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INTRODUCTION

The theory of arented matreids provides a broad setting in which to model, de-
serlbe, and analyes combinatosial properties of geometric configurations. Appar-
ently totally different mathematbcal objects such as peind and wector configurmbions,
arrangemenls of hpperplanes, conuer pelylopes, directed graphs, and linear gragrams
find a common generallzation in the language of orlented matroids.

The orlented matrodd of & Oolte set of points P extracts “relatlve positlon™ and
“prientatlon” information feom the configuration: for example, It can be glven by
a list of signs that encodes the erlentations of all the bases of P. In the passage
from & eoncrete polot configuration to s orlented matroid metrical Information s
lost, but many structural properties of P have thelr counterparts at the — purely
combinatorial — lewe] of the orlented matrold.

We Orst Introduce orlented matrodds ln the context of several models and mo-
tivatlons (Section 7.1). Then we present some equivalent axlomatlzations (Sectlon
T.2). Finally, we discuss concepts that play central roles In the theory of oelented
matrolds (Section 7.3), among them duality, rseablizabality, the study ol siogdiciel
cells, and the treatment of coenvesily.

7.1

MODELS AND MOTIVATIONS

Thiz section discusses geometric examples that ave usually treated on the lewvel
ol eonerete coordlnates, but where an “orlented matrvold polat of view™ glves deeper
inzlght. We also present these cxamples as standard models that peovide Intoltlon
for the behaviour of general orlented matroids,

7.1.1 ORIENTED BASES OF VECTOR CONFIGURATIONS

GLOSSARY

Vector configuration: A matrlx X = (z,.....2.) € (B¥)?, usually assumed to
hawe Tull pank J.

Matroid of X: The pair My = (E,B, ), where E := {1,2,... n} and B Is the
st of all (cplumn Indlees) of hases of X

Matroid: A pair M = (E, B), where E Is a finite set. and 8 € 2¥ Is 8 nonempty
collection of subsets of E (the bases of M) that satisfies the Steinits ecchange az-
iorm: For all By, B € B and € € B\ Ba, there exisis an [ € B2 5 such that
(Bi\ell f e B
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Signa: Elements of the set {—,0,+}, used as a shorthand for the corresponding
elements of {—1,0,+1}.
Chirotope of X: The map

Xyt Ed & {-0,+}
["!"Il-"1':||'d:| Lo g Hl.gl.'ﬂ:d.ﬂLl:.‘E‘_:,”l-...'J‘.'_;J]:l.

Ohrdinary {unoriented) mabradds, as introduced In 1935 by Whitney [see Oxley
[15]}, can be considered as an abstraction of vector configurations In finite dimen-
slonal vector spaces ower arbiceary Oelds. All the bases of & mateobd M have the
same cardinality o, which = called the rank of the matrold. Equivalently, we can
identify M with the characteristic function of the bases By EY — {0, 1}, whore
By(X) =11l and only if {X,..., Ay} € B.

One can obialn examples of matrolds as follows: take a finite set of vectors

I=-[J:|,:1'~_;1.-.,1',.]-§.FI':J

of rank d In an arbitrary vector space K'Y and consider the set of bases of K formed
by subsets of the polnts In X In other words, the palr

M, =[E,E'_l,:|={{1,.-.:n}, REITRS o dnLl:J:,,__,.-.,J:M:lgéﬂ]:J

forms & matrold.

The baske Information about the Ineldenee structure of the polnts In X & con-
tained in the underlying matroid M. However, the matrold alone presents only
a weak model of a geometele configuration: for example, all conflguratbons of
points #n general poailion In the plane (Le, no three points on & line) have the
same matrold M =I5 o0 bere no Information beyond the dimension and skze of the
configuration, and the fact that It I8 In general position, & retalned lor the matrodd.

In contrast 1o matrodds, the theery of eriented malrodds considers the structure
ol dependencies In vector spaces over orderad felds. Roughly speaking, an orlented
matrald ls a matreld where In additbon every hasls s eguipped with an orbentation.
These orlented hases have to satlsly an orleated version of the Steinlte exchange
axlom (Lo be descrlbed later]. In other words, orlented mateobds not only deseribe
the Ineldence structure between the polots of X and the hyperplancs spanned by
points of X (this 18 the mateold Informatlen); they also encode the positions of
the polnts relative to the hyperplanes: “Which polots e on the positive side of &
hyperplane, which polnts e on the negative shde, and which lie on the hy perplape?
If X € [K9)" Iz a conflguration of n polnis In a d-dimensional vector space K4 over
an ordered Held K, we can describe the corresponding oriented matrold y . by the
Tunetion:

Yt B 5 {04}
["!"Il"'1':"'d:| = Hl'gu[d'““:r.h.l"wrhd]:l'

This map y, & called the chirotope of X and Is very closely related to the
arfented matrold of X. It encodes mach moro Information than the correspondlng
matrald, Ineluding Informatien abowt the topoelagy and the eonverily of the undor-
lying conflgurations.
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7.1.2 ARRANGEMENTS OF POINTS

GLOSSARY
Affine point configuration: A matrix (py, ..., ) € (B0 usually assumed
tos have Tull pank d—1.
Associated vector conflguration: The matrlx X € [RY)® obtained from a polnt
configuration by adding a mow of omes. This mrresponds to the embedding of
the afine space B* " lnto the linear vector space B via p— = (7).

Oriented mafrodd of a point configumtion: The orlented matrodd of the
asapciated vector confgureation.

Covector of o vector configuration X: Partltlonof X = [z, ... 2. ) Indweed
by a linear hyperplane, lnbe polots oo the hy perplane, on the positve side, and
on the negative side

Oriented matroid of X: The collection £ € {—,0,+}" of all covectors of X.

Lot X := (&1, ....¢0a) € (B¥)™ be an n x d matrlx and lee E = {1,....n}. We
Interpret the columns of X a8 1 vectors In the d-dimensional real vector space BY .
For a linear functlonal y* € (E*)" we set

Oy (w) = (signfy"x1), ... signip"z)).

Such & slgn vector 8 called a eovector of X, We denote the collectbon of all
covectors of X hy

'E.I!' = {E.!;'[F] € ﬁ."]-
The pailr A, = (E L) s called the oriented matroid of X. Here each sign
vector © (y) € £, describes the positions of the veetors 2y, ..., x,, relative (o the
linear hyperplane Hy = {x € B - 3Tz = 0}: the sets

Cowl® = {e€E : Cylyl. =0}
Cyely)* = {e€E: Cyly), >0}
Cely)™ = {e€E: Cylyl, <0}

deseribe how Hy partitions the set of poinis X. Here Oy ()" contains the points
on H, while ' (gt and Oy (y)~ contaln the points on the positive and on the
negative slde of My, respectively. In partieular, if O (y)~- = B, then all points not
on M, lie on the positive side of H . In other words, In this case H, determines &
fage of the positive oone

[SR0= I DU :={J.,.-a-:, +AzrsH ..+ A E, 0= X e R for lg:’gn}

of all points of X. The face latiice of the cone pos{X) can be recovered from C .
It is simply the set £, N [+ IZI}HI partlally ordeved by the order Indused from the
relation 0 < 4.7

If i the configuration X we have £ 0 = Lloeall 1 <4 < q, then we can conslder
X as representing homogeneous eoordinates of an affine polnt set X' In B¥~' . Hore
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the alllne polots correspond v the original points @ after removal of the d-th
coordinate. The face lattice of the convex polytope conw(X') € B*' ks then
identical to the face lattice of pos(X). Hence, M, can be used to recover the
conner hull of X7,

Thus orlented matrolds are generallzations of polnt configurations In linear or
afline spaces. For general orlented matrolds we seaken the assumption that the
hyperplanes spanned by polots of the configuration aee peally dat to the sssumptlon
that they only satlsly eertaln topological Incldence propertles. Nonetheless, this
kind of pictuee 5 sometimes misleading slnee oot all orlented matrolds have this
type of representation (compare the “Type IT representations™ of [3, Sect. 5.3]).

7.1.3 ARRANGEMENTS OF HYPERPLANES AND OF HYPERSPHERES

GLOSSARY

Hyperplane arrangement H: Collection of (ofiented) linear hyperplanes in BY,
glven by morrmal vecbors .. .. F .

Hypersphere arrangement induced by W: Intcrsection of W with the wnit
sphere 591,

Covectors of H: Slgn vectors of the cells In H: equivalently, O together with the
slgn vectors of the cells In #H N 591,

We obtaln & different pletuee D we polaclze the situation and conskder hy-
perplane arrangements rather than arrangements of polots.  For a real matrix
X :=(r1,....2n) € (E*)" conslder the system of hyperplanes My = (Hi,.... Ha)
with _

H; == {y'E Eli yqti = ﬂ]-.
Each vector o Induees an orlentatlon on B by defllning
Hf ={pe R : 4T = 0}

1o he the positive side of H;. We define HT analogously 1o be the negafive side
of H,. To avold degenerate cases we assume that X contains at least one proper
basis (Le., the matrix X has rank d). The hyperplane arrangement H . subdivides
EY into polyhedral cones. Without loss of Information we can Intersect with the
unit sphere §9' and conslder the sphere system

S, = (Hyn&"' L H,nE") = W, nst

O assumptlon that X contalng at least one proper basls translates to the faet
that the Intersectlon of all Hy n... 1 H, N 54! ks empty. W, Induces a cell
decomposition T{& ) on §9-1, Each face of I'(&, ) corresponds Lo a sign vector in
{—.0. +}5 that Indicates the positlon of the cell with respect to the (d— 2 )-spheres
H;n 5% {and therefore with respect to the hyperplanes H;) of the arrangement.
The list of all these sign vectors Is exactly the set C, of covectors of H, .
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Figure 7.1

An omongement of nine greod  circles
on &%, The mrrangernent corresponds fo0 a
Pappus configurobion.

While the visualizatlon of orlented mateolds by sets of polnts in B® doees oot
Tully meneralbee to the case of non-representable orlented mateolds, the pleture of
hyperplane arcangements has a well-defined analogue that also covers all the non-
reallzable cases., We will see that as a consegquence of the Topological Repeesentation
Theorem of Folkman & Lawrence (Section T.2.4) every rank d orlented matroid can
be represented as an arrangement of orlented peeudespheres (of pseudohyperplanes)
embedded ln the 591 [resp. o BY). Arrangements of pseudospheres ave systems
of topological {d — 2)-spheres embedded In 591 that satlsly certaln Intersectlon
properibes that clearly hold o the case of “stralght™ arrangements,

7.1.4

ARRANGEMENTS OF PSEUDOLINES

GLOSSARY

Pieudotine: Simple closed curve p in the projective plane BP? that is topologi-
cally equivalent o a line {Le., there ks a self-homeomorphism of EP? mapping p
i a strealght lne).

Arrangement of paeudolines: Collection of peeudolines T = (o, ... ] In
the projective plane, where any two of themn Intersect exactly onee.

Simple grrangement; No three pseadolines mect o a common point. (Eqguiva-
lently, the assoclated orlented matrodd 5 wniform

Equivalent armangementa; Arrangements Py amd Py that generate Bomoephle
cell decompositions of BP?. (In this case there exists a sell-homeomorphism
of BP? mapping Py to Pa.)

Strelchable arrangement of pieudolines: An arcangoment that s eguivalent
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to an arrangement of projective lines.

An arrangemeil of peewdolines ln the peojective plane B a collectlon of paeudo-
lines such that any two peewdolines Intersect bn ccactly one point, wheee they cross.
(See Grilnbaum [10] and Richter [16]).) We will always assume that P 18 essential,
L, that the Interseetlon of all the peeudolines jy 8 enpty.

Ap arvangersent of preudolines behaves In many eespects just ke an arrange-
meent of 1 lines In the peojective plane. (In fact, there ave only weey few oombi-
natorlal theorems known that ame tree for stralght areangements, bul oot tewe In
general for pseudoarrangements, )

Figure 7.2 shows a small example of a non-steetchable arrangersent of paeudo-
lines. (It ks left as & challenging exerclse to the reador to prove the non-steetchability. )
Up to lsomorphism this 8 the only slmple non-stretchable arrangement of 9 peeu-
dolines [16] [11]; every arrangement of § {or fewer) pseudolines is stretchable.

Figure 7.2

A non-siretchalle armngement of nins
prendobines. Jt was ebinined by Ringel [18]
as a perfurbation of the Foppus configum-

T associate with a projective arrangement 7 an ordented matrold we represent
the projective plane (as customary] by the 2-sphere on which antipodal polnts ave
ldentifled. With this every arrangement of pseudolines glves rise 1o an arrangement
of greal peeudociredes on 52, For each great pseudociccle on 52 we choose a positive
gide. Each cell induced by P on 57 now corresponds to a unlgue slgn vector, The
collection of all these sign vectors again forms a set of covectors Co\ 0 of an orlented
mattold of rank 3. Conwersely, as a speclal case of the Topological Repeesentation
Theorem, every orlented mateokd of rank 3 has a representation by an orienled
paendoline arrangement.

In this way we can use pseudoline arcangements as a standard pleture to rep-
resent rank 3 orlented matrodds. The easbest pleture ls obtalned when se pestrict
ourselves to the upper hemisphere of 5% and assume w.loog that each psendo-
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line crosses the eguator exactly onee, and that the crossings are distinet (Le., no
Intersection of the great pseudocireles lles on the equator). Then we can repre-
sent this upper hemisphere by an areangement of mutually erossing, ovlented afine
psendolines In the plane B*. (We did this Implicitly while deawlng Flgure 7.2.)

By means of this equivalence, all problems concerning arrangements of peeu-
dolines can be translaved to the language of orlenved mateolds. For Instance the
problem of stretchability 15 equivalent to the reallzability problen for orlented ma-
trobds.

7.2 AXIOMS AND REPRESENTATIONS
In this sectlon we defne orlented mateobds formally. It I8 one of the main
features of orlented matrold theory that the same object can be viewsed under quite
diffepent aspects. This results In the fact that there are many different eqguivalent
axlomatizations, and It 8 sometimes very useful to “jump”™ Iom one polot of view
to another. Statements that ave diffcult to prove In one language may he easy o
another. For this reason we present here several different axiomatizations. We also
glve a (partlal) dictonary of how to translate among them. For a complete versbon
of the basie equivalence proofs — which are highly noo-trivial — see [3, Chapters
3 and §).
We will give axlomatlzatbons of orfented matrolds for the following four Ly pes
ol represeniations:
# Collectbons of covectors,
& Collectbons of coclreuits,
& Hlpned bases,
« Arcangements of peeudospheres,
In the last part of this sectlon these concepts are llustrated by an example.
GLOSSARY

Sign vector: Vector £ in {—,0,+}", where E ks a finite index set, usually
{1,...,n}. For e € E, the e-component of C & denoted by .

Poaifive, negative, and zero pard of

ot = {EEE : If:'.=+]-I
£ = {E‘EE . fjl=_}|
o= {EEE : ﬂ.:ﬂ}.

Support of C: C:={ec E : C.#0}

Zero vector: 0:=(0,....0) € {— 0, +]}5.

Negative of a adign vecbor: —O, deflned by (—CF = O, (=07~ == O amd
[—£e =00,
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O MO #10,
0, otherwiso,
Separation set of O and D: 5[0 D):={ec E : O, = -0, #0}.

We partlally order the set of slgn vectors by 50 < 47 amd 0 = —" The
partial grder on slgn vectors, denoted by © < I, B understood componentwise;
equivalently, we have

Compesifion aof O and D (Do V), = {

<D +— [E*';D"'xudﬂ"gﬂ‘

For lonstance, If O = [+, 4+, —, 0. — +,0.0) and D := [0, — +, 4+, —. (), =), then
we hawe:

ct={1,2.6}, © ={35}, C°={4,7.8}, O={L23.56}
CoD=(++,—+—+0,—], CeD>C, 5(C D}={506}

Furthermaore, for € B*, we denote by o) € {—.0, +}"“ the Image of # under the
componentwise slgn fLLnl':1.!||.'|I:'|. o that maps B w {—.0 +}"“

7.21

COVECTOR AXIOMS

DEFINITION (Covector Axioms): An oriented matroid glven In terms of
its eovectors I8 a pale A = (E, L), where £ € {—. [} +]-"" gatiafles

[CVD) 0 e L,
OVl 0 el = —Cel
OV O, Def=CaDEF
(OV3) O, De £, e € 5(0,0) =
there ls a Z € £ with Z, = 0 and with Z; = (Ce D)y for [ € E\5(C, D).

It Is nod diffienlt to ceeck that these covector axioms ave satisfied by the slgn
vector syitem £, of the cells in a hyperplane areangement M, a8 defined In
the last section. The fest two axboms are satlsfed trivially. For [E"u’!] ASKLLILE
that ro and xp are polnts in B with ul:.'rr.- X)=0C¢€ L, and a[rn Xl =
D e £,. Then [(CVE) Is implied by the faet that for Huﬂlq:l-utnl]_-.- small £ = {) we
have ol(2o + 22p)7 - X) = O o D, The geometrie content of (CV3) I that if

={p € B : 3"z, = 0} I8 a hyporplane separating - and x5 then thore
exlats a polnt £, on H, with the property that £, I8 on the same side a8 5o amnd
2 lor all hyperplanes not separating -~ and £, We can find such a point by
Intersecting H, with the line segment that connects x- and 5.

Ag we will seo later the partially orderoed set (£, <} describes the face Lattlos of
a cell decomposition of the sphere 91 by peeudohyperspheres. Each slgn vector
correaponds to a faee of the cell decomposition. We define the monk dol A = (E, £)
ton b the (unigue) length of the maximal chalng in (£, <) mings one. In the ease
of realizable arrangements 5. of hyperspheres, the lattiee (£, <) equals the face
lattiee of T[S, )
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7.2.2 COCIRCUITS

The covectors of {inclusion) minimal support in 240 correspond to the O-faces
[=vertioes ) of the cell decomposition. We call the set O (A of all such minimal
covectors the coctrendls of M. Odented matvalds can be descreibed by thelr set of
coclreuits, as shown by the following theoram.

THEOREM (Cocircuit characterization): A collection &% € {—, 0, +}F is
the set of cocireuits of an orienfed matrosd M i and only if it setisfies
(CCo) 0¢cr,
(CCl) C el — —Cec™
(CC2) For al O, D e 0" we haver CCD=C=D or{ =-D.
(CC3) C,Ded, O #—D, and e € S(C, D) =
there is a Z € (= with 2+ C (C+UD*)\[e} and Z- C (C-UD-)}\{e}.

THEOREM (Covector/cocircuit translation):  For every oriented mafroid
A, one can uniquely determine the sef 07 of cocircuits from the set £ of co-
vectors of A, and conversely, as follows:

(1) &° iz the set of vectors with minimal support in 2\0:
C={Ce 0} : "0 =€ 0,0}

() £ iz the set of all sign vecfors oblained by successive composifion of a
finite number of cocircuits from C7:
E={I:';|!:l...ﬂﬂk H j.‘.Eﬂ., EL,...:{T&EE'}-

7.2.3 CHIROTOPES

GLOSSARY

Alternating sign map: A map y: B4 — |-, 0,4} such that any transposition
of two components changes the sign: y(r;(A)) = —x{A).

Chiroiope: An allernating slgn map y that encodes the basks orlentations of an
oriented matrold M of rank d.

We now presont an axbom system foe efiretopes, which characterlees oelented
matrolds In terms of bhasks oerbentations. Heee an algebrale connection to determinant
Identitles boeomes obvlous. Chirotopes are the main tool for translating problems in
oriented matrold theory to an algebraie setting [7]. They also form a deseription of
arfented matrolds that 8 wery practleal for many algorithmie purposes (foe Instanoe
In Computational Geometry, see Knuth [11]).
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DEFINITION (Chirotope): Let E:={l....,n} and 0 = d < n. A chirofope
of rank J s an alternating sign map y: E* — {—.0,+} that satisfles

(CHI1) The map |x|: EY — {0, 1} which maps A to |x(A)] 18 a mateokd, and
(CHIZ) For every A € B2 and o, be.d € E\ A the set
{ x0ha.) - x(hed), —x(hae) - xih b, xihad) - x(dbe) )
elther contains {—1, +1}, or It equals {0}.

Where does the motlvation of this axiomatization come from? IF we agaln
consider a configuration X = [r1,....2s) of vectors In B, we can observe the
Iollowlng Identity among the J = J submatrices of X

d‘“LI:rAII" '12'J|d—i| Tﬂltﬁ] ) dnl‘[il:r - ':ih-i11ﬂltd:|
- d'“”:r.h“-' '1rlg_g| Tﬂl:ri:] ) dl'-\:L[J"IJI.-_1' - '1J:.l¢_i1rﬁ|:rd:l
+ d'“u:r.?ul" '12.?.4_5| :tnl""'—d:l ) Id"'!'1'[:1-.'1.|:' - '|1-.'|.|_:|"1-I-"J:n:| =

for all & € E** and a,bed € E\A Such a relation is called a three-term
Grrassmann-Plicker tdentily. Il we compare this dentlty to our axbomatkzatlon,
wiee see that (CHI2) lmplies that

Kyt B 5 {04}
[All-"1'1d:| =+ Hl'gu[d'“”:r.h|l-"1rhg]:l'

Is not in contradiction to these identitles. More precisely, il we consider y . as
defined abowe for a vector eonfiguration X the above Grassmann-Plicker identitles
Imply that (CHI2) ks satlsfied. [CHIL) s also satlsfled sioee for the wectors of X
the Stelnite eochange axiom holds. [In fact the exchange axiom = 8 conseguence
ol higher order Grassmann-Pliicker ldentitles. )

Consequently, x, s a chirotope for every X € {®*\™. Thus chirotopes can be
considered as a comblnatorial model of the detorminant values on vector configu-
rations. The followlng I8 not easy to prove, but essentlal.

THEOQOREM (Chirotope/cocircuit translation): For each chirofope v of
rank d on E:={1,... n} the set

) = {elh 1 x(2,2) . x(An)) 2 e B

forms the set of cocircuils of an oriented matroid. Conversely, for every
oriented matroid M with cocircuifs 07 there exists o unique pasr of chirotopes
{x.—x} such that C*(y) =" (—x) =C".

The retranslation of coclreuits nto signs of bases Is stralghtlorwand but meeds
exira notation. It ls omitted here.

7.2.4 ARRANGEMENTS OF PSEUDOSPHERES
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GLOSSARY

The {d—1)-sphere: The standard unit sphere S .= {z e B? . ||z||= 1}, or
any homeomorphie Image of it

Paeudoaphere: The image s © 57" of the equator {x € 59" : 24 =0} In the
unit sphere under & sell homeomorphism ge §9-1 — 5§91
(This definition desceibes topologically feme embeddings of & (d — 2-sphere
in 54!, Peeudospheres behave “nicely” in the sense that they divide 5% into
two sides homeosmorphle to open (d — 1)-halls. ]

Oriented pseudosphere: A pseudosphere together with a cholee of a posithve
slde 51 and a negative alde &—.

Arrangement of pseudospheres: A set of 0 psendospheres In 591 with the
extra condition that any subset of d42 oF fewer peewdosphores B8 realizable: it
defines a cell decompesition of 591 that ks lsomorphic 1o a decomposition by
an arrangement of d4-2 linear hyperplanes.

Easential arrangement: Arrangement such that the Intersectlon of all the pseu-
dospheres s empiy.

Rank: The codimension in 591 of the Intersection of all the pseudospheres. For
an essential arrangement In 89, the rank s d.

Topological representation of AM = (E,£): An essential arrangement of orl-
ented paeudospheres such that £ s the colleetion of slgn vecbors associated with
the cells of the arrangement.

O of the mest Important Interpeetations of orlented mateolds = glven by the
Topolegieal Ropresentation Theorem of Folkman & Lawrenee [9] [3, Chapters 4 and
5. It states that orlented matrolds ave in bijection to (combinatorial equivalenee
classes of | arrangemenls of orenled peewdospheres. Arrangements of psewdospheres
are a topologieal generallzation of hyperplane arrangements, In the same way o
which arrangements of pseudolines genperaliee line arrangements. Thus every rank
d orlented matrold describes a certaln el decomposition of the (6 — 1)-spheee. Ar-
rangements of psewdospheres are collect ions of pseudespheres that have Intersectlon
properiles Just ke those satlsfled by arrangements of proper subspheres.

DEFINITION (Arrangement of Pseudospheres): A finite collection P =
(81, 85qe-.. 8y of pieudospheres in 59! & an arrangement af pseudospheres if the

following conditions hold (we set E:= {1, .. n}):

(P51} For all A C E the set 54 =[,e4 & 18 & topological sphere.

(P52 TSy e, for ACE ¢€ E then 5yMNs, Ba psoudogphere in 5y with
gides S mel and 54 Ma7.

Notlee that this deflnitbon permits two pseudospheres of the arrangement to be
identical. An entirely diffprent, but equivalent, deflnitlon s glven in the Glossary.
We gep that evory essential arrangement of peadospheres P opartitions the
[d—1)-sphere Into & regular eell comples TP Each cell of TP} 15 unlguely detor-
mined by a slgn vector In {—. 0, +}H encoding the relatlve posiiion with respect to
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each peeudosphere . Conversely, T P) charactorizes 7 oup 10 homeomorphism. P
Is realizable Il there exists an arrangement of proper spheres &, with I[P) = T[S, ).

The translation of arrangements of psendospheres to orlented matrolds s glven
Ly the Topolegical Representation Theorem of Folkman and Lawrence [9). {For the
definitlon of *loop.” see Sectlon 7.3.1.)

THEOREM (Topological Representation Theorem (9] — Pseudosphere-
covector translation): [f P is an essentiol arrangement of pacudospherea
an 89! then TP U0 forms the sel of covectors of an oriented mafroid
af rank d. Conversely, for every oriented matroid (E, £) of rank d fwithout
loopa) there exists an essenfial armngement of pseudosphercs P on 541 unth

T(P) = £\,

7.2.5 DUALITY

GLOSSARY
Orthogonality: Two sign vectors O, D € {— 0.+ }¥ are orthegenal I the sot

{C.- D, : ec E)

eliher gquals {0} or contalos both + and — We then wrlte O L I

Vector af AM: Slgn vecior that s orthegenal 1o all covectors of A covector of
the dual orlented matrold A",

Clircuit of M@ Viector of minlmal nonempty support; cocleewlt of the dual oelented
mateald AT,

There I8 & natural duality strugture relating orlented mateolds of rank d on n
elpments to orlented matrolds of rank n—d on noelements. It 8 an amazing fact that
the existence of such a duality relation can be used o glve another axloratizatlon
of orlented matrolds (see [3, Sect. 3.4]). Here we restrict ourselves to the deflnition
of the dual of an orfented mateold M.

THEOREM (Duality): For every oriented matroid A = (E, L) of rank d
there iz a unigue orienfed matroid M® = (E, £7) of rank |E| —d given by

o= {DE{—:[},+}H . O LD for enery C € ::}

AT is called the dual of M. In parficular, (M7)" = M.

In particular, the coclreaits of the dual oelented matrold A4°, which we eall
the circuils of A, also determine A4, Hence the collection C{A) of all deeulis of
an oriented matrokd A4, glven by

CM) = 7M7)

I8 characterkzed by the the same cocleeult axloms. Analogously, the wectors of A
are ohtalned as the covectoes of A7 they are characterized by the covector axloms.
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An orlented mateold A s pealizable Il and only T s dual A9° s mealizable.
The reason for this Is that a matrlx (Tg)4) represents M I and only I {—A7 |[Ta—a)
represents AT, (Here fy denotes a o x d ldentlty matrix, 4 € B4 and
AT g =4 donotes the transpose of A.)

Thus for a realkzable orlented matrold M, the vectors represent the linear
dependencies among the columns of X, while the clreults represent minimal linear
dependencies.  Slmilarly, In the psendoarrangements pleture, elecults coreespond
to minimal syatems of closed hemispheres that cover the whole sphere, while vee-
tors corvespond o consistent unbens of such covers that never reguive the use of
boih hemispheros determined by a pseudosphera. This provides a direct geometric
Interpretation of elreuits and wectors.

7.2.6 AN EXAMPLE
We close this section with an example that demonsteates the different repre-
sentatlons of an orfented matrold. Consider the planar polnt configuration X given
in Figure T.3(a).
Figure T.%
An ezomple of an oriented molroid on § elemends.
1 4
I 1
b 2
3
2 k] 4 ]
- - - -
& s
- ]
l\3 -I I.1 I,: 4
i |
1] ihi [ [=d]

Homogeneous eoordinates for X are glven by

no 3 1
-3 1 1
-2 -2 1
= 2 -2 1
k] I 1
oo 1

The chirotope x, of M k= given by the orlentations:

il 23 =4+ yx(L2dl=+ x(lL,3L5 =+ x(lLZ6=+ xll3dl=+
e(l.3,5) =+ x(L3.6)=+ x(l 4.5 =+ x{L4.6=— x50} =—
234l =4+ x(23.5 =+ x50 =+ x40 =+ x(2.46 =+
(256060 =— x(245=+ x3 406 =+ x356=+ x{L.5G=+
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Hall of the cocireults of A are ghven In the table below (the other hall 1s obialned
by negating the data):
I:f:llI:I'|'|-1-I'|_|-:-|-] [n1_||:|1+1+|+] [I:I'|_1_|I:I'|'|-1_:I
I:f:ll_:_'-_1ﬂ:_] I:rh_l_:_'-'-"‘1“] I:_'-:rh“:_'-'-'|-1-I':I
I:'|-1“: _1n|+:+] I:-l-"f:ll_:_'|':.:I|_] I:_'-:|:.’1_|_:+'-f:|:I
I:'|-1_|'|I:I'-f:||_|-:-|-] I:-l-'|"-1ﬂ: _1n|+] I:_'-:_i-wf:ll_:_'-f:l:I
I:'|-1_|'|_|-:|:.'1‘.]:-|-] [_1+1+|u1_1n] I:_:_'|'|-1_|'|I:I'-f:|:I
Olserve that the coclrenits corresapond o the polnt partitions produced by hypee-
planes spanned by polnts. Hall of the clecults of M oare given In the next table
The ¢leeults correspond o sign patterns Induweod by minlmal lnear dependencles
on the rows of the matrix X. It I8 casy to check that every pale eonslstlog of a
cleeuit and & coclecults fulills the orthogonality condltion.
I:'I-1_|-'_: _"nll:l] [+,—,+,I:I,—,ﬂ] [+ _1+1n:n1_:|
[+.|—||:|..+.|—||:|] I:-'_'|'|_11.:|:-'_'|ﬂ||_] [+ _1n|u1_1+:|
I:'I-1“: _1+1_||:I] [+"nl+:+"nl_] I:-|-:ﬂ1-|'|I:I'|"_1_:I
I:'I-11.]:ﬂ1+|_:_] I:rh-"l_:-'_'-_1“] I:I:I'|'|_1_|+:ﬂ1_:I
I:f:||+:+'-n|-'_:_] [n1+||:|1+1+|_] I:I:I'|n|-|_: _1+1_:|
Apn affine pletuee of & reallzatbon of the doal ordented matrold B glven In Figure
T.a(b). The minus-sign at point & Indicates that a reorlentation at point 6 has
taken plame. It 5 easy to check that the cireulis and the coclreuits Interchange
thede rode when dualizing the orlented matroid.

Figure 7.3 (¢) shows the coreesponding arcangement. of pseudolines. The elrele
bounding the configuration represents the projective line at Infinity eepresonting
line 6.

7.3 IMPORTANT CONCEPTS

In this sectlon we bricly Intpoduce some very hasle concepts n the theory of
arlented mateokds. The list of toples treated here §8 tallored towards some areas of
arlented mateokd theoey that are particulacly velevant for applications. Thus many
other toples of great Importance are left out. In particular, see [3, Sect. 3.3) for
minoes of orlented matroids, and [3, Chap. 7] for hasle constructions.

7.3.1 SOME VERY BASIC CONCEPTS

In the following glossary, we list some Tundamental concepis of orented matrokl
theory, Each of them can be expressed In terms of any one of the representatbons of
ariented matrobds that we have Introduced (covectors, coclreults, chirotopes, pseu-
doarrangements], but for each of these concepls some representations are much
mpre gonvenbent than others. Also, each of these concepts has some Interesting
properibes with respect to the duality operator — which may be more or less obvi-
ous, depending on the representation that one uses,
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GLOSSARY

Dhirvect sum:  An orlented matreld M = (K, ) has a divect sum decompaai-
fiom, denoted by M = AUE 1@ A EY), D E has a partltben into nonempty sub-
sets B and By such that £ = £y = £ for two orlented mateolds Ady = (B, Lo
and Ms: = (Esx, £q). IT M has no direct sum decompositbon, then It ls drre-
ducible.

Toopa and coloeps: A loop of A = [(E, L) Is an element ¢ € E that satisfies
O, =0forall ¢ € £ A coloop satisfies £ = £ % {—, 0.4}, where £ s ohtalned
by deleting the e-components fronn the vectors in £,

If M has a divect sum decomposition with By = {e}, then ¢ s either a loop or
a coloop.

Acyelic: An orlented matoold M = (B, £} Ior which (+... ., 4] € £ I8 a covector;
equivalently, the unkon of the supports of all non-negative coclreuits is E.

Totally epelic: An orlented matrold without non-negative eoclrealis;
equivalently, £ {0,+}% = {0}

Umiform: Anorlented matrold A9 of rank  on E Is wsmiform I all of lts coclreuits
have size |E| —d 4+ 1.
Equivalently, A4 I8 uniform if it has a chirotope with values In {4+, -}

M i realizable: There I8 a vector configuration X with A, = M.

Realization of M: A vector configuration X with A, = M.

THEOREM (Duality W): Lei M be an oriented matroid on the ground
get E, and A" ifs dusl

o M 3 acyclic if and only if M= is totally cyclic. (However, “most”™
oriented matroids are neither acyclic nor tofally cyclic!)

# 2 E i3 a loop of M if and only if it 42 a coloop af M=,

* M iz uniform if and only if M" 45 uniform.

* M iz g direct sum MIE) = MIE) &M E) if and only if M" i5 a divect
sum MU E] = MTE ) & M Ea).

Dality of orlented matrodds captures, among other things, the concepis of
lingar programming duality [1] (3, Chap. 10] and the concopt of Gale diagrama
for polytopes |19, Lect. 6). For the latter, we note hove that the vertex set of a
d-dimenslonal eonvex polytope P owith d4-k vertices yields & configuration of 44k
vectors in B9 and this an orlented matrold of rank d+-1 on d4+-& polnts. Tts dual is
a realkzable orlented matvold of pank E—1, the Fale diaggram of P. It can be modelled
by an afling polnt configuration of dimension k-2, called an affine (rale diggrasm
ol P. Henee, Tor “small™ E, we can represent. & (possibly high-dimensional) polyiope
with “few vertioes” by & low-dimensional peint confguration. In partlealar, this ia
heneficlal in the case kB = 4, wheee polytopes with “universal” behaviowr can be
analywed In torms of thelr 2-dimensional afline Crale diagrams. For Turther decalls,
see Chapter 14 of this Handbook.
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7.3.2 REALIZABILITY AND REALIZATION SPACES

GLOSSARY

Realization space: Let y: EY = {— 0,4} be a chirotope with x(1,....d) = +.
The realization space Biyx) Is the st of all matrices X € B*® wlih Xy = X amd
i =wlori=1,... d where & s the i-th unlt veetor, I A = the eorresponding
ariented mateobd, we write TAM] = T y).

Rational realization: A reallzatlon X € Q7™; that ks, a polnt In B(y) nQF".

Primary aemialgebraic sef: The (real) solutlon set of an arbiteary lolto systom
ol pelynomial equations and sirlet Inequalities with integer coelliclents.

“Exisgtenticl Theory of the Reala™: The problem of solving arblirary systens
ol pelynomial equations and Inequalitles with integer opedflclents.

Stable equivalence: A strong type ol arithmetls and bomotopy equlvalence. Two
semlbalgebrale sets are stably eguivalent Il they can be connected by a sequence of
rational coordinate changes, together with certaln projections with contractible
fibers. (See [17] for details).

In particular, two stably equivalent semlalgebralie sets have the same number of
components, they are homotopy equivalent, and elther both or peither of them
have rathonal polats.

It = one of the most exelting problems In oclenved mateold cheory o deslgn al-
gorithoms that fond a reallzation of & given orbentod mateakd 1T i exises. However, for
ariented matroids with a large numbers of peints one cannot be too optimisiie, sinee
the peallzability problem for orlenbed matmolds is NP-hard. This I8 one of the conse-
quences of Mody's Unlversality Theorem below. An upper bound for the worst case
complexity of the reallzability problem I8 glven by the following theorem. It follows
from general complexity bounds for algorlthmic problems about semialgebrale sets
Ly Basu, Pollack & Roy (2] {see also Chapter 30 of this Handbook).

THEOQOREM (Complexity of the best general algorithm known): The re-
alizability of a rank d oriented matroid on n poinds can be decided by solving
a system of 5§ = (7) real polynomial equations and strict inequalities of de-
gree at most D =d —1 in K = (n —d — 1)id — 1) variables. Thus, with the
algorithmsa of [2) the number of bif operations needed fo decide realizabslity is
{in the Turing machine model of complexity) bounded by (5/K)% . 5. DPK]

THE UNIVERSALITY THEOREM

A basie observatlon = that all orlented mateolds of rank 2 are reallzable. In
partleular, wp to change of orlentatlons and permuting the eements o E thero ig
anly one unktform orlented matrold of rank 2. The reallzatlon space of an orlented
matrold of rank 2 s always stably equivalent to some BT : In partieolae, T A4
I8 uniform of rank 2 on n elements, then WA} B Bomorphle to an open sulset

of B
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In contrast to the rank 2 case, Mofy's Unlversality Thegrem states that for
oriented matrolds of rank 3, the realization space can be “arbitrarily complicated.”
Here ks che fivst glimpse of this:

& The malleation spaces of all reallzable unilorm orlented matrolds of rank 3
and at most 9 elements are contractible (Richter [16]).

# There 18 a realizable rank 3 orlented matrold on 9 elements that has no real-
lzation with rational coordinates (Perles).

# There 8 a realleable rank 3 orlented matroid on 14 elements with disconnected
reallzation space [Suvorov].

The Tniversality Theorem s a lundamental statement with varbous lmplications for
the configuration spaces of varlous types of combinatorlal objects.

THEOQOREM (Mnév's Universality Theorem [14]):  For every primary semi-
algebraic sed V defined over E fhere 45 a chirofope v of rank 3 such that V
and R(x) are stably eguivalent

Although some of the facts o the following list were proved earller than Modv's
Universality Theorem, they all can be considered a8 consequences of the consteuc-
thon technigues used by Moy,

CONSEQUENCES of the Universality Theorem

# The full feld of algebralc numbers 8 needed to reallze all oelented matrokds
al rank &

# The realkzability problem for orlented mateolds s NP-hard (Modv, Shor).

& The reallzability problem for orlented matvolds 18 (polynomial thme) eguiva-
lent to the “Existential Theory of the Beals™ [Mndv).

# For every finite simoplicial complex A, there |5 an oflented matrodd whose
reallzation space |5 homotopy eguivalent to A

+ Bealkzability of rank 3 orlented matrolds cannot be characterlzed by exeluding
a fnite set of “forbldden minors” | Bokowskl & Sturmilels).

« In order to reallee all combinatorial types of Integral rank 3 orlented ma-
trofds on n elements, even uniform ones, in the Integer grid {1.2, ... _f[rl]}gl
the “coordinate slwe” functbon fln) has to grow doubly exponentially in o
(Gopdman, Pollack & Sturmfels).

# The “lsotopy problem™ for orlented mateolkds (Can one glven reallzation of Ad
be continwously deflormed, through reallzatbons, to ancther given one?) has a
negative solutlon In general, even for untform orlented mateolds of rank 3.

7.3.3 TRIANGLES AND SIMPLICIAL CELLS

There I8 a long tradition of studylng triongles In arrangements of pseudolines.
Already Levl in his 1926 paper [13] considered thom to be Important structires.
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There are good reasons for this, On the one hand, they lorm the slimplest possible
cells of full dimension, and are therefore of haske Interest. On the other hand, i
the arrangement = slmple, tdangles locate the regions where 3 “smallest™ local
change of the comblnatorial type of the arrangement s possible. Such & change can
be performed by taking one side of the triangle and “pushing” I over the vertes
formed by the other two sldes. It was observed by Ringel [18] that any two simple
arrangements of pseudolines can be deformed Inte one anpther by performing a
sequence of such “trlangle fips.”

Moreower, the reallzability of & psewdoeline arrangement may depend on the
sliuation at the trlangles, For Instance, Il any one of the triangles in the non-
reallzable example of Figure 7.2 gther than the contral gne 1s Qlpped, the whole

configuration bhecomes reallzable.

MAIN RESULTS on triangles in arrangements of pseudolines

Lot P be any arcangement of n psewdollnes,

# For any pseudoline € in P there are at least 3 telangles adjacent to £
Either the n—1 pseudolines different feom £ Intersect In one polat (Le., P s a
near-pencil), of there ave at beast » — 3 trlangles that are not adjacent to £.
Thus P contalns at least n triangles {Levl).

o Pls gimplicial Il all its reglons are bounded by exactly 3 (paoudo|lines.
Except for the near-pencils, there are two lofinite dasses of slmpliclal line
arrangements and 91 additional “speradie”™ slmpliclal line arrangements |and
many moee simpliclal peendoarcangerments) known (Grilnbaom].

# Il P ls slmple, then it contalns at most 1'-“3—_';! triangles.

For Infinitely many s there exlsts & slople arrangement with M triangles
(Roudnef, Harbaorit).

& Any two slmple arrangements ™ and Py can be deformed Into one another
by a sequence of simplicial fAips (Ringel [18]).

Every arrangement of psewdospheres In 597" has a centrally symmetric repre-
sentatlon. Thus we can always derlve an arrangement of projective pseudobyper-
plancs (peeudo (d—2)-planes in BPY~") by identifying antipodal points. The proper
analogue for the telangles o rank 3 are the (d—1jp-simplices In peojective arrange-
meents of pseudohyperplancs In rank o, Le., the regions bounded by the minlmal
number of d peewdohyperplanes. We call an arcangement. semple Il no more than
d—1 planes mest In a polot.

It was conjectured by Las Vergnas in 1880 [12] that (as in the rank 3 case)
anmy two simple arrangements can be teansiormed Into each other by a sequence of
flips of slonpliclal reglons. In particular this requlves that every simple arrangement
containg af least ane slmplicial reghon (which was alse conjectured by Las Vergnas).
If we conslder the case of realkzable arrangements ooly, it 18 not diffleult o prove
that any two members o this subelass can be connected by a sequence of flips
ol slmapliclal peglons and that each peallzable arrangement containg at least one
slmplicial cell. In fact, Shanmon proved that esveey arrangement (even the non-
slmple) of » projective hyperplanes in rank o contains at least @ slmplicial reglons.
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Figure 7.4
A simple orrongement of 2B pasudolines
with @ mozimael number of 252 driongles.

More preclsely, for every hyperplane ke there are at least d simplices adjacent to
b oand at least 1 — o slmplices oot adjacent o f. The contrast between the Las
Vergnas conjectume and the results known for the noo-reallzable case & dramatie:

MAIN RESULTS on simplicial cells in psesdoarrangements

& There = an arrangement of 8 peeadoplanes o rank 4 having only 7 aloplicial
reglhong {Roudeedd & Sturmbels, Altshuler & Dokowskl).

« Every rank 4 arrangement with n < L3 pseudoplanes hag at least one slmpli-
clal region [Bokowskl).

« For evory k = 2 there s a rank 4 arrangement of 4% pseudoplanes having only
Ak + 1 simplicial reglons [Richier-(Giehert].

# There Is a rank 4 arrangement conslsting of 20 pseudoplanes for which one
plane = not adjacent to any slmplicial region (Richier-Gebert ).

OPEN PROBLEMS

The topie of simplicial eells I8 interesting and rich In structure even in rank 3.
The case of higher dimensions & full of unsolved problems and challenging con-
Jeciures. These probloms are relevant for varlous probloms of great geometrie and
topologleal Interest, such as the siructure of spaces of trlangulations. Three key
probloms are:

& Classifly slmplical arrangements, Is b teue, at least, that thore are only
finitely many types of slmpliclal arrangements of stealght lines outside the
thees known Infnite familles?



20 Jurgen Richter-Geberd and Giinter M. Ziggler

& Dipes every arrangement of psoudohyperplanes contain at lesst one sloplicial
reghon?

# Is Ii true that any two shople arrangements can be transformed Into one
another by a sequence of Hips of simplicial reglons?

7.3.4 MATROID POLYTOPES

The convexity properties of & polot configuratlon X are modelled superhly by
the oriented matrold M, . The combinatorial versions of many theorems coneern-
ing convexity also hold on the level of general (Including non-realizable) oelented
matrolds. For Instance, there are purely combinatorlal verslons of Carathedory’s,
Radon's, and Helly's Theorems [3, Sect. 8.2].

In particular, oriented mateold theory provides us with an entieely combina-
torial model of convex polytopes, known as “mateobd polytopes.” The followling
definitlon provides this context In ternas of Gace latiioes.

DEFINITION (Matroid polytope): The face lattice of an acyelic orlented ma-
trodd M = (E. L) 18 the st

FLiM) == {C" : ¢ e £n{D,+}5},

partially ordered by lnclusion. The elements of FL{ A} are the foces of M. A I8
a matroid polytope if {e} Is a face for every e € E.

Every polytope ghves rlse to & matrold pelytope: f P € B? Is a d-polytope with
1 vertices, then the canonical embedding x « 7] creates a vector configuration
Xp of rank 41 from the vertes sot of P. The orlented matrold of X p I8 a mateold
polviope M e, whose face latiloe FL{A ) Is canonleally Bomorphle 1o the feeo lattlos
ol P.

Matrold polytopes provide a wvery precise model of (the combinatorial structuee
al ) comvex polytopes. In particular, the Topologleal Representation Theorem lm-
plies that every mateakd polytope of rank d is the feo lattlee of a regular plecowlse
linear (PL} eoll decomposition of & (d—2)-apher. Thus mateold polytopes [orm an
excpllent combinatorial model for convex polytopes: In fact, mech better than the
medel of PL spheres (which does not have an entirely eomblinatorial definltion).

However, the consteuctlon of a polar falls In geneeal for mateold polytopes.
The eellular sphores that represent matrold polytopes have dual cell decom positbons
[(because they are plecewise linear), but this dual cell decompositbon 18 nod o general
a matrold polytope, even In rank 4. [Billera & Munson; Bokowskl & Schuchert [6]).
In other words, the order dual of the face lattios of & mateold polyiopo (a8 an
abstract lattice) B not in general the [aee lattiee of & mateold polytope. (Matrold
polyvtopes form an lmportant tool for pelytope theory, not only beeause of the parts
ol polytope theoey that work for them, hut also beeauso of these that Fall.)

For every matrold polytope one has the dual orlented mateold (which = totally
cyvelle, honee not a mateobd polytope). In partbeular, the set-up for Gale diagrams
generallees o the Tamework of matroid polytopes; this makes [t possible to also
Include noo-polytopal spheees o a discussion of the realleability propertles of poly-
topes. This amounts w pechaps the most poweeful siogle tool ever developed for
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poelviope theory, It leads vo, among other things, the classification of d-dimensbonal
polviopes with at most d43 vertbees, the prool that all matrold polytopes of rank
d41 with at most d43 vertiees ave realkzable, the constroction of non-rational poly-
topes, a8 well 38 of non-polytopal spheres with d4-4 vertloes, ee.

ALGORITHMIC APPROACH to the classification of polytopes

A powerlul approach, via matrodd polytopes, to the problem of classilying all
convex polytopes with glven parameters I8 largely due {0 Bokowskl and Sturm-
fels [7]. Here we restrict our attention to the simplicial case — there are additbonal
technbeal problems to deal with in the non-simpliclal case, and very litke work has
been done theee, as yei. However, the program has been suecesslully completed for
the classifcation of all simplicial J-spheves with 9 vertbees (Altshuler, Bokowak] &
Svelnberg) and of all nelghboely S-spheres with 10 vertices (Bokowskl & Shemer)
it polytopes and non-polytopes. At the core of the mateoldal approach les the
Tollowlng hierarchy:

(Hlmp]ilﬂa]} ( unkborm ] ( COnVEx ]

— — .
apheres matrold polytopes pralytopes
The plan of attack Is the Iollowing. Fimst, one enumerates all lsomorphism types
ol slonplicial spheres with given parameters. Then, for each sphere, one computes
all (untform} mateold polytopes that have the glven sphere a8 thelr lace lattloes.
Flnally, for each matrold polytope, one teles to declde pealkzahilicy.

At boih of the steps of this hlerarchy there ave conslderable subtleties Involved
that lead to important insights. For a glven simplicial sphere, there may be

+ no mateold polytope that supports . In this case the sphere 1 called non-
matroidal The Barnette sphere (3, Prop. 9.5.3] ks an example.

& eractly one matrold polytope. In this (Important) case the sphero I8 called
rigid. That 5, a matrold polytope AM I8 rigld f FL{A") = FL{A) already
implies A" = M. For elgld matrold polytopes the face lattices uniquely defines
the orlented mateold, and thus every statoment about the matreld polytope
ylelds a statement about the sphere. In particular, the matrold polytope and
the sphere have the same realkzatlon space.

Rligld matrold polytopes are a priorl rare; however, the Lawrence construction
[3, Sec. 9.3]) [19, Sect. 6.6] assoclates with every oriented matrold A4 on n
ebements In rank d a rlgld matoodd polytope AUM]) with 20 vertices of rank
7+ d. The reallzatlons of A} can he retranslated Into reallzations of M.

# or many mateold polytopes.

The situation k= slmilarly complex lor the second step, ffom mateokd polytopes to
convex polytopes. In [act, for each mateold polytope there may be

# o convex polytope — this Is the case for & non-realizable mateobd polytope
These exist already with relatively few vertioes: namely In rank 5 with @ wer-
tices (6], and In rank 4 with 10 vertices [3, Prop. 9.4.5).

& egspntially only one — this s the rare case whore the mateold polywope 8
“projectively unlgue.™
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& or many eonvex polviopes — the space of all polytopes for a glven matrokd
polyviope I8 the reallzatlon space of the orlented matrobd, and this may be
arbitrarily complicated. In fact, a comblnation of Mody's Unlversality Theo-
rem, the Lawrence construction, and a scattering technigue (7, Thm 6.2] (in
arder to ohtaln the simplicial case) vields the Iollowing amazing Universality
Theoremn.

THEOQOREM (Mnév's Universality Theorem for Polytopes (14):  For eo-
ery [open| primary semialgebroic sef V' defined over I there i3 an integer d
and o [simplicial] d-dimensional polyfope P on d+4 vertices such that V and
the realizabion space of P are stably equivalent.
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FURTHER READING

(1]
2

4

The basle theory of grienbed matroids was Inteoduced In we lundamental papers,
Bland & Las Vergnas [4] and Folkman & Lawrence [8]. We refer to the monograph
Ly Bjiirner, Las Vergnas, Sturmfels, White & Zlegler [3] for a broad Introduction,
and for an extensive development of the theory of orlented matmolds with a peason-
ably complete biblography, Other Introductions and basic sourees of Information
include Bachem & Hern [1], Bokowskl (5], Bokowski & Sturmiels |7, and Zlegler
[19, Lect. 6 and 7).
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