16 BASIC PROPERTIES OF CONVEX POLYTOPES
Martin Henk, Jurgen Richter-Gebert, and Gunter M. Ziegler

INTRODUCTION

Convex polytopes are lundamental geometels objects that have been Investigated
since antlguity. The beauty of thelr theory s nowadays complemented by thelr Im-
poetance for many other matlematical subjects, ranging om lnbegratbon theory,
algebrale topology, and algebraic geometry (torle varletles) to lnear and combina-
torial optimization.

In this chapter we try to glve a short Introeduction, provide a sketch of “what
polytopes look lke™ and “how they bebhave,” with many cxplicit examples, and
helefly state some main results {where further detalls are ln the subsequent chapters
of this Handbook]. We concenteate on two main toplos:

« Comblnatoelal propecties: faces (vertloes, edges, ..., lacets) of polytopes and
thelr relations, with speclal treatments of the classes of low-dimensbonal poly-
topes and polytopes with few vertbees;

o Geometrle propertles: volume and surface area, mixed volumes, and quer-
massintegrals, Including explicit formulas for the cases of the regular simplices,
cukses, and cross- polytopes.

We refer to Grinbaum [Gel03] for & comprebensive view of polytope theory, and to
Zloglor [Zle05] and Schoeider (Sch93) for thorough treatments of the combinatorial
[pesp. oomvex geometrle] aspects of polytope theoey.

16.1 COMBINATORIAL 5STRUCTURE

GLOSSARY
V-polytope: The convex hull of a finlte set X = {z',.... 2"} of polnis In B

P = eonv( X} := {il;t‘ | A =0, En:.b.,- - 1}.
o =1

H-polytope: A hounded solution sed of a fnite system of lnear Ineguallties:
P=pPAb) = {zc® oz <forl <i<m},

where 4 € B™ s a real matrix with rows o7, and b € B™ Is a real vector
with entrles §;. Here boundedness means that there s a constant & such that
[l]] < N holds for all & € P,
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Polytope: A sulser P C RY that can be presented as a V-polytope or (equlva-
lemily, by the maln thegrem below!) as an H-polytope.

Dimension:  The dimension of an arbitrary subset § © B? 18 defined as the
dimension of its affine hull: dim{5) := dim{a]5)).

[Recall that afl{5). the afflne hull of a set 5, s [E}’_, At | 2t 2P e 8
E_‘i’_l A = 1}. the smallest affine sulspace of EY containing 8.

d-polytope: A d-dimensional polytope. In what follows, a subsereipt In the name
of a polytope uspally denotes lis dimension.

Interior and relative inferdior:  The lnterlor Int(f?) s the set ol all polots
x £ P auwch that for some & 2 {1, the eball B (x) around  Is contalned n 2.

Slmilarly, the relative Interior rellot[ ) ls the set of all polots = € P such that
for some e 2= (), the Intersectlon I, () M afl[P) & contained In P

Affine equivalence: For polytopes P € BY and @ € RB®, an affine map o
EY — B®, r —3 Ar + b mapping P bijectively to €. 7 need not be injective
of gurjective. However, It has to restelet 1o a bljective map afli P — affic}). In
particular, if P and € are aflinely equivalent, then they bave the same dimension.

THEOREM 16.1.1 Main Theorem of Polytope Theory (cf. [Zie94, pp. 27])
The definitione of V-politopes and of W-polytopes are equinalenl. Thal da, euery V-
podgtope has o deseription by a findle syatem of inegualities, and every W -palplope
et be obladned as the conver hull of a finile gel of prinls fils verthoes ).

Creomedirieally, a V-polytope 8 the projectlon of an (n—1-dimensional sloplex,
while an #H-polytope is the bounded intersection of m cosed halfspaces [Zledd,
Lecture 1]. To see the maln theorem at work, consider the following two statements:
the frst one & easy to see Dor Vepolytopes, but not for H-polytopes, and foe the
second statement we have the opposite effect.

1. Projections: Every Image of a polytope P under an affine map x:x — Az + 5
5 a polytope

2. Itersections: Any Intersecilon of a polytope with an afline subspace 1s a
pralytope.

Howewer, the computatkonal step [bom one of the maln theoren’s descriptions
of polytopes to the other—a “convex hull computatbon™—Is far [om trivial. Essen-
ilally, there are three types of algorithms avallable: Inductlve algorithms (lnserting
viertices, using a so-called beneath-heyond technlgue), projection resp. Intersection
algorithms (known a8 Fourler-Motzkin ellmination resp. double description algo-
rithms), amd reverse scarch methods (a8 Introdweed by Avis and Fukuda). For
cxpliclt computations one can wse publle domaln oedes as Integeated In the soft-
ware package polymake [GJO0] that we use here; see also Chapters 22 and G4

In the following definitbons of d-slmplices, d-cubes, and d-cross-polyiopes we
give both a V- and an ‘H-presentation in each case. From this one can see that the
H-presentation can have ex ponential “size” In terms of the slze of the V-presentatlon
[, for the d-cross-polytopes), amd vice versa [for the d-cubes).

Definition: A (pegular) d-dimensional simples n B is glven by

o LW

Ty = - I - L et
¥ :x:um-{P et T &'+ ... +e%)}
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d d
= {.-r-E B | Z:igll —(1+,,.fd+1+.-i]x,=+z:,- <1 furlg.i:f_:d},

i=l i=1
where ¢',. .., e¥ denoies the eoordinate unli vectors In B

The simplices Ty are reguloar polyiopes (with a symmetry group that s flag-
transitive—see Chapter 19): the parameters have beon chosen so that all edges of
T have lengih V3. Furthermore, the orlgin (b € R? 1 in the Interior of Ty this is
clear from the H-presentatbon.

Howewer, for the eombinatorial theory one econsiders polytopes that differ only
by a change of coordinates (an afflne translormation) 1o be eguivalent. Thus, we
would refer to any d-polyiope that can be presented a8 the convex holl of d41
polots as a d-smgler, sinee any two such polytopes are equivalent with respect. wo
an affine map. Other standard cholees Inelude

Ay = E:II:II.'I'I.'{“.IIF.‘I ; F.‘-'t., cee 1Ed}

d
= {1—1‘.—: ol E:.-E 1. gnfurlﬂkf_:d}
i=1
and the (d—1)-dimensional slmples o B glwen by

Al = conve' e L eT)

d
- {zen"-zn=1, r;::_:nl.'m'lgkf_:d}.
=1

FIGURE 16.1.1
A J-simgpder, a Jecube, and a J-dirmen- ..:

sional cross-polytope (ordehadron).

Definition: A d-cube [a.k.a the d-dimensional hyppereube) |5
Ca = conv{me' + e’ +. 4o’ oo € {41, -1}
_ {1—51"|—15n£11’m15&5d}

and a d-dimensional cross-polytope In B? (known as the octahedron for d = 3)
I8 given by

d
Cf = convize 2t e} = [re® | Y a2 1}_
i=1

Again, there ate other natural cholees, among hem
0.7 = conv{d e |SC{L2....d}}
icd
- {:Enﬂng:*gmmg:@d}:
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the d-dimensional wmit cube
As another example to llustrate conecepts and resulis we will occasionally use
the wnnamed polyiope with slx vertbees shown bn Flgure 16.1.2,

FIGURE 16.1.2
Our uvnnemed “typioel® 3-polytope. It has 8 vertices, 11 edges ond T foosts.

This polytope without a name can be presented a2 a Vepolylope by lsting s
alx vertices. The lollowlng coordinates make It Into a subpolytops of the 3-cube O
the vertex set conalsts of all buat two vertioes of Cs. Cur list below (oo the left) shows
the vertlees of our unnamed polytope In a format used as Input for the pelymake
progranm, Le., the vertioes are glven in homogeneous coprdinates with an additional 1
as fiest entry. From these data the polymake program producs a description (on the
right ) of the palytope &8 an H-polytope, Le., It computes facets delining hy perplanes
with pespect to the homogeneous coordinates. For Instance, the entrles in the lasg
rovw of the section FACETS describe the ballspace Lxo— lxy +1xa— 13 = 0 which
corpeaponds to the lacet-defining Inequality ®1 — &2 + £3 < | of ouwr 3-dimensbonal
unmamed polyiope

FOIKTS FACETS
i1 1 1 1 @=1 O
1=1=1 1 1 =1 & O
11 1-=-1 11 ¢ @
1 1-=1-=1 1@ 1 @
1-=1 1-=1 1@ ¢ 1
1=1=1-=1 1 1-=1-=1
1 =1 1-=1

Unbounded polyhedes can, via peojective transformations, be treated as poly-
topes with a distingulshed facet (see [ZiedS, p. 75]). In this respoct, we do not lose
anything on the combinatorial level I we restrict the lollowing discussion to the
setiing of full-dimensional convex polytopes: d-pelytopes pmbedded o B

16.1.1 FACES

GLOSSARY
Support function: Glven a polytope P C B, the functlon
RiP,-:REY S R, h{P.x) :=sup|{z,u) | v € P},

where {#,y} denotes the Inner product on B, (Since P s compact one may
replace qup by mas)
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For v BY Y {0} the hyperplane
H{P,v) == {z € R* | {x,v} = h{P,v)}

s the supporting hyperplone of P with outer normal vector v, Nobe that
H{F yv) = HiF,v) for p € B, p>= 0. For a vecoor w of the {d—1)-dimenslonal
unif sphere 57, k(P u) I8 the slgned distance of the supporting plane H{P. u)
from the orlgln. (For o = 0 we set H({F 0] := Ii'{, which s not a hyperplane. |

The Intersection of P with & supporting hyperplane H{F, o) 18 called & (nootrivial)
Jaee, oF more procisely a k-face I the dimension of afli P 0 (P, ) s & Each
face 18 isell a polytope.

The et of all k-laces is denoted by F (P and s cardinalivy by £ ).

F-vector: The vector of face numbees F{P) = (LIPSl P fao (P ) ass0-
clated with a d-polytope.

The empty set § and the polytope P isell are considered frivial faces of P, of
dimensions —1 and dim(P), respectively. All faces other than P oare proper
Fcea,

The faces of dimenslon 0 and 1 are called verficea and edges, sespectively. The
[dim{P)—1)-Taces of P are called foceta.

Facet-vertex incidence matriz: The matrix M € {0, 1} 10F1= 0l that has
an entry Mi{F o] = 1 I the facet F eontalng the vertex o, and M{F,¢) =101
ot e s

Graded poset: A partlally ordered set (P, <) with a unlque minimal element o,
a unigque maximal element I, and & rank function r:P — Wy that satisfles
(1} #{) = 0, and p < p' Implies +{p) < r{g'). and
(2} p = p' and Fip') — F(p) = 1 lmplies that there I8 a " € P with p < p" < p'.

Latbice L: A partially ordered set (P, <) In which every palr of elements p,p’ € P
has a unbgue mavimal lower bound, ealled the meet pap’. and & unlgue minbmal
upper bownd, called the jodn g g

Atom, coatom: I L s a graded laitice, the minimal elements of LY {0} (Le.,
the elements of Fank 1) are the atoms of L. Similarly, the maximal dements of
L {1} (Le., ihe elements of rank +{1)—1) are the coatoms of L. A graded latiice
s alomic Il every clement 18 a joln of & set of atoms, and It 18 eoafomde IF evory
clement. ks a meet of & set of coatoms.

Face lattice L{P): The set of all faces of P, partially ordered by lneluslon.

Combringtoriclly isomorphisc:  Polytopes whose [ace lattices are lsomorphlc as
abstract {unlabeled) partially ordered sets/lattices.
Equivalently, P and P are comblnatorlally equlvalent if thele faget-vertex Inel-
denge matelecs differ only by eolumn and row porrotatbong.

Combringtoricl type: An equivalence class of polytopes under comblnatorial
eguivalence.

THEOREM 16.1.2 Face Lattices of Polyfopes (cf. [Zie95, pp. 51])

The faee lattices of conuer polyglopes are findle, graded, alomie, and coolemie laltices.
The meal operafion O A H ds puen by dnlersection, while he join OOV H ie the
erfergection of all focets that contain both &7 and H. The rank fenction on LiP) is
given by #0G) = dim( &) + 1.
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The minkmal nopempty faces of & polytope are s vertbees: they correspond
to atoms of the lattiee L{F). Every [ace 5 the join of s wertlees, henee L{FP)
s avpmle. Sbmilarly, the maximal proper [aces of a polviope are lts [acets: they
correapond Lo the coatoms of LIP). Every face ls the Intersection of the faceis I s
contalned In, henee face lattlees of polytopes are coatomlie,

FIGURE 16.1.3

The face lotice of our unnomed S-polylope. The T coatoms
(facets) and the 6 atoms (verfices) hove been lobeled in the
orier of their oppecrance in the lists on page 4. Thus, the
downwards-padh from the coadom “47 do the afom “27 repre
senis the fuct that the fourth fonst contoina the semnd verter,

The face lattice I8 & complete encoeding of the comblnatorial steuctuee of a
polytope. However, in general the enooding by a [acet-vertex Incldence matrix s
more efficient. The following matrix—also provided by polymake —represents our
unnamed Fpolytope:

=
]
G oo ok B B
-
—_—— e o W
Do DD e =
=R =T = R
= e~ R =R
== ==

1 1}

How do we decide whether & set of vertices {v*. ..., v*} I8 (the vertex set of) &
face of P? This s the case if and only if no other vertex o s contained in all the
facets that contaln {1:L,..- . 1:*}. This criterion makes [t possible, for example, to
derive the edges of a polytope P rom a lacet-vertex matrix,

For low-dimensional polyiopes, the eriterion can be glmplifed: i d < 4, then
two vertlees are connected by an edge I and only i there are at least d — 1 different
facets that contaln them both. Howewer, the same 8 oot troe any longer lor 5=
dimensional polytopes, where vertices may be ponadjacent despite belng contalped
in many common facets, (The beat way to see this 8 by uslog polacity; see below.)

16.1.2 POLARITY

GLOSSARY

Polorify: ITPC B s a d-polytope with the orlgin o lis Interlor, then the polar
of P ls the d-polytope

P = [y eRY | {p,2) < 1 for all £ € P},
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Stellar subdivigion: The stellar subdivision of & polyiope P in a [ace F ls the
polytope eonv(PuUe™), where ¥ 18 a polnt of the form p* — e(y™ — ™), where
y" I5 In the Interlor of P, ¥ 15 In the relative Interior of F, and ¢ 1s small enough.

Verler figure Plo: v ls a vertex of P, then Ffe := PN H s the polylope
obtaimed by intersecting P with a hyperplane H that has @ on one glde and all
the other vortiees of P on the other slde.

Cutling off o verter: The polytope P H™ obtalned by Intersecting P with a
closed halfapace H~ that does oot contaln the vertex o, but contalng all other
vertloes of P lo lts Interbor. (In dhis situation, P 7 I8 a pyramid over the
vertex figure Plv.)

Quotient of P A polytope obtaloed om P by taking vertex figures (possibily)
several Llmes.

Simplicial polytope: A polytope all of whose facets [equivalently, proper faoes)
are almplices.

Simple polytope: A polytope all of whose vertex figures (equivalently, proper
quotlents) are simplices.

Polarity s a lundamental construction o the theery of polytopes. (ne always
has P44 = P, under the assumption that P has the origin in its interlor. This con-
dition can always be obtalned after a change of coprdinates. In particulae, we speak
of [eombinatorial) polacity between d-polytopes € and K that are comblnatorially
isomorphic to P and P2, respectively.

Any V-presentation of P yields an ‘H-presentation of P2, and conversely, via

P=conv{e',... "} = P =|(zr¢ R | foh. ) < Lfor 1 <i < n}.

There are basle relations boetwesn polytopes and polytopal consteuctbons under
polarity. For example, the fact that the d-cross-polytopes ©F are the polaes of the
d-cubes Oy ls bullt Into eur notation. More generally, the polacs of gimple polybopes
are simplielal, and conversely. This can be dedused vom the fact that the faoets
F of a polytope P correspond to the vertex fgures P2 o of its polar P2, In fact,
F and P4 v are combinatorially polar In this situation. More generally, one has a
corpespondence between faces and quotients under polarliy.

At a combloatorlal lewel, all this can be deelved from the fact that the face
lattices LiP) and LiP3) are anti-lsomorphic: L{P2) may be obtained from L{P)
by reversing the order pelatbons. Thus, lower intervals n L{P), correspondlng to
faces of P, translate under polarity oo upper lntervals of LiP2), corresponding
to quotbents of P2,

16.1.3 BASIC CONSTRUCTIONS

GLOSSARY

For the following consteuctions, bet
P E? be a d-dimensional polytope with 1 vertioes and me facets, and
P R g ff -dimensional polytope with n' vertices and m' [acots.
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Scalar multiple:  For A € R, the scalar multiple AP s defined by AP = {Ax |
r € P}. P and AP are combinatorially (in fact, affinely) lsomorphic for all A # 0.
In particular, (-1})P = —P={—p|pe P}, and (+1)P = P.

Minkowski sum: F+ P ={p+p'|peP p P}

It is also useful to define the difference as P — P' = P+ (—P"). The polytopes
P+ AP are combinatorially somorphic for all X > 0, and similarly for A < 0.

If P = {p'} 1s one single point, then P — {p'} Is the Image of P under the
translatlon that takes p' Lo the origin.

Product: The (d+d’ }-dimensional polytope P x P' = {{p.p) € el | p €
F g e P'Y. Px P has n-n' vertlees and m + m' Taeots.

Join: The convex hull P = P of PU P, alier embedding P and P In a space
where thelr affine hulls are shew. For example, .
Ps P = conv({{p.0,0) € B | pe Prufing. 1) e B 0 e P
Pz P has dimension d4d'+1 and n+n' vertices. Tts k-faces are the joins of i-faces
of P and {k—i—1)-faces of P', hence fo (P = P") = Y5 _| filPifu_is(P).

Free aum:  The [ee sum s the (dHd' -dimensional polytope
P @ P = conv({(p,0) € R | pe PYu{ing) e R& | € P

Thus the free sum P & ™ s a projection of the joln P« PPI both P and PF
have the orlgln In thelr Interlors—this & the “uswal™ sltuatbon for creatlng free
sums, then P& ™ has oo+ n' vertlees and m - m' Tacots.

Pyarmiads The joln pyrilP) = P& {0} of P with a point (a (-dimensional
polytope P' = {0} C R"). The pyramid pye{P) has n + 1 vertlees and m + 1
facoLs.

Prigm:  The product prism(P] := P = I, where I denotes the real Interval
I=[-1L+1l|CR

Bipyramad:  IF P has the origin In lts Interlor, then the bipyrambd over P I8 the
[+ 1 |-dimensional polytope consteucted a8 the Tree sum bipyr{Pl:=P& 1.

Lawrence extengion: I p& BY 15 a point outside the polyiope P, then the free
sum (P — {p}} & |1, 2] Is a Lawrence extension of P af p. (For p € P this s Just
a pyramid.)

OF course, the many constructlons listed n the glogsary abowe are not nde-
pendent of each other. For lnstance, some of these constrectlons arve related by
polarity: for polytopes P and P* with the orgin In thelr Interiors, the product and
the [rop sum constructions are related by polarity,

Px P = (F* &P,

and this speclalizes o polarity relatlons among the pyramid, bipyramid, and pelam
ConsteweLions,

pye(P) = (pye(P2))*  and  prism(P) = (bipyr(P2))*.

Similarly, “cutting off & vertex™ I8 polar to “stellar subdivision In a facet.”™

It Is Interesting to study—and this has not been done systematically—how the
hasle polytope eperations generate complicated comvex polytopes om slmpler omes.
For example, starting from & one-dimensional polytope I = Oy = [-1,+1] C R, the
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direct produect constructlon generates the cubes O, while [vee sums generate the
crEs- poly Lopes ﬂ'j".

Even more complicated centrally syvmmedrle polytopes, the Hanner polylopes,
are obtalned from coples of the Interval T by using produces and [eee sums, Thoy are
Interesting since they achbeve with equality the conjectured bhound chat all centrally
symmetric d-polytopes have at least 3* nonempty faces [Kalal [Kal’g)).

Ewery polytope can be viewed as a pegion of a hy perplane arrangement: Tor chis,
take as Ape the set of all hyperplanes of the lorm afl{F), where F s & lacet of P
For additional poiots, such as the polnis outside the polytope used for Lawrencoe
cobenslons, or those wsed Dor stellar subdivisbons, It s often Important only In which
reglon, or in which lower-dimensional peglon, of the arrangement dp they lie.

The Lawrenes extenglon, by the way, may seem like quite a harmless lictlo
constructlon. Howewer, It has the amazing property that it can encede the siruct ure
of a polnt oulside a d-polytope Into the boundary structure of a (d41)-polytope.
This aceounts for a large part of the “specilal” 4- and S-polytopes In the lterature,
swch as the 4-polytopes for which a facet, or even a 2-face, cannot be presceibed in
shape |RicG].

16.1.4 MORE EXAMPLES

There are many Interesting classes of polytopes arising from diveese areas of math-
cmatles (a8 well as physics, optimization, coystallography, ete.). Some of these are
discusaed below. You will ind many more classes of examples discussed o other
chapters of this Handbook. For example, regular and sembregular polytopes are dis-
cussed in Chapoer 19, while polytopes that arlse a8 Voronod cells of lattices appear
in Chapters 3, ¥, and G2.

GLOSSARY

Graph of a pelyfope: The graph GP) = (V(P), E(P)] with vertex set V(P) =
FolP) and edge sot E(P) = {{',0?} C |:'_'!]| | comv{w?,e?} € Fy(P)}.

Zonotopa:  Any polybope £ that can be represcnted as the lmage of an w-di-
mensional cube O, under an afline map; equivalently, any polyiope that can be
written as a Minkowskl sum of n line segments | L-dimensbonal polytopes). The
amallest 1 such that & Is an lmage of O, 18 the number of zones of 2.

Moment curve:  The curve ~ In BRY deflned by 4« B — B, £ —s (102,097

Cyelic polyfope: The convex hull of a Anlte set of polots on & moment curve, or
any polytope combinatorially equivalent to i,

E-neightorly polytope: A polytope such that each subset of at most & vertioes
forms the vertex set of & face. Thus every polytope 18 l-nelghborly, and a poly-
tope I8 2-nelghboely I and only i s graph Is complete.

Neighborly pelytope: A d-dimensional polytope that s [d/2 ]-neighborly.

(01)-pelytops: A polytope all of whose wertex cooedinates aee (b or 1, that s,
whose vertex 2ot 18 a subset of the vertex set {0, l}‘r aof the unit eube,
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ZONOTOPES

Zonotopes appear In gquite different gulses. They can equivalently be defined as the
Minkowszkl sums of folte sets of line segments {l-dimensional polytopes), as the
afflpe projections of d-cubes, or a8 polytopes all of whose faces (equlvalently, all
2-Taces) exhibit central symmetry. Thus a 2-dimensional polyiope 5 a sonotope 1T

amd only i it s centrally symmetric.
FIGURE 16.1.4

A 2-gdimensional ond o J-dimensional zonotope, soch
ewith § zones. (The 2-dimensionol one is g projection
of the 3-dimensionod one; node that every projechion //

of 0 zonolepe 13 @ zonstope. )

Among the most prominent sonotopes are the permutohedra: The permn-
tohedron I Is constructed by taking the convex hull of all d-vectors whose
coordinates are {1,2, ... d}, In any oeder. The permutobedron I, _, Is & (d—1)-
dimensional polytope {contained In the hyperplane {2 € BY | 5, = = d{d41)/2})
with f vertices and 24 — 2 [acats.

Zl4a

4312
214

FIGURE 16.1.5 =
The Jadimensional permpiohedron Uy, The vers

tices ome lwheled by the permutofions that, when
applied to the coordinate vector in ', yield
(1,2,3.4)".

One wnusual feature of permutohedra s that they are simple zonotopes: these
are rave o general, and the (unsolved) problem of classifving them s equivalont v
the problem of classifying all simplicial arcangements of hyperplanes (see Section
G.3.3).

Zonotopes are loportant becapse thelr theory s equivalent to the theorles
of vector eonflguratkons (peallzable orlented matroids) and of hyperplane arrange-



Chapter 16: Basic properties of convexs polybopes I

ments. Im [act, the sysvem of line segmeonts that generates a ponotope can be
considered as & wector configuration, and the hyperplanes that are orthogonal v
the line segments provide the assoclated hyperplane arrangement. We refer w
BLS 949, Sectlon 2.2] and [Zie85, Lecture 7).

Finally, we mention n passing a surprising hijective correspondence between the
tilings of & ronotope with smaller zonotepes and oriented matroid lifilngs (realkzable
or oot ) of the orlented matrold of & sonotope. This correspondence 18 known as the
Bohne-Dress theerem; we refer to Richter-Gebert and Ziegler [RZ04).

CYCLIC POLYTOPES

Cyelie polytopes can be constructed by taking the convex hull of » = d polnts oo
the moment curve In BY. The “standard constructlon™ 18 to deflne a eyclie polytope
gin] a8 the convex hull of o Integer polnts on this curve, such as

Cyln) = conv{y(1),4(2),....7(n]}.

However, the eomblinatorial type of Ciin) I8 glven by the —entirely combinaterial
Gale evenness eriterion: II Ciin) = conv{yifi), ... o7la)}, with &y = ..o =
b, then Al ), - .oy, determine a [acet I and only i the oumber of indices
In {iy,....04} lylng between any two Indlees nol In that set 18 even. Thus, the
combinatorial type does not depend on the speclile cholee of polnts on the moment
eurve [Ziedh, Example 0.6; Theorem 0.7).

FIGURE 16.1.6

A Fedimenaional cyclic polytope Cu(6) with 6 merdices. (fnoa
projection of ¢ to the mra-plane, the curme ¢ and henes the
pertices of C308) lie on the porabols o3 = £5.)

The fiest property of eyclic polyiopes to notkee is that they are simpliclal. The
second, more surprising, properiy I8 that they are nelghborly. This loplies that
amang all d-polytopes P owith 1 vertlees, the cypelle polytopes masimbze the number
Ji(P) ol i-dimenslonal faces for § < [df2]. The same fact holds for all i@ this s parc
of MeMullen™s upper bound theorem (see below]. In partiealar, cyelle polylopes
have a veey large number of facets,

for(Caln)) = (:i —;51) N {n—l—[“{—-]—’])_
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For example, we get that a eyclic 4-polytope Ci(n) has nin — 3)/2 facets. Thus
48] has & vertioes, any two of them adjacent, and 20k facets. This s more than
the 16 facets of the d-dimensbonal eross-polytope, which also has 8 vertioes].
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MEIGHBORLY POLYTOPES

Here are & few olservatlons about nelghborly polytopes. For more Informatbon, see
BLS+99, Section 9.4] and the references quoted there.

The first observatlon s that if a polytope s E-nelghborly for some & > |df2],
then it Is a simplex. Thus, I one ignores the simplices, then [df2)]-nelghborly
polytopes Torm the extreme case, which motlvates calling them slmply “nelghborly.”
However, anly In even dimensions = 2 do the nelghborly polytopes have very
apeclal structure. For example, one can show that even-dimensional nelghboely
polytopes are necessarkly sloopliclal, but this I8 not true In general. For the latter,
mite that, for example, all 3-dimensional polyiopes are nelghborly by definitbon, and
that If P & a nelghboely polytope of dimension d = 2, then pye(P) & nelghboely
of dimensbon 2m4-1.

All simplicial nelghboely d-polytopes with o vertloes have the same number
of facets (o fact, the same f-vector {(f, fi. .- Qo)) a8 Cylnd. They constitute
the class of polytopes with the maximal number of -faces [or all @@ this ls the
statement of McMullen's upper bound theorem.  We mefer to Chapter 18 for a
thorough discussion of f-vector theory.

For »n < d+3, every nelghborly polytope 15 combinatorally somorphic 1o a
cyclic polytope. This covers, for Instance, the polar of the product of two trlangles,
[As 3 Aa)®, which Is easily seen to be & 4-dimenslonal neighborly polytope with
6 vertlees: see Flguee 1619, The Orst example of an even-dimensional nelghboely
polytope that s not cyclie appears for d = 4 amd 11 = & It can easlly be described
in verms of lis affine Gale diagram; see below.

Melghboely polytopes may at fiest glance seem to be very pecullar and rare
ohijects, but there are several Indicatlons that they are not quite as umusual as
they seem. In fact, the class of nelghborly polytopes B belleved to be very rich.
Thus, Shemer [Shef2] has shown that for fixed even d the number of nonlsomorphic
neighborly d-polytopes with novertloes grows superexponentially with n. Also, many
of the (L1 )-polytopes studied in combinatorial optimization tuen out to be at least
2-nelghborly. Both these effects Mlusirate that “nelghborliness” 15 nol an lsolated
phenomendon.

OPEN PROBLEMS

L. Can every nelghborly d-polytope P C RY with n vertices be extended by a
new vertex v € BY to a nelghborly polytope P := conviP U {v}) with n+1
vertiopa? [Shed2, p. 314]

2. It is a classbc problem of Perles whether every alonplicial polytope B a quotient
of a nelghborly polytope. [For polytopes with at meost d4-4 vertioes this was
confirmed by Kortenkamp [Kor@7].)

3. In some models of rmandom polytopes 5 seems that

e one oblalng & nelghborly polytope with high probability {which Incroases
eapldly with the dimension of the space),

e Lhe most probable combloatorial type ls & cpelie polytope,

@ bt gtlll this probabilicy of a cyelle polytope tonds W seeo.
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However, none of this has been proved. (See Bokowskl and Sturmfiels [BS80,
p. 101], Bokowskl, Richter-Gebert, and Schindler [BRS92), and Vershik and
Sporychey [VE02].)

(0,1}-POLYTOPES

There is & (0 1)-polytope (given in terms of a V-presentation) assoclated with every
finite set system 5 © 2% {where E Is a finlte set, and 2% denotes the collection of
all of its subscts), via

PlS] == conv{ 3¢ | FeS} C B%.

e

In comblnatorial optlmization, there & an extensive lterature avallable on H-
presentations of apeclal (), 1)-polytopes, such as

& the fraveling salesman polytopes T, where E 18 the edge set of 8 complete
graph K, and F 5 the set of all (n—1)! Hamilton ¢veles (simple clreolis
through all the vertices) in E (see Gritschel and Padberg [GP&5]):

& the cuf and equicut polytopes, where E 5 agaln the edge set of a complete
graph, and & represents, for example, the family of all cuts, or all equicuts,
of the graph (see Deea and Laurent [DLOT]).

Besides thelr Importance lor comblnatorial optimization, theee 5 a geeat deal of
Interesting polytope theory assoclated with such polytopes. For a strlking example,
goe the equicut polytopes used by Kahn and Kalal [KE93) In thelr disproof of
Borsuk’s conjecture (see also [AZOL]).

Dreapite the detalled steucture theory foe the “special™ (0, 1)-palytopes of com-
hinatorial optimization, there B veey Litle koown about “general” (0, 1)-polytopes.
For example, what I8 the “typlcal”, or the maximal, number of facets of a (0,1])-
polytope? Based on a random construetion Bérdny and Pdr [BPOL] proved the
existence of d-dimensional (0, 1-polytopes with (cd/ logd)®" facets, where ¢ 1 a
unlversal constant. The hest koown upper bounds are of opder [d — 2)!. Another
queestion, which I8 not only Intrinskcally Interesting but mlght also provide new
clues for basle guestions of lnear and combinatorial optimization, s What s the
maximal aumber of [bees Ina 2-dimenslonal projectlon of & (0, 1)-polytoepe? For a
gurvey on (0, 1)-polytopes see [Elei)].

16.1.5 THREE-DIMENSIONAL POLYTOPES AND PLANAR GRAPHS

GLOSSARY

d-connected graph: A connected graph that remalns connected IF any o — 1
vertioes are deleted.

Dyrawring of a graph: A representation In the plane where the vertioes aee rop-
resented by distinet points, and slmple Joedan arcs are drawn between the pales
of adjacent vertioes.






