+2 vertices; among these, |d/2] types are simplicial. This corresponds 1o
the sitwation of (~dimensional affine Gale diagranss.

d+3 vertices: All dpolytopes with d4+3 vertices are reallzable wicth (small) in-
tegral coordinates and satlsly the Botopy property: all this can be easily
analyzed In terms of 1-dimensional affine Gale diagranss.

d+44d vertices: Here anything can go wrong: the unlversality theorem for orlented
matrolds of rank 3 yvields & universality theorem for simpliclal d-polytopes
with d4-d vertlees. (See Sectlon 7.3.4.)

We refer to [3, Lect. 6] for a detalled introduction to affine Gale diagrams.
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14.2 METRIC FROPERTIES

The sombinatorial data of & polytope verthoes, edges.. ... lacets hawe
thele counterparts In genulne gepmeirie data, such a8 face volumes, surface areas,
qguermnasaintegrals and the like. In this second hall of the chapter, we glve a belef
sketeh of some key geometele coneepts related to polytopes.

However, the toples of combinatorlal and of geometric Invariants are not disjoint
at all: much of the bBeauty of the theory stems fom the subtle Interplay between the
two aldes. Thus, the computation of volumes Inevitably leads 1o the constructlon of
trangulations (explicily or Implicitly ), mixed volumes lead to mixed subdlvisions
ol Minkowskl sums [ome “hot tople” lor cursent research in the avea), quermassin-
tegrals relate to face enumeration, and so on.

Furthermore, the study of polytopes yields a powerlul approach to the theory
ol convex hodles: sometimes one can extend properties of polytopes to aebiteary
convex bodies by approxdmation [30). (However, there are also properties valid for
polviopes that [ail for convex bodies In general. This bug/leature is designed to
keep the game interestlng. |

14.2.1 VOLUME AND SURFACE AREA

GLOSSARY
- il

Volume of a d-simplex T: V(T) = § det (1.[""" 1J) |

for T = convfe®, .. 0¥}, with o°,. . v* € BY.

Subdivision of a pelytope P: A collectlon of polytopes Py, ..., B € B such
that P =] R, and for i # j we have that F; 1 P 1s a proper face of P} and Py
(possibly empty]. In this case we write P = WP,

Trigngulation of a polyiope: A subdivision nie slmplices. (See Chapier 15.)

Volume of a d-polytope: 3 poa e VI(T), where A{FP) 5 a triangulation of P.

k-Volume V*{P) of a k-polytope P C B*: The volume of P, computed with
regpect to the E-dimensional Evclldean measure Indwced on all{F].

SWIW e Qr'ﬂ- J'Pﬁfﬂ'mﬂ'ﬂ P: E'Tl':ﬁ-“::'- FEF4_1|P) .i"ri_: [TﬂF:l., where ﬂ.[P:I
18 a trlangulation of P.

The volume V() (Le, the d-dimensional Lebesgue measure) and the surface
area F(P] of a d-polytope P 2 B4 can be derlved from any telangulation of P, sloce
violumes of slmplices are easy vo compute. The crux for this Is o the (efllchent?)
generation of a trlangulation, a tople on which Chapters 15 and 23 of this Handbook
hiave maore Lo say.

The following recursive approach only loplicitly generates a trlangulatbon, bt
derives expliclt volume formulas, Let P C BY (P £ ) be a polyvtope. Ifd =0 then
we get V(P) = 1. Otherwlse we set Sa_1(P) = {u € -1 dim(H(PulnP) =
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d—1}, and use this to define the volume of P as

1
ViP) = < Eszmhmm-V‘-'[H[P,u:m;:].

Thus, for any d-polviope the volume i3 8 suo of 1ts facet volumes, each welghted by
1/ thoes bis slgned distanece rom the orlgin, Geometrically, this can be Interpreded
as follows. Assume for slmplicity that the orlgin is In the Interior of P. Then the
collection {conv(F U {0}) : F € Fa_1(P)} Is a subdivision of P Into d-dimensional
pyramids, where the base of conv( FLU{0}) has (d—1)-dimensional volume 141 F)

Lo be computed recursively —, the height of the pyramid s &P w"), and thus
its volume is :—!h[P: uf - V-1 Fl: compare to Figure 14.12. {The formula remalns
valld even if the orlgin s guiside P or on s boundary.]

Figure 14.12

Thiz pendagon, with the erigin in iy inderior, 0 decomposed info fime pyremids
{triangles), sach with one of the penfapen focsts fedges) B os ids bose. For
each pyromid, the height, of length k(P w® ), 15 dmwen 0s @ detted line

Mote that T7(P) = 0. This holds with stelet inequality I and only I the polytope
I has Tull dimension . The surface arca F(P) can also be cxpressed as

FiPy = % VUYHPWNP).
wESa-i[F)

Thus for a d-polytope the surface area 18 the sum of the [d — L-volwmes of its Tacets.
If dim{P] =d — L, then F{FP] Is twlee the [d — 1)-volume of P. (ne has F(P) =10

il and only I dim[ ) < d — 1.

Both the volume and the surfage aves are continuous, monotone and Invariant
with mspect to elgld motlons. Vi-) s homogeneous of degeee o, Le, Vi{pP) =
V(P for g > 0, and Fi.) I8 homogeneous of degres d — 1. For furither properiles
of the functionals ¥(-) and F(-) see [17] and [11].

The following table gives the numbees of E-faces, the volume and surface avea
of the d-cube O (with edge length 2), of the crosspolytope O with edge length
2, and of the regular slmplex T, with edge length /2.

" Polytope " Jel-1 | Volume Surface area
| ¢ | 2+ 2 24 - 24!
BN 22y
| N S =

dl 1!
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14.2.2 MIXED VOLUMES

GLOSSARY

Volume polynomial: The volume of the Minkowsklsum A P+ P+ AP,
which s a homogeneous polympomlal o Ay, ... A (Here the P may be convex
polytopes of any dimensbon, or more genperal (closed, bounded) convex sots. )

Mired velumes: The coeflicients of the volume polymomial of Py, ... P

Normal cone: The normal cone N[ F, P} of a face 15 the set of all vectoms o ¢ B4
such that the supporting hy poerplane H (P, o) contalng F, Le,

N{F,P)={ve R : FCH[P,v)nP}.

THEQOREM (Mized volumes) Let P, .. P C B be polytopes, r = 1, and
Aeea A 200 The volume of M P+ ...+ 5P 13 g homogensous polynomial
in My...o b of degree d. Thus it can be writlen in the form

ViuP +... + 0P = E Xipny -+ Xy - VIPyaya oo Pygay)-
(E Yy E 21,2, e
The coefficients in this ezpansion are symmebric in their mdices. Purther-
mare, the coefficient V(Fyy. ..., Py ) depends only on Py .o Py It is
called the mixed volume of the polytopes Py, ... Py
With the abbroviation

1_:[;::1*!::”_;}1':&'] == .I"rl:Flll"'1FI||"'1P'|"'1PF:I1
e — e
Ey tlmes k. tlmes

the palynomial becomes

d ;
1"r[":"IFlI'I""'I":.'r'i:‘r] = E (k] L. kr}":'ll:l'-'*}[Phkl:"';jjrl&r:l-

LR e 1
Bt

In particulae, the volume of the polytope P & given by the mised volume
VIR 0L Py P, The theorers s also valld for arbitrary eonves bodies:
a good example where the general case can be derbved ffom the polytope case by
approsdimation. For more about the propertbes of mized volumes from different
points of view see Schneldor (30, Sangwine-Yager [28) and MebMullen [24).

The definithon of the mived volumes a8 eocflicients of 8 polynomial s somewhat
unsatisfactory. Only recently, Schnelder [31] gave the following ceplicit rule, which
generallzes an earller result of Betke [4] for the case ¢ = 2. Tt uses Information about
the mormal cones at eertaln faces. For thls note that N{F, P] 13 a Aoltely generated
cone, which can be written explieitly as the sum of the orthegonal eomplorment of
all{ P} and the posltive holl of those unit weetors o that are both parallel to afli ),
and Induece supporting hyperplancs H{ P w) that eontaln a facet of P ineluding F.
Thus, for P C B the dimension of N(F, P} ls d — dim[F).
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THEQOREM (Schneider's summation formula) Let P, P © B! ke
polytopes, r > 2. Let o', ... 2" € B such thaf o' + ... 42" =0, (2',....27 #
(..., 00, and

[ {relit ¥ (F B — ) = B,

whenever F; 18 a face of B ond dim(Fi) + ... +dim(F.) = d. Then

i
(-’n " )1’[1‘:.1#“--- Fok)l= ¥ VIF+...+F),
Tt (Fp . e

where e summation extends sver the r-fuples (Fy, ..., F) of ki-faces F; of B
with dim(Fy + ...+ F)=d and [, (N(F,, P —-2) £ L

The cholee of the vectors x!, ..., 2" Implies that the selected k-faces F, C P
ol a summand Fy 4+ ...+ F,. are contalned ln complementary subspaces. Honoe ang
may also write

(j: ¢ k)F[Phk:I:-'-:Frl&r:I: E |Fl'l'-':F1-:'I"*I['F;I:I""'rhr:Fr]l
12: 3 B - -
[Fiyenn Fe]

where [Fy,..., F,] denotes the volume of the parallelepiped that is the sum of unit
cubes o the afine holls of F,. .., F.

Finally, we remark that the selected sums of faces In the Tormuala of the theorem
form a subdivision of the polytepe Py + ...+ F,. Le.,

F+..+P = |:|_:| (F, +...+ F..
(Fi. . Fe]

See Flguee 14.13 lor an example.

Figure 14.13%
Here the Minkeuski sum of a sguore & ond o imongle P is decomposed into
trunsiates of Py and of Pr (bhizs correaponds do two sermmonds with Fy = Py resp.

%

By = B} dogether with three “mized” foces that aride as sems By + Fy, whers
Iy oond By ore foces of P oond By (cormesponding fe summands with dim{F ) =
dimi{Fy) = 1)

r
Fy
Fy
-
iy

Volumes of Zonotopes

If all summands in & Minkewskl sum & = ) + ...+ F. are line segroents,
say P = p* 4 [0. 1]z = conv{p, p* + 27} with pf, 28 € B¥ for 1 < i < r, then the
resulilng polytope & = a ronotope. In this case the summation rule Immedlately
glves V(P k.. P k) = 000 the weclors

1 1
B eiigE g aeag B it

e
ky tlmes k. tlmes
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are linearly dependent. (This can also be seen divectly rom dimension eonsidera-
1.5I.'IT|.E.:| r.li]l-l.lrw]ue, for kil]:' = k.'l-_!:. =...= j:l:“:. = l: qay,

1 ) . .
. . _ 4 il ady |
E[Pl,kl,-..,P,,k..:l_d]|dnL{z A

Therefoee, one obiaing MeMullen's formula for the volume of the onotope Z:

ViZ) = ¥ |dnL¢z"“,...:.+.*E-ﬂ]:.
LR (2 il e

14.2.3 QUERMASSINTEGRALS AND INTRINSIC VOLUMES

GLOSSARY

i-th Quermassintegral W[ FP): The mixed volume V[F.d — 5 B,,4) of & poly-
tope P oand the d-dimensional unlt ball 2,

fd: The volume {Lebesgue measure) of By, (Hence g0 = 1, g1 = 2, &2 = w7, vle.)

i-th Intrinasic volume V;[(P): The (d—ij}-th guermassintegral, sealed by the
constant () fey_;.

Chiter parallel body of P ot distence A: The convex body P 4+ A8y lor some
A=

External angle 4(F, P): The volume of {lin{F — =¥} + N[ F, P}} 0 B, divided
by kg for ¥ € pelint(F). Thus 4[F,P] Is the “fractlon of BY taken up by
lin[F — =F) 4+ N(F, P)."
Equivalently, the external angle at a k-face F 5 the raction of the spherical
violume of 5 eovered by N[ F, Pl 5, whoere 5 doenotes the (d—E—1)-dimensbonal
unit sphere In ko N {F, 1.

Internal angle 3(F,G) for foces F C G: The “fraction” of the space
lin{G—x"} taken up by the cone pos{x — =% : r € @}, for =¥ € rellni(F).
(A detalled dizcusslon of relations between external and Internal angles can be
found in McMullen [23].)

The guermassintegrals are generalleatlons of both the volume and the surface
area of P In fact, they can also be seen as the contlowous convex geomediry analogs
of face numbers.

Fuor a polytope P C BY and the d-dimensional unit ball By, the mixed volume
formula, applled to the outer parallel hody P+ AR, glves

ViP+AB) = {‘D XW(P)

im0

with the copvention Wi = V[FP.d — i: By, ¢). This formula 18 known as the
Seelner polymomial. The mived volume Wil the i-th quermassintegral of P, Is
an Important quantity and of significant geometric Interest [17] [30). As apecial
caged, WplP) = V(P) s the volume, dW@ (P = F(P) s the surface area, and
Wi P) = ka.
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For the geometrle interpretation of WP for polytopes, we use & normalizatbon
of the guermassintegrals due to McMullen [23): For (0 < < d, the i-th intringic
violwrme of I8 deflned by

WilF) = g ‘a—il P

With this notatlon the Stelner polynomlal can be weltion as

d
VIP+AB,) =% Ak, Vi(P).
=il
(See Flgure 1404 or an example.] 4iP) s the volume of P, Va_a( P} 1s hall
the surlaee area and W(P) = 1. One advantage of this normalization Is that
the Intrinsle volumes are wnchanged If P s embedded in some Epclidean space of
diflerent dimension. Thos, or dim (P = E < o, Vi.(P) s the ordinary E-volume of
P owlth respect 1o the Evclidean strocture Indweed in afli 7).

Figure 14.14

The Minkouski sum of 0 square P with a ball AB” pislds the outer porallel body. This owter peralled
body con b decomposed into picces, whose wolumes, VP, AV Plr and Xk correspond fo the
three ferms in the Steiner polpnomiol,

™ /1 a B
/O - -]
. - | I— L =
VIP+AB) = WP} + APk + Ak

For a (dim[P) — 2)-lace F the concept of external angle (see the glossary) me-
duees to the “usual” concept: then the external angle ks given by o arceos{u®™ , u"™}
for unit noemal vectors ' w®™ € 59" 1o the facets Fy, Py with FinF = F. (One
hag 5(F, F] = 1 {or the polytope lsell and 4(F, P} = 172 for each facet F.) Using
thls comcept, we get

(P = Z Y(F, Py - VE(F).
FEFU(F)

Some Computations

In principle, one ean use the cxternal angle formula to determine the Inteingle
viplwrmnes of a glven polytope, but o general it I8 hard to ealealate external angles.
Indeed, for the computatbon of spherieal volumes thore are expliclt formuolas only
In small dimenslon.

In what follows, we give lormolas Tor the Inteinsie volumes of the polytopes O,
Ej‘ and Ty, For this we ldentify the k-fees of O with the EBcube O and the
F-Taces ::ul'['.'f‘ and of Ty with T, foe 0 < k < d.
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The case of the cube 4 I8 rather trivial. Sinee (O, Cg) = 2798 gpe gets
[gee the table In Sect. 14.2.1)

Vi[Ca) = 2% (:] .

For the regular simplex T we have

d+ 1 k+1
N ) s 1 T, ).

An explielt formula for the external angles of a regular simplee by Buben (see [18])

is:
p d—k
T 1. Tyl = ,f&;l-l I|I E—IJ:+I:I=5' [:J;f E—l‘ﬂ,,fﬂ) dr.

For the regular erosspolytope we find for k < d — 1 that

d vE+1
Ve[ﬂf:l=2“+'(k+l)- J (T CF)

For this, the external angles of O were determined by Betke & Henk [5]:

k41 = a9 T d—k—1
[ Th, OF) = -HILJ‘F a1 _f E_"tﬂ‘.y] g
v Vi Ja

An Application

External angles and Internal angles play a crucial role In work by Affentranger
& Schneider [1] (see also [2]), who computed the expected number of k-faces of
the orthogonal projection of & polytope P C BY onto a randomly chosen sotrople
subspace of dimension n. Let E[fi(P;in)] be that number. Then for 0 = & < n <
d — 1 It was shown that

E[fiPin)] = 2% % Y. BEGHIG.F),

0 Sl Py REF _j _ag L)
' Foa

where 3 F,{7) 1s the Internal angle of the face F with seapect to a lace &0 2 F.

In the sequel we apply the above formula to the polytopes O, {?j‘ and T.
For the cubes one has §{Ck, 1) = (1/2)F, while the number of I-faces of Ca
contalning any glven k-face Is equal to (§-F). Hence

: d d —k
E[fe(Cy:n)] = E(j:} Z (n -1-k —Em]'
220

In pariicular, E[fp{C;d — 1)] = (29-F — 2 [:]
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For the crosspolyuope f'.':‘,:" the number of [-laces which contain a k-Duee I8 equal
to 25 (4N Thus

E[fe (O n =

i — d—k-1 . A
2(,&4. 1] EE (ﬂ_ 1—k— z.rj,‘).dl:Tk|Tn—l—:.!m]'f[T S e

In the same way one obtalng for T,
E[fe(Tu:n)] =
d+1 d — k
2(.’: +1] E (rl —1-k- ErrL]ﬂ[ThT""'h]ﬂT -1 Td)-

For the last two formulas one needs the nternal angles (T Ti) of the regular
slmplex Ty, for 0 < k <1 < d. For this, one has the following complex Integral [8]:

k+l+‘ (W k+|. [F=1} 2 = - -] _ i [
A T = [ ::1'!!-:-:':!"2 ) J[r £ {J’f g~ e+ 42 Py | duw.
' —f L]

Using this formula one can determine the asymptotic behavior of E[f (Cf:in)]
and E[f,(Ty:n)] as n tends to infinity [8].

FURTHER READING

The dlasske account of the combinatorial theory of convex polytopes was glven
by Grilnbaum n 1967 [16]). It inspired and gulded a great part of the subsequent
resgarch ln the feld. Besides the subseguent chapters of this handbook, we mefer to
the recent handbook surveys by Klee & Kleinschmidt [22] and by Bayer & Lee (3]
for [urther reading.

For the geometric theory of convex hodies, and especlally convex polytopes,
a classic s Bonnesen & Fenchel [11]. Here we refer to the Handbook of Convex
Geometry (18] for recent surveys, and to Schoeider [30] for an excellent recent
menncEraph. As for the algorithmic aspects of computing volunses eic., we reler to
Chapter 20 of this handbook, on Computatbonal Convesciy, and to the additbonal
references given there.
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