16 BASIC PROPERTIES OF CONVEX POLYTOPES
Martin Henk, Jurgen Richter-Gebert, and Gunter M. Ziegler

INTRODUCTION

Convex polytopes are lundamental geometels objects that have been Investigated
since antlguity. The beauty of thelr theory s nowadays complemented by thelr Im-
poetance for many other matlematical subjects, ranging om lnbegratbon theory,
algebrale topology, and algebraic geometry (torle varletles) to lnear and combina-
torial optimization.

In this chapter we try to glve a short Introeduction, provide a sketch of “what
polytopes look lke™ and “how they bebhave,” with many cxplicit examples, and
helefly state some main results {where further detalls are ln the subsequent chapters
of this Handbook]. We concenteate on two main toplos:

« Comblnatoelal propecties: faces (vertloes, edges, ..., lacets) of polytopes and
thelr relations, with speclal treatments of the classes of low-dimensbonal poly-
topes and polytopes with few vertbees;

o Geometrle propertles: volume and surface area, mixed volumes, and quer-
massintegrals, Including explicit formulas for the cases of the regular simplices,
cukses, and cross- polytopes.

We refer to Grinbaum [Gel03] for & comprebensive view of polytope theory, and to
Zloglor [Zle05] and Schoeider (Sch93) for thorough treatments of the combinatorial
[pesp. oomvex geometrle] aspects of polytope theoey.

16.1 COMBINATORIAL 5STRUCTURE

GLOSSARY
V-polytope: The convex hull of a finlte set X = {z',.... 2"} of polnis In B

P = eonv( X} := {il;t‘ | A =0, En:.b.,- - 1}.
o =1

H-polytope: A hounded solution sed of a fnite system of lnear Ineguallties:
P=pPAb) = {zc® oz <forl <i<m},

where 4 € B™ s a real matrix with rows o7, and b € B™ Is a real vector
with entrles §;. Here boundedness means that there s a constant & such that
[l]] < N holds for all & € P,
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Polytope: A sulser P C RY that can be presented as a V-polytope or (equlva-
lemily, by the maln thegrem below!) as an H-polytope.

Dimension:  The dimension of an arbitrary subset § © B? 18 defined as the
dimension of its affine hull: dim{5) := dim{a]5)).

[Recall that afl{5). the afflne hull of a set 5, s [E}’_, At | 2t 2P e 8
E_‘i’_l A = 1}. the smallest affine sulspace of EY containing 8.

d-polytope: A d-dimensional polytope. In what follows, a subsereipt In the name
of a polytope uspally denotes lis dimension.

Interior and relative inferdior:  The lnterlor Int(f?) s the set ol all polots
x £ P auwch that for some & 2 {1, the eball B (x) around  Is contalned n 2.

Slmilarly, the relative Interior rellot[ ) ls the set of all polots = € P such that
for some e 2= (), the Intersectlon I, () M afl[P) & contained In P

Affine equivalence: For polytopes P € BY and @ € RB®, an affine map o
EY — B®, r —3 Ar + b mapping P bijectively to €. 7 need not be injective
of gurjective. However, It has to restelet 1o a bljective map afli P — affic}). In
particular, if P and € are aflinely equivalent, then they bave the same dimension.

THEOREM 16.1.1 Main Theorem of Polytope Theory (cf. [Zie94, pp. 27])
The definitione of V-politopes and of W-polytopes are equinalenl. Thal da, euery V-
podgtope has o deseription by a findle syatem of inegualities, and every W -palplope
et be obladned as the conver hull of a finile gel of prinls fils verthoes ).

Creomedirieally, a V-polytope 8 the projectlon of an (n—1-dimensional sloplex,
while an #H-polytope is the bounded intersection of m cosed halfspaces [Zledd,
Lecture 1]. To see the maln theorem at work, consider the following two statements:
the frst one & easy to see Dor Vepolytopes, but not for H-polytopes, and foe the
second statement we have the opposite effect.

1. Projections: Every Image of a polytope P under an affine map x:x — Az + 5
5 a polytope

2. Itersections: Any Intersecilon of a polytope with an afline subspace 1s a
pralytope.

Howewer, the computatkonal step [bom one of the maln theoren’s descriptions
of polytopes to the other—a “convex hull computatbon™—Is far [om trivial. Essen-
ilally, there are three types of algorithms avallable: Inductlve algorithms (lnserting
viertices, using a so-called beneath-heyond technlgue), projection resp. Intersection
algorithms (known a8 Fourler-Motzkin ellmination resp. double description algo-
rithms), amd reverse scarch methods (a8 Introdweed by Avis and Fukuda). For
cxpliclt computations one can wse publle domaln oedes as Integeated In the soft-
ware package polymake [GJO0] that we use here; see also Chapters 22 and G4

In the following definitbons of d-slmplices, d-cubes, and d-cross-polyiopes we
give both a V- and an ‘H-presentation in each case. From this one can see that the
H-presentation can have ex ponential “size” In terms of the slze of the V-presentatlon
[, for the d-cross-polytopes), amd vice versa [for the d-cubes).

Definition: A (pegular) d-dimensional simples n B is glven by

o LW

Ty = - I - L et
¥ :x:um-{P et T &'+ ... +e%)}
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d d
= {.-r-E B | Z:igll —(1+,,.fd+1+.-i]x,=+z:,- <1 furlg.i:f_:d},

i=l i=1
where ¢',. .., e¥ denoies the eoordinate unli vectors In B

The simplices Ty are reguloar polyiopes (with a symmetry group that s flag-
transitive—see Chapter 19): the parameters have beon chosen so that all edges of
T have lengih V3. Furthermore, the orlgin (b € R? 1 in the Interior of Ty this is
clear from the H-presentatbon.

Howewer, for the eombinatorial theory one econsiders polytopes that differ only
by a change of coordinates (an afflne translormation) 1o be eguivalent. Thus, we
would refer to any d-polyiope that can be presented a8 the convex holl of d41
polots as a d-smgler, sinee any two such polytopes are equivalent with respect. wo
an affine map. Other standard cholees Inelude

Ay = E:II:II.'I'I.'{“.IIF.‘I ; F.‘-'t., cee 1Ed}

d
= {1—1‘.—: ol E:.-E 1. gnfurlﬂkf_:d}
i=1
and the (d—1)-dimensional slmples o B glwen by

Al = conve' e L eT)

d
- {zen"-zn=1, r;::_:nl.'m'lgkf_:d}.
=1

FIGURE 16.1.1
A J-simgpder, a Jecube, and a J-dirmen- ..:

sional cross-polytope (ordehadron).

Definition: A d-cube [a.k.a the d-dimensional hyppereube) |5
Ca = conv{me' + e’ +. 4o’ oo € {41, -1}
_ {1—51"|—15n£11’m15&5d}

and a d-dimensional cross-polytope In B? (known as the octahedron for d = 3)
I8 given by

d
Cf = convize 2t e} = [re® | Y a2 1}_
i=1

Again, there ate other natural cholees, among hem
0.7 = conv{d e |SC{L2....d}}
icd
- {:Enﬂng:*gmmg:@d}:
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the d-dimensional wmit cube
As another example to llustrate conecepts and resulis we will occasionally use
the wnnamed polyiope with slx vertbees shown bn Flgure 16.1.2,

FIGURE 16.1.2
Our uvnnemed “typioel® 3-polytope. It has 8 vertices, 11 edges ond T foosts.

This polytope without a name can be presented a2 a Vepolylope by lsting s
alx vertices. The lollowlng coordinates make It Into a subpolytops of the 3-cube O
the vertex set conalsts of all buat two vertioes of Cs. Cur list below (oo the left) shows
the vertlees of our unnamed polytope In a format used as Input for the pelymake
progranm, Le., the vertioes are glven in homogeneous coprdinates with an additional 1
as fiest entry. From these data the polymake program producs a description (on the
right ) of the palytope &8 an H-polytope, Le., It computes facets delining hy perplanes
with pespect to the homogeneous coordinates. For Instance, the entrles in the lasg
rovw of the section FACETS describe the ballspace Lxo— lxy +1xa— 13 = 0 which
corpeaponds to the lacet-defining Inequality ®1 — &2 + £3 < | of ouwr 3-dimensbonal
unmamed polyiope

FOIKTS FACETS
i1 1 1 1 @=1 O
1=1=1 1 1 =1 & O
11 1-=-1 11 ¢ @
1 1-=1-=1 1@ 1 @
1-=1 1-=1 1@ ¢ 1
1=1=1-=1 1 1-=1-=1
1 =1 1-=1

Unbounded polyhedes can, via peojective transformations, be treated as poly-
topes with a distingulshed facet (see [ZiedS, p. 75]). In this respoct, we do not lose
anything on the combinatorial level I we restrict the lollowing discussion to the
setiing of full-dimensional convex polytopes: d-pelytopes pmbedded o B

16.1.1 FACES

GLOSSARY
Support function: Glven a polytope P C B, the functlon
RiP,-:REY S R, h{P.x) :=sup|{z,u) | v € P},

where {#,y} denotes the Inner product on B, (Since P s compact one may
replace qup by mas)
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For v BY Y {0} the hyperplane
H{P,v) == {z € R* | {x,v} = h{P,v)}

s the supporting hyperplone of P with outer normal vector v, Nobe that
H{F yv) = HiF,v) for p € B, p>= 0. For a vecoor w of the {d—1)-dimenslonal
unif sphere 57, k(P u) I8 the slgned distance of the supporting plane H{P. u)
from the orlgln. (For o = 0 we set H({F 0] := Ii'{, which s not a hyperplane. |

The Intersection of P with & supporting hyperplane H{F, o) 18 called & (nootrivial)
Jaee, oF more procisely a k-face I the dimension of afli P 0 (P, ) s & Each
face 18 isell a polytope.

The et of all k-laces is denoted by F (P and s cardinalivy by £ ).

F-vector: The vector of face numbees F{P) = (LIPSl P fao (P ) ass0-
clated with a d-polytope.

The empty set § and the polytope P isell are considered frivial faces of P, of
dimensions —1 and dim(P), respectively. All faces other than P oare proper
Fcea,

The faces of dimenslon 0 and 1 are called verficea and edges, sespectively. The
[dim{P)—1)-Taces of P are called foceta.

Facet-vertex incidence matriz: The matrix M € {0, 1} 10F1= 0l that has
an entry Mi{F o] = 1 I the facet F eontalng the vertex o, and M{F,¢) =101
ot e s

Graded poset: A partlally ordered set (P, <) with a unlque minimal element o,
a unigque maximal element I, and & rank function r:P — Wy that satisfles
(1} #{) = 0, and p < p' Implies +{p) < r{g'). and
(2} p = p' and Fip') — F(p) = 1 lmplies that there I8 a " € P with p < p" < p'.

Latbice L: A partially ordered set (P, <) In which every palr of elements p,p’ € P
has a unbgue mavimal lower bound, ealled the meet pap’. and & unlgue minbmal
upper bownd, called the jodn g g

Atom, coatom: I L s a graded laitice, the minimal elements of LY {0} (Le.,
the elements of Fank 1) are the atoms of L. Similarly, the maximal dements of
L {1} (Le., ihe elements of rank +{1)—1) are the coatoms of L. A graded latiice
s alomic Il every clement 18 a joln of & set of atoms, and It 18 eoafomde IF evory
clement. ks a meet of & set of coatoms.

Face lattice L{P): The set of all faces of P, partially ordered by lneluslon.

Combringtoriclly isomorphisc:  Polytopes whose [ace lattices are lsomorphlc as
abstract {unlabeled) partially ordered sets/lattices.
Equivalently, P and P are comblnatorlally equlvalent if thele faget-vertex Inel-
denge matelecs differ only by eolumn and row porrotatbong.

Combringtoricl type: An equivalence class of polytopes under comblnatorial
eguivalence.

THEOREM 16.1.2 Face Lattices of Polyfopes (cf. [Zie95, pp. 51])

The faee lattices of conuer polyglopes are findle, graded, alomie, and coolemie laltices.
The meal operafion O A H ds puen by dnlersection, while he join OOV H ie the
erfergection of all focets that contain both &7 and H. The rank fenction on LiP) is
given by #0G) = dim( &) + 1.
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The minkmal nopempty faces of & polytope are s vertbees: they correspond
to atoms of the lattiee L{F). Every [ace 5 the join of s wertlees, henee L{FP)
s avpmle. Sbmilarly, the maximal proper [aces of a polviope are lts [acets: they
correapond Lo the coatoms of LIP). Every face ls the Intersection of the faceis I s
contalned In, henee face lattlees of polytopes are coatomlie,

FIGURE 16.1.3

The face lotice of our unnomed S-polylope. The T coatoms
(facets) and the 6 atoms (verfices) hove been lobeled in the
orier of their oppecrance in the lists on page 4. Thus, the
downwards-padh from the coadom “47 do the afom “27 repre
senis the fuct that the fourth fonst contoina the semnd verter,

The face lattice I8 & complete encoeding of the comblnatorial steuctuee of a
polytope. However, in general the enooding by a [acet-vertex Incldence matrix s
more efficient. The following matrix—also provided by polymake —represents our
unnamed Fpolytope:

=
]
G oo ok B B
-
—_—— e o W
Do DD e =
=R =T = R
= e~ R =R
== ==

1 1}

How do we decide whether & set of vertices {v*. ..., v*} I8 (the vertex set of) &
face of P? This s the case if and only if no other vertex o s contained in all the
facets that contaln {1:L,..- . 1:*}. This criterion makes [t possible, for example, to
derive the edges of a polytope P rom a lacet-vertex matrix,

For low-dimensional polyiopes, the eriterion can be glmplifed: i d < 4, then
two vertlees are connected by an edge I and only i there are at least d — 1 different
facets that contaln them both. Howewer, the same 8 oot troe any longer lor 5=
dimensional polytopes, where vertices may be ponadjacent despite belng contalped
in many common facets, (The beat way to see this 8 by uslog polacity; see below.)

16.1.2 POLARITY

GLOSSARY

Polorify: ITPC B s a d-polytope with the orlgin o lis Interlor, then the polar
of P ls the d-polytope

P = [y eRY | {p,2) < 1 for all £ € P},
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Stellar subdivigion: The stellar subdivision of & polyiope P in a [ace F ls the
polytope eonv(PuUe™), where ¥ 18 a polnt of the form p* — e(y™ — ™), where
y" I5 In the Interlor of P, ¥ 15 In the relative Interior of F, and ¢ 1s small enough.

Verler figure Plo: v ls a vertex of P, then Ffe := PN H s the polylope
obtaimed by intersecting P with a hyperplane H that has @ on one glde and all
the other vortiees of P on the other slde.

Cutling off o verter: The polytope P H™ obtalned by Intersecting P with a
closed halfapace H~ that does oot contaln the vertex o, but contalng all other
vertloes of P lo lts Interbor. (In dhis situation, P 7 I8 a pyramid over the
vertex figure Plv.)

Quotient of P A polytope obtaloed om P by taking vertex figures (possibily)
several Llmes.

Simplicial polytope: A polytope all of whose facets [equivalently, proper faoes)
are almplices.

Simple polytope: A polytope all of whose vertex figures (equivalently, proper
quotlents) are simplices.

Polarity s a lundamental construction o the theery of polytopes. (ne always
has P44 = P, under the assumption that P has the origin in its interlor. This con-
dition can always be obtalned after a change of coprdinates. In particulae, we speak
of [eombinatorial) polacity between d-polytopes € and K that are comblnatorially
isomorphic to P and P2, respectively.

Any V-presentation of P yields an ‘H-presentation of P2, and conversely, via

P=conv{e',... "} = P =|(zr¢ R | foh. ) < Lfor 1 <i < n}.

There are basle relations boetwesn polytopes and polytopal consteuctbons under
polarity. For example, the fact that the d-cross-polytopes ©F are the polaes of the
d-cubes Oy ls bullt Into eur notation. More generally, the polacs of gimple polybopes
are simplielal, and conversely. This can be dedused vom the fact that the faoets
F of a polytope P correspond to the vertex fgures P2 o of its polar P2, In fact,
F and P4 v are combinatorially polar In this situation. More generally, one has a
corpespondence between faces and quotients under polarliy.

At a combloatorlal lewel, all this can be deelved from the fact that the face
lattices LiP) and LiP3) are anti-lsomorphic: L{P2) may be obtained from L{P)
by reversing the order pelatbons. Thus, lower intervals n L{P), correspondlng to
faces of P, translate under polarity oo upper lntervals of LiP2), corresponding
to quotbents of P2,

16.1.3 BASIC CONSTRUCTIONS

GLOSSARY

For the following consteuctions, bet
P E? be a d-dimensional polytope with 1 vertioes and me facets, and
P R g ff -dimensional polytope with n' vertices and m' [acots.
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Scalar multiple:  For A € R, the scalar multiple AP s defined by AP = {Ax |
r € P}. P and AP are combinatorially (in fact, affinely) lsomorphic for all A # 0.
In particular, (-1})P = —P={—p|pe P}, and (+1)P = P.

Minkowski sum: F+ P ={p+p'|peP p P}

It is also useful to define the difference as P — P' = P+ (—P"). The polytopes
P+ AP are combinatorially somorphic for all X > 0, and similarly for A < 0.

If P = {p'} 1s one single point, then P — {p'} Is the Image of P under the
translatlon that takes p' Lo the origin.

Product: The (d+d’ }-dimensional polytope P x P' = {{p.p) € el | p €
F g e P'Y. Px P has n-n' vertlees and m + m' Taeots.

Join: The convex hull P = P of PU P, alier embedding P and P In a space
where thelr affine hulls are shew. For example, .
Ps P = conv({{p.0,0) € B | pe Prufing. 1) e B 0 e P
Pz P has dimension d4d'+1 and n+n' vertices. Tts k-faces are the joins of i-faces
of P and {k—i—1)-faces of P', hence fo (P = P") = Y5 _| filPifu_is(P).

Free aum:  The [ee sum s the (dHd' -dimensional polytope
P @ P = conv({(p,0) € R | pe PYu{ing) e R& | € P

Thus the free sum P & ™ s a projection of the joln P« PPI both P and PF
have the orlgln In thelr Interlors—this & the “uswal™ sltuatbon for creatlng free
sums, then P& ™ has oo+ n' vertlees and m - m' Tacots.

Pyarmiads The joln pyrilP) = P& {0} of P with a point (a (-dimensional
polytope P' = {0} C R"). The pyramid pye{P) has n + 1 vertlees and m + 1
facoLs.

Prigm:  The product prism(P] := P = I, where I denotes the real Interval
I=[-1L+1l|CR

Bipyramad:  IF P has the origin In lts Interlor, then the bipyrambd over P I8 the
[+ 1 |-dimensional polytope consteucted a8 the Tree sum bipyr{Pl:=P& 1.

Lawrence extengion: I p& BY 15 a point outside the polyiope P, then the free
sum (P — {p}} & |1, 2] Is a Lawrence extension of P af p. (For p € P this s Just
a pyramid.)

OF course, the many constructlons listed n the glogsary abowe are not nde-
pendent of each other. For lnstance, some of these constrectlons arve related by
polarity: for polytopes P and P* with the orgin In thelr Interiors, the product and
the [rop sum constructions are related by polarity,

Px P = (F* &P,

and this speclalizes o polarity relatlons among the pyramid, bipyramid, and pelam
ConsteweLions,

pye(P) = (pye(P2))*  and  prism(P) = (bipyr(P2))*.

Similarly, “cutting off & vertex™ I8 polar to “stellar subdivision In a facet.”™

It Is Interesting to study—and this has not been done systematically—how the
hasle polytope eperations generate complicated comvex polytopes om slmpler omes.
For example, starting from & one-dimensional polytope I = Oy = [-1,+1] C R, the
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direct produect constructlon generates the cubes O, while [vee sums generate the
crEs- poly Lopes ﬂ'j".

Even more complicated centrally syvmmedrle polytopes, the Hanner polylopes,
are obtalned from coples of the Interval T by using produces and [eee sums, Thoy are
Interesting since they achbeve with equality the conjectured bhound chat all centrally
symmetric d-polytopes have at least 3* nonempty faces [Kalal [Kal’g)).

Ewery polytope can be viewed as a pegion of a hy perplane arrangement: Tor chis,
take as Ape the set of all hyperplanes of the lorm afl{F), where F s & lacet of P
For additional poiots, such as the polnis outside the polytope used for Lawrencoe
cobenslons, or those wsed Dor stellar subdivisbons, It s often Important only In which
reglon, or in which lower-dimensional peglon, of the arrangement dp they lie.

The Lawrenes extenglon, by the way, may seem like quite a harmless lictlo
constructlon. Howewer, It has the amazing property that it can encede the siruct ure
of a polnt oulside a d-polytope Into the boundary structure of a (d41)-polytope.
This aceounts for a large part of the “specilal” 4- and S-polytopes In the lterature,
swch as the 4-polytopes for which a facet, or even a 2-face, cannot be presceibed in
shape |RicG].

16.1.4 MORE EXAMPLES

There are many Interesting classes of polytopes arising from diveese areas of math-
cmatles (a8 well as physics, optimization, coystallography, ete.). Some of these are
discusaed below. You will ind many more classes of examples discussed o other
chapters of this Handbook. For example, regular and sembregular polytopes are dis-
cussed in Chapoer 19, while polytopes that arlse a8 Voronod cells of lattices appear
in Chapters 3, ¥, and G2.

GLOSSARY

Graph of a pelyfope: The graph GP) = (V(P), E(P)] with vertex set V(P) =
FolP) and edge sot E(P) = {{',0?} C |:'_'!]| | comv{w?,e?} € Fy(P)}.

Zonotopa:  Any polybope £ that can be represcnted as the lmage of an w-di-
mensional cube O, under an afline map; equivalently, any polyiope that can be
written as a Minkowskl sum of n line segments | L-dimensbonal polytopes). The
amallest 1 such that & Is an lmage of O, 18 the number of zones of 2.

Moment curve:  The curve ~ In BRY deflned by 4« B — B, £ —s (102,097

Cyelic polyfope: The convex hull of a Anlte set of polots on & moment curve, or
any polytope combinatorially equivalent to i,

E-neightorly polytope: A polytope such that each subset of at most & vertioes
forms the vertex set of & face. Thus every polytope 18 l-nelghborly, and a poly-
tope I8 2-nelghboely I and only i s graph Is complete.

Neighborly pelytope: A d-dimensional polytope that s [d/2 ]-neighborly.

(01)-pelytops: A polytope all of whose wertex cooedinates aee (b or 1, that s,
whose vertex 2ot 18 a subset of the vertex set {0, l}‘r aof the unit eube,
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ZONOTOPES

Zonotopes appear In gquite different gulses. They can equivalently be defined as the
Minkowszkl sums of folte sets of line segments {l-dimensional polytopes), as the
afflpe projections of d-cubes, or a8 polytopes all of whose faces (equlvalently, all
2-Taces) exhibit central symmetry. Thus a 2-dimensional polyiope 5 a sonotope 1T

amd only i it s centrally symmetric.
FIGURE 16.1.4

A 2-gdimensional ond o J-dimensional zonotope, soch
ewith § zones. (The 2-dimensionol one is g projection
of the 3-dimensionod one; node that every projechion //

of 0 zonolepe 13 @ zonstope. )

Among the most prominent sonotopes are the permutohedra: The permn-
tohedron I Is constructed by taking the convex hull of all d-vectors whose
coordinates are {1,2, ... d}, In any oeder. The permutobedron I, _, Is & (d—1)-
dimensional polytope {contained In the hyperplane {2 € BY | 5, = = d{d41)/2})
with f vertices and 24 — 2 [acats.

Zl4a

4312
214

FIGURE 16.1.5 =
The Jadimensional permpiohedron Uy, The vers

tices ome lwheled by the permutofions that, when
applied to the coordinate vector in ', yield
(1,2,3.4)".

One wnusual feature of permutohedra s that they are simple zonotopes: these
are rave o general, and the (unsolved) problem of classifving them s equivalont v
the problem of classifying all simplicial arcangements of hyperplanes (see Section
G.3.3).

Zonotopes are loportant becapse thelr theory s equivalent to the theorles
of vector eonflguratkons (peallzable orlented matroids) and of hyperplane arrange-
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ments. Im [act, the sysvem of line segmeonts that generates a ponotope can be
considered as & wector configuration, and the hyperplanes that are orthogonal v
the line segments provide the assoclated hyperplane arrangement. We refer w
BLS 949, Sectlon 2.2] and [Zie85, Lecture 7).

Finally, we mention n passing a surprising hijective correspondence between the
tilings of & ronotope with smaller zonotepes and oriented matroid lifilngs (realkzable
or oot ) of the orlented matrold of & sonotope. This correspondence 18 known as the
Bohne-Dress theerem; we refer to Richter-Gebert and Ziegler [RZ04).

CYCLIC POLYTOPES

Cyelie polytopes can be constructed by taking the convex hull of » = d polnts oo
the moment curve In BY. The “standard constructlon™ 18 to deflne a eyclie polytope
gin] a8 the convex hull of o Integer polnts on this curve, such as

Cyln) = conv{y(1),4(2),....7(n]}.

However, the eomblinatorial type of Ciin) I8 glven by the —entirely combinaterial
Gale evenness eriterion: II Ciin) = conv{yifi), ... o7la)}, with &y = ..o =
b, then Al ), - .oy, determine a [acet I and only i the oumber of indices
In {iy,....04} lylng between any two Indlees nol In that set 18 even. Thus, the
combinatorial type does not depend on the speclile cholee of polnts on the moment
eurve [Ziedh, Example 0.6; Theorem 0.7).

FIGURE 16.1.6

A Fedimenaional cyclic polytope Cu(6) with 6 merdices. (fnoa
projection of ¢ to the mra-plane, the curme ¢ and henes the
pertices of C308) lie on the porabols o3 = £5.)

The fiest property of eyclic polyiopes to notkee is that they are simpliclal. The
second, more surprising, properiy I8 that they are nelghborly. This loplies that
amang all d-polytopes P owith 1 vertlees, the cypelle polytopes masimbze the number
Ji(P) ol i-dimenslonal faces for § < [df2]. The same fact holds for all i@ this s parc
of MeMullen™s upper bound theorem (see below]. In partiealar, cyelle polylopes
have a veey large number of facets,

for(Caln)) = (:i —;51) N {n—l—[“{—-]—’])_

.4 155

For example, we get that a eyclic 4-polytope Ci(n) has nin — 3)/2 facets. Thus
48] has & vertioes, any two of them adjacent, and 20k facets. This s more than
the 16 facets of the d-dimensbonal eross-polytope, which also has 8 vertioes].
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MEIGHBORLY POLYTOPES

Here are & few olservatlons about nelghborly polytopes. For more Informatbon, see
BLS+99, Section 9.4] and the references quoted there.

The first observatlon s that if a polytope s E-nelghborly for some & > |df2],
then it Is a simplex. Thus, I one ignores the simplices, then [df2)]-nelghborly
polytopes Torm the extreme case, which motlvates calling them slmply “nelghborly.”
However, anly In even dimensions = 2 do the nelghborly polytopes have very
apeclal structure. For example, one can show that even-dimensional nelghboely
polytopes are necessarkly sloopliclal, but this I8 not true In general. For the latter,
mite that, for example, all 3-dimensional polyiopes are nelghborly by definitbon, and
that If P & a nelghboely polytope of dimension d = 2, then pye(P) & nelghboely
of dimensbon 2m4-1.

All simplicial nelghboely d-polytopes with o vertloes have the same number
of facets (o fact, the same f-vector {(f, fi. .- Qo)) a8 Cylnd. They constitute
the class of polytopes with the maximal number of -faces [or all @@ this ls the
statement of McMullen's upper bound theorem.  We mefer to Chapter 18 for a
thorough discussion of f-vector theory.

For »n < d+3, every nelghborly polytope 15 combinatorally somorphic 1o a
cyclic polytope. This covers, for Instance, the polar of the product of two trlangles,
[As 3 Aa)®, which Is easily seen to be & 4-dimenslonal neighborly polytope with
6 vertlees: see Flguee 1619, The Orst example of an even-dimensional nelghboely
polytope that s not cyclie appears for d = 4 amd 11 = & It can easlly be described
in verms of lis affine Gale diagram; see below.

Melghboely polytopes may at fiest glance seem to be very pecullar and rare
ohijects, but there are several Indicatlons that they are not quite as umusual as
they seem. In fact, the class of nelghborly polytopes B belleved to be very rich.
Thus, Shemer [Shef2] has shown that for fixed even d the number of nonlsomorphic
neighborly d-polytopes with novertloes grows superexponentially with n. Also, many
of the (L1 )-polytopes studied in combinatorial optimization tuen out to be at least
2-nelghborly. Both these effects Mlusirate that “nelghborliness” 15 nol an lsolated
phenomendon.

OPEN PROBLEMS

L. Can every nelghborly d-polytope P C RY with n vertices be extended by a
new vertex v € BY to a nelghborly polytope P := conviP U {v}) with n+1
vertiopa? [Shed2, p. 314]

2. It is a classbc problem of Perles whether every alonplicial polytope B a quotient
of a nelghborly polytope. [For polytopes with at meost d4-4 vertioes this was
confirmed by Kortenkamp [Kor@7].)

3. In some models of rmandom polytopes 5 seems that

e one oblalng & nelghborly polytope with high probability {which Incroases
eapldly with the dimension of the space),

e Lhe most probable combloatorial type ls & cpelie polytope,

@ bt gtlll this probabilicy of a cyelle polytope tonds W seeo.
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However, none of this has been proved. (See Bokowskl and Sturmfiels [BS80,
p. 101], Bokowskl, Richter-Gebert, and Schindler [BRS92), and Vershik and
Sporychey [VE02].)

(0,1}-POLYTOPES

There is & (0 1)-polytope (given in terms of a V-presentation) assoclated with every
finite set system 5 © 2% {where E Is a finlte set, and 2% denotes the collection of
all of its subscts), via

PlS] == conv{ 3¢ | FeS} C B%.

e

In comblnatorial optlmization, there & an extensive lterature avallable on H-
presentations of apeclal (), 1)-polytopes, such as

& the fraveling salesman polytopes T, where E 18 the edge set of 8 complete
graph K, and F 5 the set of all (n—1)! Hamilton ¢veles (simple clreolis
through all the vertices) in E (see Gritschel and Padberg [GP&5]):

& the cuf and equicut polytopes, where E 5 agaln the edge set of a complete
graph, and & represents, for example, the family of all cuts, or all equicuts,
of the graph (see Deea and Laurent [DLOT]).

Besides thelr Importance lor comblnatorial optimization, theee 5 a geeat deal of
Interesting polytope theory assoclated with such polytopes. For a strlking example,
goe the equicut polytopes used by Kahn and Kalal [KE93) In thelr disproof of
Borsuk’s conjecture (see also [AZOL]).

Dreapite the detalled steucture theory foe the “special™ (0, 1)-palytopes of com-
hinatorial optimization, there B veey Litle koown about “general” (0, 1)-polytopes.
For example, what I8 the “typlcal”, or the maximal, number of facets of a (0,1])-
polytope? Based on a random construetion Bérdny and Pdr [BPOL] proved the
existence of d-dimensional (0, 1-polytopes with (cd/ logd)®" facets, where ¢ 1 a
unlversal constant. The hest koown upper bounds are of opder [d — 2)!. Another
queestion, which I8 not only Intrinskcally Interesting but mlght also provide new
clues for basle guestions of lnear and combinatorial optimization, s What s the
maximal aumber of [bees Ina 2-dimenslonal projectlon of & (0, 1)-polytoepe? For a
gurvey on (0, 1)-polytopes see [Elei)].

16.1.5 THREE-DIMENSIONAL POLYTOPES AND PLANAR GRAPHS

GLOSSARY

d-connected graph: A connected graph that remalns connected IF any o — 1
vertioes are deleted.

Dyrawring of a graph: A representation In the plane where the vertioes aee rop-
resented by distinet points, and slmple Joedan arcs are drawn between the pales
of adjacent vertioes.
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Planar graph: A graph that can be drawn in the plane with Jordan arves that
are digjolnt exeept lor thelr endpolngs,

Realization space: The set of all eooedinatizations of a eombinatorial strectuee,
mgdule affine coordinate transformations. {See Sectlon 6.3.2.)

Taotopy property: A combipatosial structuee (such as & comblnatorial type of
polytope) has the lsotopy property I any two eeallzations can be deformed Into
cach othor continuowsly, while malntalning the eombinatorial type. Equivalontly,
the motopy properiy holds for a combinatorial stroeture i and only If lis moal-
lzatlon space ls connecbed.

THEOREM 16.1.3 Steinitz's Theorem [SR3
For guery J-dimensional polgltope P, e graph G P) i a planar, J-comnectal gaph.
Conversely, for cvery planer F-conneclad graph, there is o unigue comdinatomal type
af 3-pofylape P with [P} 2

Furthermare, the realizalion space WP} of a combinadoral type af I-polyfope 15
hemeomaorphie to BRAEI8 and containg rational points. Tn particulor, 3-dimension-
ol pelytopes have the iselopy property, and ey oan be realized wilh inleger verles
crrrdinuates,

A (plonar dmwing of a) 3-comnected, planar, wenamed groph. The

FIGURE 16.1.7 ﬁ/

formidable task of ony proof of Steinidz’s theorem i3 fo comsiruct a
J-priptope wmith this gramh.

There are two essentlally different ways known to prove Stelnltz"s theorem. The
firat one [SR3] provides a construction sequence for any type of 3-polytope, starting
from a tetrahedron, and using only local operations such as cutilng off vertioes and
polacity. The second type of proofl realizes any combloatosial iype by a global
minimizatlon argument, which as an Intermedlabe step provides a special planar
representation of the graph by a framework with a positive self-stress [MehI0d,
0504].

OPEN

PROBLEMS

Because of Stelpitz’s theorem and s extensions and corollaries, the theory of 3
dimensional polytopes & quite complete and satkslactory. Nevertheless, some basle
open problems remaln.

L. It can be shown that every comblnatorial tyvpe of 3-polviope with 1 ver-
thees and a trlangular facet can be realized with integer coordinates belonging
Lo {I,E,...,H-T"‘}3 (4. Richier-Gebert. and G, Steln, Improving on Onn and
Sturmfels [(0504]), but [t i not clear whether the bound of 37 can be replaced
by & polynomial bound.

2 IT P has & group G oof symmetrles, then it also has & symmetrle reallzation.
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Hgwewer, It s not clear whether the El:am of all G-symmetrle mallzationg
R%{P) 1a sulll homeomorphie to some B, (It does not contaln rational polots
ln general, e.g.. for the loosahedron!)

16.1.6 FOUR-DIMENSIONAL POLYTOPES AND SCHLEGEL DIAGRAMS

GLOSSARY

Schlegel diagram: A (d—1)-dimensional representation TP, F) of a d-dimen-
glonal polytope P, obtaloed as lollows. Take a polot of view very close to (an
Interior polnt of) the fcet F, and let (P, F) be the decomposition of F given
by all the other facets of 7, as sepn from this polnt of view.

[d—1)-diagram: A polyiopal decomposition T of a (d—1}-polytope F such that
(1} T 1s & polytopal complex (Le., a fnlte collection of polytopes closed under
taking [aces, such that any Intersection of two polytopes In the complex I8 & face
of each], and
(2} the Intersection of any polytope In T with the boundaey of F s & lace of F
[which may be empiy].

Basic primary acmialgebmie sel defined oper Z: The solution set 5 C R
of a Anlte set of equations and stelet Inequalities of the form filz) = 0 resp.
gilz) = 0, where the f; and g; are polynomials in & varlables with Integer
copdflelents.

Stable eguivalence: Eguivalence relatlon between semialgebrale sets generated
by rational changes of coordinates and certaln types of “stable” projections with
contractible fbers. (See Richter-Gebert [Ric96, Section 2.5).)

In paribeular, I two sets ave stably equlvalent, then they have the sarme homotopy
type, and they have the same arlthmetle propertles with respect to sublelds of B
cug., elther hoth or neither of them contain & ratbonal polng.

The situation lor 4-polytopes 18 lundamentally difforent from that for 3-dimen-
slonal polytopes. One resson s that there I8 no similar reduction of 4-polyiope
theoey 1o a comblnatorial (graph) problem.

The maln results about graphs of d-polytopes ave that they ave d-connected
(Balinski [Ba6il]), and that each contalng a subdivision of the complete graph on
d+1 vertloes, Ky, = @(T,) (Grilnbawm, [Geild, pp. 200]). In particular, all
graphs of 4-polytopes are d-connected, and none of them 8 planar. [Ses also Chap-
ter M)

Schlegel diagrams provide a reasonably efficlent ool for visuallzation of 4-
polytopes: we have a fightlng chanee (o understand some of thelr thoeory In terms
of the F-dimensional (1) geometry of Schlegel diagrams.

A (d—1)-diagram Iz & polytopal complex that “looks lke™ a Schlogel diageam,
although theee aro dlagrans (even 2-diagrams) that are not Schlegel diagrams.
The situatlon i8 somewhat nleer for simple d-polvtopes.  These are determined
Ly thelr graphs (Blind and Mani-Levitska [BM37), and for a wonderful proof see
Kalal [Kal88]), and they can be understood In terms of 3-diagrams: all simplo
Jdiagrams are projectbons of genuine d-dimensional polytepes [Whiteley, see Rykb-
nlkaowv [H_fhg’g]:l.
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FIGURE 16.1.E

Two Schisgel diagroms of cur unnamed J-polpiope, the first
based om o friangle focst, the ssmnd on the “botfom square”

FIGURE 16.1.%
A Schdegel diagrem of the product of twoe friangles. [This @1 a d-dimensional i
pelytope with § trionguler prisma s facets, ony fwo of them adjonenid)

The lundamental difference between the theorles for polytopes In dimenslons 3
amd 4 ls most apparent n the conteast betwesn Stelnite’'s theorem and the followlng
result, which states simply that all the “nilee”™ properties of 3-polytopes establizhed
in Stelnltz’s theorem [all dramatically for 4-dimensional polytopes.

THEOREM 16.1.4 Richter-Febert's Universality Theorem for 4-Polytopes
The realization space of a d-dimensdonal polybope o be “arbitrardy wild”: for eoery
busie primary semdalgebraic sel 5 defined over & there ds a d-dimensional polyplope
P[5] whose realization space R P[5]) is stably equivalent to 5.

T particular, eie dmaglice Lhe folloimneg.

o The isology property foils for d-dimensional polipopes,
o There are nonralional 4-polglopes: ombmadorial (ypes thatl cannel be realized
il ralisnal verler owrdinales,

o The mordinates nesded o represend all combinatordal dipes of rational 4-
folytopes uith inleger derlioss grow doully erponendiolly with f,(P).

The complete prool of this universality theorem = glven in [RicBG]. One key
component of the proof corresponds to another fallure of a8 3-dimensional phe-
nomenon o dimension 4: for any facet (2-face] F ol a 3-dimensbonal polytope P,
the shape of F can be arbicearlly preseribed; In other words, the canonical map of
reallzation spaces WIF) — RIF) Is always surjective. Richier-Crebert shows that
a slllar statement fails In dimenslon 4, even If F s 8 2-Qimensional pentagonal
face: see Flgure LGL 10 Ior the case of a hexagon,

A problem that I8 lelt open & the structure of the realkzation spaces of slmpli-
clal d-polytopes. All that s avallable now 18 & unlversality theorem for slmplicial
polytopes without a dimension bound (see Sectbon G.3.4). and a single example of &
slmplicial 4-polywope that vielates the Isotopy propecty, by Bokowskl, Ewald, and
Kleinschmidt [BEKS4).
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FIGURE 16.1.10

Schlege! dingram of a d-dimensional polylope with B focets and
12 werbices, for which the shope of dhe b heragen cannot e
preseribed arbitrarily.

16.1.7T POLYTOPES WITH FEW VERTICES—GALE DIAGRAMS

GLOSSARY

Polytope with few vertices: A polytope that has only a lew more vertices than
is dimension; usually & d-polybope with at most d+4 vertiees.

{Affine) Gale d@mm' A ponfiguration of n (positive and negative) points in
afflne space B that encodes a d-polyiope with s vertiees unlguely up to
projective transformatlons.

The computathon of a Galbe diagram Involves only simple loear algebra. Foe
this, let ¥ £ B e a matrix whose columns eonsist of coordinates for the vertices
of a d-polytope. For simplicity, we assume that P ks nol a pyramid, and that the
vertiees {u', ..., 0*'} affinely span BY. Let V e B be gbtained from ¥
by adding an extea (terminal) row of ones. The vector conflgueation glven by the
columns of V¥ represents the oriented malraid of P see Chapter G

MNow perform eow operations on the matrix V to get It Into the form Vo~
(Tas1]|A), where Ty denctes & unit matrbe, and 4 € BP0 42 8 real
matrix, |(The row operatbons do ot change the orbented matrold.) The columng
of the matrix V" = {— AT |Ty_a_ |:I £ R hen represent the dual orlented
matrold. We find a veclor a € 4! that has nonzero sealar product with all the
columns of I'" divide each column w® of * by the valwe (o, w), and delete fom
the resulting matrh any mow that affinely depends on the others, thus obtaining
a matrix W € R *7*"" The columns of W give a colored point configuration
in R"%* where Back points are used for the columns where {m,w) = 00, and
wliite polnts for the others, This colored polot configuration represents an afflne
Crale diageam of P.

=
FIGURE 16.1.11 S N
Twa affine Gole diograms af d-dimensional polptopes: for a __.--"':- \
nencpelic meighborly pelptope with B vertices, and for the po- Cow 1

far (with B verfices) of the polptope with & facels from Fip-
wre 16,000, for which the shope of o beragonal focs cannot be g o
preseribed arbitrarily.
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It turns out that an affine configuration of colored points (conslsting of 1o polocs
that affinely span B") represents a polytope [with n vertlces, of dimension n—e—3)
if and oaly If the following celterlon is met: For any hyperplane spanned by some
of the polnts, and lor each slde of i, the oumber of hlack peinis on this side, plus
the number of white polots on the other slde, ls &t least 2.

The fnal Informatlon one needs 18 how o read of properties of & polytope foom
is afflne Gale diagram. Here the criterlon Is that a set of polots represents a face
if and oaly If the following condition s satisfled: the colored polnis sed o the set
support an afline dependency, with pesitive coefllcienis on the black polnis, and
with negatlve cocfliclonts on the white polnts. Eguivalently, the convex hull of all
the black polnts not In our set, and the convex holl of all the white polnts not in
the set, lnbersect In thele relative lnterbors.

Afline Crale diagrams have been sery successlully used to study and classily
polytopes with few vertices.

d+1 vertices: The only d-polytopes with d4+1 vertices are the d-slmplices.

d+2 vertices: There are exactly |d* /4] combinatorial types of d-polytopes with
d—+2 vertioes; among these, |d/2] types are simplicial. This corresponds to
the situation of (kdimensbonal affine Gale diagrams.

d+3 vertices: All dpolytopes with J43 vertlees are realleable with (small) in-
tegral coordinates and satlsly the Botopy property: all this can he easily
analyeed In terms of L-dimensbonal affine GGale diagrams.

d—+4 vertices: Here anything can go wrong: the unbversallty theorem for orlented
matrodds of rank 3 ylelds & universality theorem bor slmpliclal d-polytopes
with d+d vertices. (See Sectlon 6.3.4.)

We refer to [Z1e85, Lecture 6] for & detalled Introduction w afflne Gale diagrams.

16.2

METRIC PROPERTIES

The combinatorial data of a polytope—yertlees, edges, . .., facets—have thelr coun-
terparts In genulne geometrie data, such as face volumes, surface areas, quermass-
integrals, and the lke. In this second half of the chapter, we glve a belef sketeh of
sone key geometric concepts related to polytopes.

Hewewer, the toples of comblnatorial and of geometsic Invariants are not disjolng
at all: much of the heauty of the theory stems Imom the subile Interplay between the
two sldes. Thiss, the computation of volumes lnevitably leads to the eonstructlon of
telangulations (explicitly or Implicitly), mixed volumes lead to mixed subdivisions
of Minkowskl sums {one “hot tople™ for current research o the area), quermassin-
tegrals melate to face enunseration, and so oo,

Furthermore, the study of polytopes ybelds & powerlul approach to the theory
of convex hodbes: somsetimes one can extend propertbes of polytopes to arbiteary
convex bodies by approximation [Sch®3]. However, there are also properties valid
for palytopes that [ail for convex bodies in general. This bug/leature s designed
to keep the game Interesting.



Chapter 16: Basic properties of convexs polybopes il

16.2.1 VOLUME AND SURFACE AREA

GLOSSARY

ot . e

Volume of a d-simplex T: V(T) = |"]"1( 1 .- Ll

];,r:n: where T =

convfe®, ... ¥} with o, ... v? € B

Subdivision of a polytope P: A collection of polytopes Py, ..., 7 B? such
that P =] F;, and for i # j we have that ;N F; 8 a proper face of F; and 7
[prsslbly empiy). In this case we write * = Wi,

Triangulation of a polytope: A subdivision Into slmplices. (See Chapter 17.)

Volume of a d-polyfopse: E':reﬁ[:-'] Vi, where A[P) Is a trlangulation of P,

k-volume VE(P) of a k-polytope P C EY: The volume of P, computed with
respect 1o the E-dimensional Evclidean messure nduced on alll F).

Surface avea of a d-polytope P ETE.:.(PI.FEFJ--_IF:-FJ_[I:T M F), whers
AP} 18 a trlangulation of P.

The volume V() (Lo, the d-dimensional Lebesgue measure) and the surface
area F{ ) of a d-polytope P C R? can be derived from any triangulation of I, slnce
vilumes of slmplices are easy to compute. The erux for this i In the (efflelent?)
generation of a trlangulation, a tople on which Chapters 17 and 25 of this Handbook
have more to say.

The followlng recursive approach only lmplleitly generates a triangulathon, bt
derives explicit volume formulas. Let P € BR? (P £ #) be a polytope. If = 0 then
wo ot V(P) = 1. Otherwise we et S, (F) = {u € 59! | dim{H{F,a) N F) =
d — 1}, and use this to define the volume of P as

r — i Cprd—l -
ViP] = dﬁEIF?h[ﬂu] V&Y H{P W) NP

Thus, for any d-polytope the volume |5 & sum of Its facet volumes, sach welghted
by L/d times lis signed distance from the origin, Geometrically, this can be in-
terpreted as follows. Assume lor slroplicity that the origin = in the Interior of P.
Then the collection {eonv(F U {0}) | F € Faa(P)} 18 a subdivision of P loto 4
dimensional pyramids, where the base of conv( FU{0}} has [d—1}-dimensional vol-
urne VI F)—to be computed recursively, the helght of the pyramid ks k{P o"),
and thus its volume s JR{P,«")- V41 (F); compare to Figure 16.2.1. The formula

remalng valld even IF the orlgin ls outalde P oor on s boundary.

FIGURE 16.2.1
This pentagon, with the origin in it interior, i3 decompoaed infe fire pyromids
{triangles), each with one of $he pentogon focefs fedpes) Fy as its bose For

each pyromid, the Geight, of length b( P w"), 15 drawn os g dotted line
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Note that V() > 0. This holds with steict Inequality i and only I the polytope
P has ull dimension d. The surface area F(P) can also be exprossed as

FiPy = Y Vv&YH(PuNP).
wEFg—i [ F]

Thus for a d-palytope the surface area 5 the sum of the (d—1)-volumes of [is facets.
Il dim(P) = — 1, then F{P) I8 twiee the (d—1)-vwolume of P. One has F{P) =10
if and only if dim|P) < d — 1.

Boih the wolume and the sueface area are contlowees, meonobone, and Invarlant
with respect to rvigld motions.  Vi-} I8 homegeneous of degree d, Le, VipP) =
WP for p > 0, and Fi-) Is homogeneosus of degees o — 1. For further properties
of the functionals V(-) and F[-) see [Had57] and [Schod].

Table 146.2.1 gives the numbers of E-faces, the volume, and the surface area of
the d-gube Oy (with edge length 2), of the crogs-polytope C'F with edge length V2,
and of the regular simplex Ty with edge length 3.

TABLE 16.21
POLYTOPE fil) | VOLUME | SURFACE AREA
(e -k (%) e . pd=t
¢ |#d)| 5| o
T gt SEE | ) gy

16.2.2 MIXED VOLUMES

GLOSSARY

Volume polgmomial:  The volume of the Minkowsklsum A PB4 da Pt AT
which = a homogeneous polynemial in Ay ... A, (Here the 7 may be convex

polytopes of any dimenglon, or more general (closed. hounded) eonves sets. )
Mized volumes: The cocfliclents of the volume polynomial of P, ..., P..

Neormal cone:  The normal cone N[ F, P) of & feee 18 the set of all vectors « € i
such that the supporting hyperplane 5P o) contalng F. Le,

N{F,P| = {ﬂel-* | FCH{PyNP}.

THEOREM 16.2.1 Mized Volumes [cf. [Sch8d, pp. 270])

Let By, ..., P C RY be polytopes, v > 1, and Ay,.... A > 0. The volume af
AP 4+ AP s o homogeneous pelynemical i AL, A of degree d. TTeus o
o be wrillen in the form
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VIMP ..+ AP = > Aitry === ity - VB - Py -
i1}, . ad} {12, w}d

The eosfficients in this empansion are symmelre in Yer mdices. Furthermaore, the
I'.ﬂl!ﬂlﬁ-ﬁﬂ: "r[.F.iU].. i sy -il:d:-:' dE]‘.lFﬂd.i EI'H;H ] .F;“J iaay 'F:[r.l'_l- It i mulled e rrazed
volume af the polylopes Fyyp. ..o Fyay.

With the abbreviation

F['F;Hk!i - iFr:‘rrr] = .F[Fl'l'--:Pl'l'--:Pr'l'--:Pr]:
S

"l_l...,_l.l"
&, tlmes k. tlmes
the polymomlal becones
i)
ViuPi+. . +AF) = 3 (k L)AT' o XEVIPL R P k).
B1e=-

By e 20
[ I e
In particular, the volume of the polyiope P s glven by the mized solume
ViR 0o B L P ). The theoroem Is also valld for arbiteary convex bodles:
a good example where the general case can be declved feom the polytope case by ap-
proximation. For more about the propertles of mixed solumes from different polots
of view see Schnelder [Schd], Sangwine Yager [San83), and McMullen [McMS3).
The definktion of the mized volumes as coefflclents of & polywomial §8 somewhat
unsatisfactory. Schoelder gave the following explicit rule, which generalizes an
earlier result of Betke [Bet92) for the case r = 2. It uses Information about the
mormal cones at certaln faces. For this, note that N(F, P) 18 & Onitely generated
cone, which can be weltten explicitly as the sum of the orthogonal complenent of
affi P] and the positive hull of those unlt vectors o that are hoth parallel {o afl{ F)
amd Induwee supporting hyperplanes H {2 w) that contaln a facet of P Including F.
Thus, for I*C E? the dimension of N(F, P} ls d — dim| F}.

THEOREM 16.2.2 Schneider's Summation Formula [Schod]
Lot Py ..., P.C R be polytopes, r > 2, Let 2, 2" c R withe' .. 42" =10,
(£t xt) # (0, D), and

() (celint N E, B} — ') = @

i=l

whenever ;45 a foce of % oand dim(F ) + ...+ dim{ FL) = . Then

i i ) . ~
(j::h----.kr)" [Py k... (P k] = [I;I;F-;'Vl:fﬂ +...+ F.),

where the summoalion extends oner the r-tuples (Fy, .. L FL) of By -faces F;, of P, with
dim(Fy +...+ F.)=d and _, [N(F;,, F;) —J‘.'i:l # i

The cholee of the vectors &', .., 2" Implies that the selected k;-faces F; © F
of a summand Fy +. ..+ F. are contalned I complementary subspaces. Henee one
may also welle

V(ALk:...; Pk = Y[R B VR R VR,
(kl,._.:k.] e ) L= |- VE(F) (F)
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where [Fi, ..., F.] denotes the volume of the parallelepiped that i the sum of unit
cubes In the affine hulls of Fy. ..., F-.
Finally, we remark that the selected sums of faces In the formula of the theorem
form a subdivision of the polytope Py + ...+ Py, Le,
Fi+...+F = | (R+...+F).
| Fu .- Fe }
Spe Flgure 16.2.2 for an example.
‘H‘-""'-n.._
FIGURE 16.2.2
Here the Minkowaki sum of @ sguore P and o frigngle P i decomposzed indo
trunszlates of P and of Py (this corresponds to teo semmonds with Py, = P, resp.
'y = P:gjl, together with Hree "ﬂuﬁ:ad“fan:! that mrise as sums P + Fh, whers !
By and Fy are foees of P oond B (cerrespending fo sermmonds with dim (F;) = / __,r‘);
dim{ Fy) = 11 s

VOLUMES OF ZONOTOPES

IT all surnmands in & Minkowskl sum £ = P 4+ ... + F arve line segmeonts, gay
B o= g 40,18 = conv{p',p' + 2} with pf ¢ € R for 1 < < r, then the
resulting polytope £ 18 & zonotope. In this case the summation eule nmediatoly
glves Vi koL s B B ) = 00U the vectoes

- i PE-r i zr: - |'t
e ge— T et
&y tlmes k. tlmes

are linearly dependent. (This can also be seen directly vom dimenslon consldera-
1.|.1:I|:'I.E..:| ﬂthl':rwi.'m, for j:|:||_| = j:ﬂ:“ =...= ‘E-il:dl = J.. GHY,

1 ) ) .
ViPL k... P k) = ] |d|!1 (I:[IIIE:[EJI___11,LI-|J:]|_

Therelfore, one obtains MeMullen's formula for the volume of the sopotops &
[ef. Shephard [Shid]) :

ViZ) = 5 |dn1[z"':']:-.-,z"["'-']|.
L] i) el ) S

16.2.3 QUERMASSINTEGRALS AND INTRINSIC VOLUMES

GLOSSARY

ith quermassintegral Wi(P): The mixed volume V[P, d—i; Bs, i) of a polytope
P and the d-dimenslonal unit ball B,
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kg The volume [Lebesgue measure) of By, (Henoe kg = 1, &) = 2, ko = x, el

ith intrinsic volume Vi(P): The (d—i)th quermassintegral, sealed by the con-
gLant {:r} FRa_;.

Outer porallel body of P atb distonee A: The coovex body 7+ A8y for some
A=k

External angle 4(F, P): The volume of {lin{F — e N{F.P)) nBg divided
by kg, Tor 2 € relint(F). Thus ~(F,P) s the “fractlon of B¥ taken up by
linfF — zF) 4+ N(F,P)." Equivalently, the external angle at a k-face F is the
fraction of the aphorleal volume of 5 covered by N{F, P05, where 5 denotes
the [d—&—1)-dimenslonal unit sphere In o N F, P]].

Internal angle 3(F, ) for faces F C G: The “lraction” of In{7 -« } taken
up by the cone pes{r — =" | z € @}, for 25 € redint(F). (A detalled discussion
of relations betweon external and Ingernal angles can be found In Moebullen
'McM7T5].)

The gquermassintegrals are generalizations of hoth the volume and the surface
arca of P. In fact, they can also be seen a8 the contlnuous convex geometry analogs
of [ace numhbers.

For a polytope P C R and the d-dimensional unit ball Ha. the mixed volume
formula, applied to the outer parallel body P+ AR, gives

d
ViP+AB) =Y (‘f'] NWi(P),

=
with the conventlon Wi(P) = Vi(Pd — 1: B, i). This formula 8 known as the
Steiner polynomial. The mixed volume B F), the ith quermassintegral of P,
Is an Important quantity and of significant geometrle Interest [HadBT, Schod). As
apeclal cases, (P} = VIP) 8 the volume, dW5(F] = FP} Is the surface avea,
amd Wyl ) = k4.

Far the geometrie interpretation of Wil P) for polytopes, we use a normealizatlon

of the guermassintegrals due to MeMullen [MeMTE): For 0 < < d, the ith intrinsie
volume of P 2 deflned by

d
Vi[P) := l:—":l_H-’i_,-[P:l.

With this notatlon the Stelner polynomlal can be wrltten as

d
VIP+ABy) =3 XM ikg iWilP).
=0

[See Flgure 16.2.3 lor an example.) Vel s the volume of P, Va_a( P} §8 hall
the surface area, and Vo) = 1. Oone advantage of this normalization is that
the lnirinsle wolumes are unchanged i P s embedded in some Euclldean space of
different dimenslon. Thus, for dimi P) = & < d, Ve P)] & the ordinary &-voelume of
P with respect to the Euclldean structure Induced o aff] P).

For a (dim(P) — 2)-lace F, the concept of external angle [see the glossary) pe-
duces 1o the “usual” coneept: then the external angle Iz ghven by iJ,';.H.L'CtMEI:uI'.' ,w""*:l
for unit normal vectors w®, w™ € 54-1 o the facets Fy, Fy with By N Fy = F. One
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FIGURE 16.2.3

The Minkouwski sumn of a square P with a ball AB? yields the ouber parollel body. This outer poroliel
body con e decornpossd indo pieces, whoss wolumes, VIP), AWV Ph, and X ks, correspond fo the
three terms in the Sieiner polgnormial

|_‘+.= _ ‘ ‘ .

V(P 4 AB)

BP) 4+ AW(Plrr + A

has 5P, F) = 1 for the polytope ltsell and s F, P] = 12 [or each facet F. Using
this comcept, we get

VilP)= 3. 4lF.F)-VEF).
FeFulP)

Internal and external angles are also useful tools In order to express comblina-
torial properties of polytopes (see the application below ). (ne classical example =
Gram’s eguation [Gra?d]

d—1
>-nt 3 AER = (-0t
k=0 FEFuF)

This formula s quite slmilar to the Euler relation for the Gaee numbers of a polytope

[gee Chapter 18). For a short and elegant probabilistle proof of GGram's equation,
reducing it to Euler’s rolation, see [Wel0d].

SOME COMPUTATIONS

In principle, one can use the external angle formuola w determine the Inirinsic
vilumes of & glven polyiope, but In general it is haed w0 caleulate external angles.
Indeed, for the computation of spherical volumes there are expliclt formulas only
in grall dimensions.

In what folloss, we give lormulas for the Intrinsle volumes of the polytopes Ca,
Ef, and Ty, For this, we ldentily the k-faces of Oy with the kE-cube O and the
E-faces of OF and of Ty with Tk, for 0 < & < d.

The case of the cube & & rather trivial. Sinee 4(Cy, Ca) = 2795 ppe gets

[see Table 16.2.1)
d
. _ak
Vi) =2 (&)

For the regular simplex Ty we have

VilT) = (‘” ‘) YR+l

E+1 !

An expliclt formula for the external angles of a pegular slmplex by Ruben (see
Rubidl] or [Had79]) is:

= Tg, Tg).
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For the regular cross-polyiope we find lor & < d — 1 that

d ) VEFL i, 02,

Y

VC2) = 244 (1'+1

For this, the external angles of ¢ were determined by Betke and Henk [BHO3):

a0 d—k—1

E41 T _a A
T 0% = g —lk+l}= —f L] dir.
W CF) =2 [ [ erw)

AN APPLICATION

External angles and Internal angles play a cruclal vole In work by Aflentranger
and Schnelder [AS92] (see also [BVM]), who computed the expected number of
E-Taces of the orthogonal projection of a polytope P C BY onio a randomly chosen
Isotropic subspace of dimension n. Lot E[fe(P;n]] be that number. Then for
(< k< m<d—110t wasshown that

Efe(Pin)] = 2% % M AF, GG, P,

M2 FEFULF) TEFu1—am Pl

where 3 F, (7] I8 the Internal angle of the faee F with pespect o a face 7 2 F.

In the sequel we apply the above formula to the pelytopes Oy, OF, and T,
For the cubes one has @(C,. ) = (172)-%, while the number of -laces of O,
contalning any given k-face is equal to (3-F). Hence

) d ad—Ek
E_Itliﬂ'u;rl]]=2(,rr) Z (n— l—.r:—ﬂrrt)'

ml

In particular, E|fp{Cyd — }ﬂ‘: [2d-k 30y,
For the cross-polytope OF the number of I-faces that contaln a E-lace ks equal
to PR Thus

E[fe(Cyin)] =
d o d—EkE—1
2(&+ 1) Tgf m(n —1—k -ﬂ:.a)ﬁ[T*‘T“"-*"':"T':T —1-2m, O ).

In the same way one obitalng for T,
E[fi{Tyin])] =

d+1 o — k&
2 FTe. T : T a2 gl
(k+l)§_ﬂ(ﬂ— l—&—!m)' (T Tt — e M D1 — 9 - T

For the last two formulas one needs the lnternal angles 3(T5. T3 of the mogalar
slmplex T, for 0 < & < [ < o, For this, one has the following complex Integral
BH):

k1A H (-t e = . ‘
aire, ) = - Lr_[,m] f e (J£ r:"*-“"’“'"%) duw.

Using this formula one can determine the asymptothe behavbor of E|j4=¢f:'j‘; )]
and E|[f(Ty;n]]| a8 n tends to Infinity [BHSS).
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16.3 SOURCES AND RELATED MATERIAL

FURTHER READING

The classic account of the comblnatosial theoey of convex polytopes was glven Ty
Grilnbaum In 1967 [Grd03]. It nsplred and gulded a geeat part of the subseguent
research In the feld. Besides the related chapters of this Handbook, we eeler to
(Fiedl] and the handbook surveys by Klee and Klelnschmidt [KK95] and by Bayer
and Lec [BLOA) for further reading.

For the geometrie theoey of convex bodies we refer 0o the Handbook of Con-
vex Geometry [GWS3), to Schoeider [Schod] for an excellent monograph, and as
an Introduction to modern convex geometry we recommend [Bal07). As for the
algorithmic aspects of computlng volumes, ete, we mefer o Chapter 31 of this
Handbook, on Computatbonal Convexlty, and o the additional eelerences glven
there.

RELATED CHAPTERS

Chapter 3: Tillngs

Chapter G: Oelented matrolds

Chapter 7T: Lattleo polnts and lattlee polytopes
Chapter 12: Disceete aspects of stochastie geometey
Chapter 17: Subdivisions and telangulations of polytopes
Chapter 18: Face numbers of polytopes and compleces
Chapter 19: Symmetry of polytopes and polyhedra
Chapter 20: Polytope skelotons and paths

Chapter 22: Comwesx hull eomputations

Chapter 25: Triangulations and mesh generation
Chapter 31: Computational convexity

Chapter 62: Crystals and quasicryscals

Chapter Gd: Soltware
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