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ORIENTED MATROIDS
Jirgen Richter-Gebert and Ginter M. Ziegler

INTRODUCTION

The theory of erienled matroids provides a broad setting in which to model, de-
geribe, and analyee combinatorlal propertbes of geometrle configurations. Mathe
matical objects of study that appear to be disjolot and Independent, such as poind
ard decior configuralions, arrangements of hyperplones, conver polplopes, directed
graphs, and Mnear grograms find & common generalization in the language of orl-
ented matrodds.

The orbeated mateold of a Onlte set of polots P oextracts relatbee positlon and
orientation Information fvom the configuration; for example, it can be given by a
list of signs that encodes the orlentatbons of all the bases of P. In the passage
from a concrete polot conflgueation to s ordented matoold, metrical Information
i3 lost, but many structucal properibes of I have thelr counterparts at the—purely
comblinatorial—level of the orlented matnold.

W fiest Inteoduce orfented matrolds in the context of soveral models and me-
tlvations (Section G.l). Then we present some equivalent axiomatizations |(Sec-
tbon 6.2}, Floally, we discuss concepis that play centeal moles o the theoey of
oriented matroids [(Section 6.3), among them deelily, realizabdlily, the study of
sermplicial celle, and the teeatment of conmesip

6.1

MODELS AND MOTIVATIONS

This sectlon discusses geometrle examples that ape usually treated on the level of
concrete cogrdinates, but where an “oriented matrold polot of view" glves deeper
insight. We also present these examples 38 standard models that provide Intulilon
for the hehavior of general orlented matrolds.

6.1.1 ORIENTED BASES OF VECTOR CONFIGURATIONS

GLOSSARY

Vector conflguration: A matrix X = (x,,...,2,) € (B*)", usually assumed to
hawve full rank d.

Matroid of X: The pair M, = (E, 5 ), where E = {1.2,....,n} and G, i
the set of all (column index d-sets) of bases of X
Matroid: A pair M = (E, B}, where E Is a finite set, and B < 2F Iz a nonempty
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collectlon of subsets of E (the bases of M) that saclsfies the Steinitz exchange
axiom: For all By, By € B and e € B\ By, there exists an [ € Bo\ By such that
(Bi\elu f € B.

Signa: Elements of the set {—,0, +}, used as a shorthand for the corresponding
elements of {—1,0,41}.

Chirotope of X: The map

Nyt Ef & [-.0.4}
(Aps-oooAg) o slgnidet(zy,,. ...z, )0

Ordinary {unorlented) mabrodds, as Introduced in 1935 by Whitney (see Kung
Kunkd], Oxley [(0x192]), can be considered as an abstraction of vector configu-
ratlons In folte dimensional vector spaces over arbitrary fields. All the hases of
a matrold M have the same cavdinality o, which I8 ealled the rank of the ma-
teold. Equlvalently, we can ldentily M with the characterlstic Tunetlon of the hases
By EY {0, 1}, where By (A) =1 If and only If {A,..., A} € B.

One can phtaln examples of matrolds as lollows: Take & finlte sed of vectors

X ={r,23....,2,} C K*

of rank d In & finite-dimensional vector space K* and conslder the set of bases of K¢
formed by subsets of the points In X, In othoer words, the pair

M, =(E,B,]= ( [Loooonb, d{hae oAb | detizs, - za.) ;en]:]

forms a matrolbd.

The baske Informatlon about the Incldence structuee of the polots n X 18 con-
talned In the underlying matrold M, . However, the matrold alone presents only
a weak model of & geometrle configuration; for example, all confgurations of n
polots In genemld pogition n the plane [(Le., no three peinis on & line) have the
game mateokd M = L% 4 here no Information beyond the dimenslon and siee of the
configuration, and the fact that it s In general posiibon, 1s retalned for the mateold.

In contrast 1o matrodds, the theory of eriented mafreids considers the stroc-
ture of dependencies In wecior spaces over erdered felds. RBoughly speaking, an
orfented matrold = 8 mateold where In additlon overy basis 5 equipped with an
orfentation. These oriented bases have to satisly an orbented version of the Steinlts
cchange axiom (Lo he described later]. In other words, orlented mateolds not
only deseribe the Ineldence structure hetween the polnis of X and the hyperplanes
spanned by points of X (this 1s the matrodd Informatlon); they also encode the po-
gitlons of the polois relative to the hyperplanes: “Which points lie on the posiiive
gide of & hypeorplane, which polnts le on the negative side, and which lie on the
hyperplane? IT X € (K4 Is a conflguration of n polots in a d-dimenslonal wee-
tor space K over an ordered field K, we can deseribe the corresponding erlented
matroid x, by the function:

Kyt EY o {04}
[Ag,ooo gl o~ slgnldet(zs, ... 2l
This map x, k& called the ehirotope of X and Is very closely related to the
orfented matrold of X. It encodes much move Information than the oorrespond-

Ing matrold, Ineluding orlentatbon and eonvexlity Information about the underlying
configuration.
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6.1.2 CONFIGURATIONS OF POINTS

GLOSSARY

Affine point configuration: A matrix P = {p,....pn) € (R, usually
assumed to hawve full rank o — 1, Le., to aflinely span B™7.

Assaciated vector configuration: The matrlx X £ []t'!]" obtalne] from a
polot configuration by adding a row of ones. This corresponds to the embedding
of the affine space B Into the linear vector space BY via pr— = (¥).

Oriented matroid of an affine point configuration:  The orlented matrold
of the assodated vertor conflgueation.

Covector af a veclor configuraion X Parltion ol X = (x5, ..., 2, ) Induced
by & lnear hyperplane, Into polots on the hyperplane, on its positive side, and
ont ks negative side.

Oriented matroid of X: The collection £ C {—.0, 4} of all covectors of X.

Lot X = (#,.....2.) € [R¥)™ be an 1 » d matrix and let B = {1,... n}. Wa
Interpeet the columng of X as n vectors In the d-dimenglonal real veetor space B,
For a linear funetional y7 € (B¥)" we sot

Oy () = (signiye ). . sign(y’ . ))

Such a slgn vector 5 called a epwvector of X, We depcde the collection of all
covectors of X by

£, =10, (w) | we R
The palr My = [E, Ly ) Is called the oriented mabroid of X. Here each sign
veetor Oy (g € £y deseribes the pesitlons of the vectors oy, ..., 20 velative to the
linear hyperplane Hy = {x € B! | 47 = (}: the sels

Colw)® = {e€E|C,(v)e=0}
Coly)t = {e€ E|Cy (vl >0}
Coly)- = {e€E|C,(y), <0}

deseribe how H,, partitions the set of peints X. Heee '\ (41" eontalns the polots
on H,, while ' (y)* and ' (y)~ contain the polots on the positive and on the
negative side of Hy, respectively. In particular, i O (y)~ = B, then all polnts not
on M, lie on the positive side of H . In other woeds, in this case H, determines a
face of the posltive come

p::ﬁ.[th-..,:r.]::{ M ezt .o+ dama 0SS NERfor 1 < :_:n}

of all points of X. The face lattice of the cone pos{ X} can be recovered from £ .

It ks slnply the set £, {+.0}E, partlally ordered by the order induced from the
relation <0 < +.7

IT, In the econfiguration X, we have £ 0 = 1 oz all 1 <1 < n, then we can con-
gider X as representing homogeneous coordinates of an affine point set X7 In r-L
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Here the affine polnes corpespond to the orlginal points &5 after removal of the dih
coordinate. The face lattioe of the convex polytope conv( X} E*' is then iden-
tkcal to the face lattice of pos(X). Hence, M, can be uwsed to recover the conver
Ferall ol X',

Thus oriented matrolds ave generallzations of polnt conflgurations In lloear oe
afflne spaces. For gencral orlented mateolds we weaken the sssumpilon that the
hyperplanes spanmed by polats of the conflguration are fat to the assumption that
they only satlsly certaln topolegical Ineldence properiles. Nonetheless, this kind of
pleture s sometlines misleading sinee not all eriented mateolds bave thils type of
representation (eompare the “Type IT representations™ of [BLET93, Section 5.3]).

6.1.3 ARRANGEMENTS OF HYPERPLANES AND OF HYPERSPHERES

GLOSSARY
Hyperplane arrangement M:  Collection of (orlented) linear hy perplanes in B9,
given by normal wecbors ..., %,
Hymperaphers arrangement induced by MW Intessectlon of H o with the wnlt
aphere 591,

Covectors of #:  Sign vectors of the cells in #; equivalently, O together with the
slgn vectors of the cells in # M 8§91,

We obtaln a diflerent pleture I we polariss the slteation and consider fig-
perplane arrmngements rather than configurationss of polnts. For a real matelx
X={£1,....2u) € I:li:l" consider the system of hyperplanes H . := (Hi,..., Ha]
with

H; = {]:.I e Rd | yT:i:i = ﬂ']--

Each vector & Induces an orientation on H; by defining
HE o= {ye B |y"x; >0}

to b the poaitive side of H;. We define H. analogously 1o be the negative side
of H;. To avold degencrate cases we assume that X contalns at least one proper
hagls (e, the matrix X has rank ). The hyperplane arrangement H . subdivides

RB? Into polyhedral cones. Without Joss of Information we can Inteesect with the
unit sphere 591 and consider the sphere system

&, = (Hyn&' L H.n§ ') = H, nsl

Our assumptlon that X contains at least one proper basls tanslates 1o the fact
that the Intersection of all Hy n...n H, 1541 5 empty. M, Induces a cell
decompasition T{&, ) on 5d-1_ Each [ace of I'{&, ) corresponds (o a sign vector in

{—.,0, +}* that indicates the position of the cell with respect to the {d—2)-spheres
H;n 5% {and therefore with respect to the hyperplanes H;] of the arrangement.
The list of all these sign vectors I8 exactly the zet O of covecton of W, .

While the visualization of oriented matroids by sets of points In B™ doss not
fully meneralkze to the case of nonrvepresentable oriented mateolds, the pleture of
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FIGURE 6.1.1
An agrmngemend of nine great cireles
on 5%, The arrengemend correspends o a

Fappus configurmtion.

hyperplane arrangements has & well-defloed extensbon that also covers all the non-
realizable cases. We will see that as a consequence of the topologleal representation
theorem of Folkman amd Lawrence (Section 6.2.4) every rank-d oslented matrold
can bhe represented as an arcangensent. of orlented pseudespheres (or pseudoby per-
planes) embedded In the $4' (resp. in ll']- Arcangements of pseudospheres are
systems of topological {d—2)-spheres embedded in 59" that satisfy certain inter-
sectbon properibes that clearly hold In the case of “stralght” arrangements,

6.1.4

ARRANGEMENTS OF PSEUDOLINES

GLOSSARY

Pseudoline: Simple closed curve pin the projective plane RP? that ks topologl-
cally equivalent to a line {Le., there Is a self-homeomorphism of BP? mapping p
to a stralght line}.

Arrangement of pseudolines: Collectbon of psewdolines T = (... ) In
the peojeciive plane, any two of them Intersecting exactly once.

Simple arrangement: No three psendolines meet In a common polnt. [Equlva-
lemily, the assoclatod orfented matrold I8 wmiform)

Equivalent armnugements: Arrangements T and Py that generate somorphle
cell decompositions of BPY. (In this case there exisis a selt-homeomorphiso
of BP? mapping Pt Pa.)

Stretchable armangement of paeudolines:  An arrangement that = eguivalont
to an arrangement of peojective lines.

An grrangemend of prewdolines In the projective plane & a collection of psew-
dolines. such that any two peeudolines lnbersect In ecactly one polot, where they
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cross, (See Grilnbaum [GriT2] and Richier [RicB8).) We will always assume that
T Is egaential, Le., that the Intersection of all the peeudolines 8 enply.

An arrangement of peeudolines behaves In many pespects just like an arcange-
ment of n lines In the projective plane. (In [act, there are only very few combi-
natorial theprems known that are teae for straight arrangements, but nod true in
general for pseadoarcangements.) Flgure 6.1.2 shows a small example of & non-
siretchable arrangement of psendolines. (It = et as & challenging exercise o the
regder to prove the nonstretchability.) Up wo lsomorphism this s the only slople
nonstretchable arrangement of 9 pseudolines [RicB8, Knud2); every arrangement of
8 (or fewer) pseudolines Is stretchable |[GP&(].

-

FIGURE 6.1.2
A nonstreichoble armngemendt of nine preadolines. [t was obdained

by Hingsl [Bin5d] as a periuriation of the Pappus configurodion.

T asscclate with a projective arrangement T an oebented matrokl we represent
the projective plane [as customary) by the 2-spher with antipodal points klentl-
fled. With this, every arrangement of psewdolines gives rise to an arrangenvent of
greal pseudocireles on 5%, For each great pseudocircle on §° we choose & positive
side. Each cell induced by P on 5% now corresponds to & unigue slgn vector. The
collection of all these sign vectors again forms a set of covectors Cp\{0} of an
oriented mateold of rank 3. Conversely, as a speclal case of the topological rep-
resentatlon theoretn, every orlented matrodd of rank 3 has a representation by an
priented peendoline arrangement.

Thus we can use pseudoline arrangements a8 & standard pleiure to represent
rank-3 orlented mateolds. The easbest pleture s obtalned when we restrict ourselves
to the upper hemisphere of 5% and assume w_lo.g. that each pseudoline crosses the
equator exactly onee, and that the crossings are distinet (Le., no Intersection of
the great pmewdociecles les on the equator). Then we can represent this upper
hemisphers by an arrangement of mutwally crossing, oriented affine pseudolines in
the plane B*. {We did this implicitly while drawing Figure 6.1.2.) For a recent and
reasonably elementary proal of the fact that rank-3 orlented matrolds are equivalent
to arrangements of pseudolines see Bokowskl, Mock, and Streinu [BMS01].

By means of this equivalence, all problems concerning peeudollne arrangements
can be translated to the language of orlented mateolds. For Instance, the problem
of stretchabllity s equivalent to the realizahility problem for osiented mateolds.

6.2

AXIOMS AND REPRESENTATIONS

In this sectlen we deflne orlented mateolds formally, It 1s one of the maln features
of orlented matrodd theory that the same object can be viewed under guite dif-
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fevent aspects. This results in the [act that there are many different eguivalont
axlomatizations, and It & sometimes very useful to “jump” from one polot of view
to another. Statements that are diffleult 1o prove In one language may be easy
in another. For this reason we present here several diflerent axiomatizations. We
also give & (partial] dictlonary that Indicates how to translate among them. For a
complete verslon of the basic equivalence prools—which are highly nontrivial —see
BLS* 93, Chapters 3 and §).

We will give axlomatizations of orlented matrokds lor the Tollowling four Ly pes
of representations:

o Collections of covectors,

o Collections of coclreulis,

& Slgned hases,

a Arrangements of pseudospheres.

In the last part of this sectlon these concepts are lusirated by an example.

GLOSSARY

Sign vector: Vector O In {— 0.4}F, where E Is a finlte Index set, usually
{1,....n}. For e € E, the e-component of 7 18 denoted by ©,.

Poaitive, negative, and zero pard of O

Ct = {ee BE|C.=+},
0= = {e€ E|If-'.=—]-,
&% = fe€ E|C. =0}

Support of C: C:={ec E|C, #0}.

Zero vector: 0:=(0,....0) € {—0,+}%.

Negative of a aign vector: —O, defined by (=2 =07, (=) =07 and
[—"™ =",

Ce MO #0,

D.  oiheralse

Separation ael of C and D: S0, D) :={ec E|C, =-D, #0}.
We parilally oeder the set of slgn vectors by *0 < +7 and 50 < —." The

partial order on slgn vectors, dencded by O < 0 5 understood componentw e
equivalently, we have

Compoaition of C and D¢ (Ce D), :={

<D [EZ""::D‘ a.m:lf'."cﬂ‘].

For Instance, If O = {4, 4. — 0, — 4+, 0,0} and I := (0,0, — 4,4+, —, 0. =}, then
we haye:

O = {126}, O~ ={15}, °={47.8), C={L2.356}
Enﬂ=¢+:+1_1+1_|+:n1_:|1 Eﬁﬂzﬂl SI:E'D] ={5'“}

Furthermare, for 2 € B", we deaote by afz] € {—,0,+}* the lmage of £ under the
componentwise sign function & that maps B to {— 0,+}5.
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6.2.1 COVECTOR AXIOMS

Definition: An oriented matroid given in terms of its covectors s a palr M =
(E, L), where £ € {—,0,+}F satlsfles

[COVE) 0 € £
[CV1) Cef = &L
(CV2) C.DeEL=CeDe L

(CV3) C.D e L, e € 5(C.D) =
there lsa Z € £ with Z, = 0 and with Z; = (C = D); for [ € E\S(C, D).

It is pot difficult to check that these covector axboms ave satisfled by the slgn
vector system £, of the cells in a hyperplane arrangement # ., as defined in
the last sectlon. The frst two axboms are satlsfied telvially. For (OV2) assume
that £~ and rp are points In BY with e{zf - X) = C € £, and ofz], - X) =
De £,. Then (CV2) s implied by the fact that for sufliciently small € > 0 we
have o({zo + 2T - X1 = £ o 0. The geomeirle content of (CV3) & that I
H, = {y € B? | 3Tz, =0} Is a hyperplane separating ro and ¥y then there exisis
a polnt £z on H, with the property that £ 18 on the same side as - and 25 for
all hyperplanes not separating - and 5. We can find such a polot by Inteesecting
H, with the line segment that connects - and x5

As we will see later the partially ordered set (£, <) descelbes the face latibee of
a cell decompositlon of the sphere 4 by peeudohyperspheres. Each sign vector
corresponds to a face of the cell decomposition. We define the mank dol M = (E, L)
to be the (unkgue) lengih of the maximal chalns n (Z, <) minus one. In the case
of realizable arrangements &, of hyperspheres, the lattiee (£, <) equals the face
lattice of (&, )

6.2.2

COCIRCUITS

The covectors of (Ineluslon-)minimal support In £4{0} coreespond Lo the O-faces
[= wertiees) of the cell decomposition. We call the sec C7 (A of all such minbmal
covectors the sacirenits of A. An orlented matrold can be deseribed by 18 set of
coclreults, as shown by the following theorem.

THEOREM 6.2.1 (Cocircusd Characferization

A eollection €* € {—,0,+}F iz the sat of cocircuils of an oriented matroid M if
ard ondy o i salisfies

(CCD) 0gc
(CCL) Cel = el
OC2) Foral CDEC wehave: D= {=Daor C=-I

(OC3) C.DEeC”, C#—D, and e € 50, D) =
there is a Z € C with 2+ C (O U D)\ e} and Z- C (O~ U D~ )\ e}
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THEOREM 6.2.2 Covector/Cocircust Translotion

For enery ortendad malroid A, one mn uniguely delermine the sel C° of cogreuils
Jromn the sef £ af coectors of M, and cmversely, as follews:

(1) C° ie the get of vectors with minimal support fn O\{0}:
C*={C e\ {0}} | CF = 0= ' € {0,0}}
(1) £ ds the sef of all sign veclors ebloimed by successive composilion of a finide

number of cocircuils from 07
C={Cho.. ol |k=0 Ch,....Ce e 7L

6.2.3 CHIROTOPES

GLOSSARY

Alternating sign map: A map y: EY — {—.0,+} such that any transposition
of two components changes the sign: yirg(A)) = —x(A).

Chirotope:  An alternating sign map y that encodes the basis orlentations of an
oriented matrold A of rank d.

We pow present an axbom system for cfurolepes, which charactorizes orlenved
matrglds in terms of basls ordentations. Here an algebrale connectlon to deter-
minant Wentites hecomes obyvlous. Chirotopes are the maln tool for translating
problems In orlented matrold theory to an algebrale setting [BS38a). They also
form a description of orlented matroids that & very practical for many algorithmie
purposes (for Instance In computational geometry; see Kouth [Kou92]).

Definition: Let B := {1,.... 0} and 0 < d < 0. A chirotope of rank d Is an
alternating slgn map y: E? — {—.0.+} that satisfles
(CHI1) The map [x]: B — {0, 1}, A~ |x(A)]| 5 & matmoid, and

(CHIZ) For every A € E*" and a, b, c.d € E\X the sei

{ xlrab)-xed), —x(dae)-xdbd), xihad) - xdbe }
either contalng {—1, 41} or equals {0}.

Where does the motlvation of this axlomatieation come eom? IT we agaln
consider & conflguration X := (xy,...,2.) of vectors In B?, we can ohserve the
followlng identity among the d = d submatrices of X:

i Tl H TR PR S Y R o1 € R ORI S |
el (57 YRR S - 5 I o € - R RN S ) |
+ det(ey, ..., Ey,

-1121121] - d'“”:r.hl i '12.?.4_9: L. J'-l.'] = 0

for all X € B2 and a,bed € EVA Such a relation Is called a three-ferm
Gragamann-Flicker identity. I§we compare this identity 1o our axlomatlzation,
we spe that (CHIZ) loplies that
Xyt Ef o {—.0+}
[":'Il"'r:"'d:l = ngu[dnttrlll"'1ij|ﬂ]]
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Is consistent with these kdentities. More precisely, if we consider x, as defined
above [or a veetor conflguration X, the above Grassmann-Flikcker identliios oply
that (CHI2) s satlsfied. (CHIL) i8 also satlsfled sioee for the vectors of X the
Stelnite exchange axiom holds, (In fact the exchange axiom 5 a8 consequence of
higher order Grassmann-Plicker dentliies. )

Consequently, ¥y 15 & chirotope for every X € ili‘rjl“. Thus chirotopes can b
considered as & comblnatorlal model of the determinant values on vector configu-
ratlons. The following & not easy 1o prove, but essential.

THEOREM 6.2.3 Chirofope/Cocircuit Translation
For each chirotope x of rank d on E:= {1,... n} the set

e = { e D.dr 2, oxidn) | A e B

Jormas the sel of cocirenits of an oriented malroid. Conuversely, for every oriented
matroid A with cocirenits 7 there exists o unigue pair of chirotopes {x. —x | such
that C™iy) =C"(—y) =C".

The reteanslation of coclecults Inte algns of bases b8 stealghtforward but needs
ctra notation. It 1s omitted here.

6.2.4 ARRANGEMENTS OF PSEUDOSPHERES

GLOSSARY

The (d—1)-sphere: The standard unit sphere 591 = {r € BY | |lz]| = 1}, e
any homeomorphle lmage of L.

Paeudosphere: The lmage & © 59! of the equator { € 59! | z; =0} In the
unit sphere under a self homeomorphism ¢ 59-1 = 54-1_ [This definltion de-
seribes topologically tome embeddings of & (d—2)-spheee In 89 Pspudospheres
behave “nleely™ in the sense that they divide 59! Into two sldes homeomaorphie
to gpen [d—1)-halls. )

Oriented paendosphers: A meadosphore together with a cholee of a positive
glde gt and a negative slde s—.

Arrangement of paeudospheres: A set of n psendospheres In 5% with the
extea conditlon that any subset of d + 2 o fewer pseudospheres s realizabile:
it deflnes a eell decompesition of 52~ that Is lsomorphie to & decompositbon by
an arrangement of d + 2 linear hy perplanes.

Essential grrangement: An arcangersent such that the lnbersectlon of all the
peeudosphores I8 emply.

Rank: The codimension in $9' of the Intersection of all the pseudospheres. For
an essentlal arrangement in 591, the rank s d.

Topological representation of M = (E, £): An essentlal arrangement of
orfented paewdospheres such that £ 18 the sollectlon of slgn veetors associated
with the oells of the arrangement.

One of the most important lnterpretations of oelented matvolds s glven by
the topological representation theorem of Folkman and Lawrence [FLT8); see also
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BLS 93, Chapters 4 and 5] and [BKMS01]. It states that orlented matrolds are in
hljection to (comblnatorial equivalence classes of ] arrangemends of orienied peeu-
degpheres. Arrangements of pseudospheres are a topological peneralization of hy-
perplane arrangements, ln the same way In which areangements of peewdolines gen-
crallee line arrangoments. Thus every rank-d orbented mateold descelbes a cortain
cell decompositlon of the (d—1)-sphere. Arrangements of pseudospheres are collee-
thons of peeudospheres that have Intersection properties just like those satlsfied by
arrangements of proper subspheres.

Definition: A finite collection P = (& .8y, ..., &) of pseudospheres In 5% Is
an arrangement of preadospherss I the lollowing conditions hold (we st B =

{1,....m}):
(P51) For all A C E the sel 5y = [, 4%, I8 & topologieal sphere.

(PE2) IS,y ¢ s, for A C E.e € E, then 54N s, I8 a8 peendesphere In 5y with
shdes Sy Mel and 54 Me;.

Motlee that this deflnitlon permits two psewdospheres of the arrangemeat to he
identlcal. An entieely different, but equivalent, definition s given in the Glossary.

We sec that every essentlal arrangement of peeudosphercss P opartitlons the
[f—L]-sphere Into a regular cell complex T{P). Each eell of T{F) & unlguely de-
termined by a slgn vecior in {—,0,+}¥ encoding the relatlve poslilon with re-
apect o each pesewdosphere g;. Conversely, TP characterizes P up to homesmor-
phism. P Is realizable il there exists an arrangement of proper spheres 5, with
LiPy =TS, ).

The translation of arrangements of sewdospheres to orlenbed matrolds 1s glven
Ly the topological representation theorem of Folkman and Lawrence [FLT8)., as
follows. (For the definition of “loop” see Section 6.3.1.)

THEOREM 6.2.4 The Topological Representation Theorem (pseudosphere-
covector translation)

If P ix an essentiol areongement of peeudospheres on 591 then T[P) LU {0} forms
the ged of eonectors of an oriented malreid of mank d. Comversely, for every ordented
matvaid (B, £) of rank d (withoul loops) there ensls an essentinl arrangement af
peendospheres P oon 591 with T{P) = £\{0}.

6.2.5 DUALITY

GLOSSARY
Orthogonality: Two slgn vectors O, DN E {—, 0, +}H are grthogonal i the set
{C:-D.|e€ E}

either equals {0} or containg {+, —}. We then write & L 0.

Vector af Ad: A slgn vector that & orthogonal to all covectors of A3 & coveetor
of the dual orlented matoold A47.
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Cirenwit of A: A vector of minimal nonemply support; & coclreuit of the dual
oriented matrold A"

There Is a natural duality structure relatlng orlented matrolds of rank d on n
elements to erlented matrolds of rank n—d on i elements. It s an amazing Gact that
the exkstence of such a duallty relatlon can be used 1o glve another axlomatizatlon
of orlented matrolds (see [BLST03, Section 3.4]). Here we restrict ourselves to the
definition of the dual of an oriented mateokd M.

THEOREM 6.2.5 Duality

For guery oriented matraid M = (E, L) of rank d there 2 0 wndgue orentad malroid
A = (B, L7 of rank |E] — d ginen by

£ = {DE{-,u,+}“:|cLujormyﬂec}.

Ad® ie called the dual af M. In particular, (A7) = M.
In particular, the coclecults of the dual orlented mateolkd A=, which we call

the crenits of A, also determine A4, Hence the collection C{A4) of all cleculis of
an oebented matrold A4, gliven by

CIM) = M7,

is characterkzed by the the some cocleeult axboms. Analogously, the sectors of M
are obtalned as the covectors of A7 they are characterized by the covector axioms.

An oriented matrold A s realizable If and only I 18 dual A" I8 realizable.
The reason for this is that a matrix (I4)A) represents M if and oaly if (—A7 |[Ta-d)
represents AT, (Here Ty denctes a d » J ldentity matelbe, 4 € R4 and
AT e Rin—*d Jenotes the transpose of A.)

Thus lor a realizable orlented mairoid M.r the vecbors represent the linear
dependencles among the columng of X while the cleculis represent minimal lnear
dependencies.  Similarly. In the psewdeoarrangements pleture, elreoits corvespond
to minimal systems of closed hemispheres that cover the whole sphere, while wee-
tors correspond to eonsistent unlens of such covers that never requive the use of
hoth hemispheres determined by a pseudosphere. This provides a divect geometrie
Interpeetation of clrenlts and vectors.

6.2.6

AN EXAMPLE

We close this sectlon with an example that demonsirates the different representa-
thons of an orlented matrold. Conslder the planar polnt configuration X given in
Flgure 6.2.1{a).

Homogeneous ooordinates for X are given by

[ I

-3 1

-2 -2
2 -2
3 1
o

-
I
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FIGURE 6.2.1
An evample of en eriented matroid en § elements.
3 A 4
I'I lJ
3
2 k] 4 k]
] - - .
2} 1]
- - ]
'-J- -I .l -i-.. \
& 1
[EX] [T} i<l
The chirotope x5 of M s given by the orlentations:
xL33 =+ x(l,24)=4+ x(L25 =+ x(L26=+ xlL3d =+
x(L35) =+ x(L,3.6)=+ x(L45) =+ x({L4,6=— xL56=—
X234 =+ x(2,3.5) =+ x(23.6)=+ x(2,45) =+ x40 =+
x(25,6)=— x(3 45 =+ x(346)=+ x(3,56)=+ x{456 =+

Hall of the coclecults of A4 are given in the table helow (the other half s obtalped
by negating the data):

(0,0, 4.+, +, +)
[n1 1T _"nl _]
[+1n| s |:.h + +]
[+, 4+, 0.0, 4+, +)
(+. 4+, 4+, 0,0, 4]

“:I" _1n: +.+; +:|
“:I"_1_|'|-:'|-"ﬂ:I
¢+: |:.h_l_:':.h_:l
¢+: +1n|_:n1+:|
1_:+1 +1n: _"n:l

I:n: 2 _1n: +. _:I
[+, 0,04+, +.+)
|:+|I:I" _1_|+:|:|:|
I:"'l"':rh_l_:l:l:I
I:_I_:+" +,ﬂ|:|:|

Observe that the eocircults correspond to the polnt partitbons prodoced by hyper-
planes spanned by points. Hall of the cleeuits of A4 are given In the next tablbe
The clreuits correspond to slgn patterns Induced by minimal linear dependoncics

ot the rows of the matrix X, It B easy 1o check that every palr conslsting of a
cleeuit and & cocleeuwlt Tulfills the orthogonality conditbon.

(4. — 4, —. 0,0]
(4. —, 0. 4, —. 1)
(4.0, — 4, —, 0]
(. 0,0, 4+, —, —]
(0,4, +.0,4, -]

(+,— +.0,—.0)
(4. 4,0, 4.0,
(+. 0,4+, +,0,-)
0+, —, +,—.0)
(0, 4,0, 4.+, -]

(4, —. +.0,0,—}
(4, —. 00— +)
[+, 0,4, 0,4,—)
0, +,— +0,-)
0,0+, —+.—)

An afflne pleture of a reallzation of the dwal orlented mateold = glven In Flg-
ure G.2.1(b). The minus-sign at poiot § Indieates that a reorbentation at polod 6
has taken place. It Is easy to check that the eleculis and the cocrenits Interehange
thelr roles when dualizing the orlented mateold.

Figure 6.2.1[¢) shows the corresponding areangement of pseudolines. The clrele
bounding the conflguration represenis the projective ling at Infinlty representlog
line 6.
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6.3

IMPORTANT CONCEPTS

In this section we briefly introduce some veey basle conoepts In the theory of orlented
matrolds, The lst of toples treated heee ls tallored toward some amas of orlented
matrold theory that ame partleularly relevant for applications. Thus many other
topics of great importance are left out. In particular, see [BLS493, Section 3.3) for
minors of oriented matrobds, and [BLS193, Chapter 7] for basic constructions.

6.3.1

SOME BASIC CONCEPTS

In the following glossary, we list some lundamental coneepts of osiented matrold

theory., Each of them can be expressed In terms of any one of the pepresent atlons
of orlented matrodds that we have Introduced (covectoss, cocireuits, chirotopes,
Ernloarrangements |, but for each of these concepts some representatbons ave much
more convenbent than others. Also, each of these concepts has some Intercsting
propertles with respect to the duallty operator—which may be more or less obvlous,
depending on the representation that one uses.

GLOSSARY

Direct aum:  An orlented mateold A = [E, L) has o divect sum decompoai-
tion, denoted by M = MIE, (& MIEY),  E has a partition Into nonempty sub-
sets By and By such that £ = £, » £, for two orlented matvolds My = (B, L]
and Mo = (Ey, L0 IT A has no divect sum decompositlon, then It I8 frre-
ducthle.

Loops and coloepa: A loop of M = (E, L) Is an element ¢ € E that satisfles
Ce=010or all © € £. A coloop satlsfles £ 2 £ x {—, 0, +}. where £ I8 obtalned
by deleting the e-components ffom the vectors In £ 0 A has a dieect sum
decompesition with Es = {e}, then e 8 elther a loop or & coloop.

Aegelie oriented matredd: Ao orlented mateald A = [E, O) for which (4. ..., 4]
8 a covector In O: eqguivalently, the union of the supports of all noanoegative oo
clreuits 8 K

Totally eyelic oriented matroid:  An orlented matrold without nonnegative
coclrculis; equivalently, £ {0, +35 = {0}.

Uniform:  An orlented matrold M of rank d on E =& uniferm i all of s cocle-
culis have size |E| —d 4 1. Equivalently, A is uniform I i has a chirotope with
values In {4+, —}.

A is realizable: There Is a vector configuration X with M, = M.

Realization of AM: A vector configuration X with M, = M.

THEOREM 6.3.1 Dwality I
Lat M be an ordented matreid o the ground set E, and M* ils dual

o A is aegelic if and ondy o M* ds lofelly epelic. (However, “most™ orienlad
malroids are neither acyelic nor totally cyelie!)
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o g £ Eigaleop of M af and only if € 5 a coloop of A7,

o M ds andform f and ondy i AT s wngforoo

o A dig a direct sum ME) = MIE) & M E) if and enly if MT s a divest
sum MTE) = M E) ) & M Ez).

Duality of orlented matrolds capiures, amoeng other things, the concepts of
linear programming duality [BK92) [BLSH93, Chapter 10] and the concept of Gale
dlagrams for polytopes [Grig?, Section 5.4] [Zieh, Lecture 6. For the latter, we
ot here that the vertex set of a d-dimensional convex polytope P owith d+ & vertices
yields & configuration of d + & vectors In E""", and thus an orfented matrold of
rank d 4 1 on d + & polnts. Tis dual = & meallzable orlented matrold of rank kB — 1,
the Gale diggram of P. It can he modeled by an afling polot confguration of
dimension k — 2, called an affine Gale diagram of P. Heoce, for “small™ k.
we can peprescnt a (posslbly high-dimensional) polybope with “fbw vertless” by a
low-dirpenslonal polnt eonfiguration. In partbewlar, this 1s bheneficlal n the case
k= 4, where polytopes with “universal™ hehavior can be analyzed ln terms of thelr
2-dimensional affine (Gale diagrams. For further detalls, see Chapier 1§ of this
Handhook.

6.3.2 REALIZABILITY AND REALIZATION SPACES

GLOSSARY

Realization apace: Lot y: EY — [ 0,+} be a chirotope with x(1,....d) = +.
The realization spece T(y) 18 the set of all matelees X £ EY™ with Xy = ¥ and
= fori=1,... . d where ¢; = the ith unit vector. IF A I8 the correspondlng
orfented matvold, we welte TROM) = Riy).

Rational realization: A realization X € Q%" that Is, a polnt In R{y) 0 Q.

Buasie primary semiclgebigic saf:  The (meal] solution set of an arbiteary Onite
system of polynomial equatkons and stelet Inegqualitles with Integer coefficlents.

Ertatential theory of the reals: The problem of solving arblivary systens of
polynomial equathons and lnegualliles with Integer coefliclents,

Stable equivalence: A strong {ype of arlthmetie and bomotopy equivalence. Two
semlalgebrale sets ave stably equivalent if they can be connected by a sequence of
ratbonal eoordinate changes, together with certaln peojections with contractible
fibers. (See [REQS], and [RieBGa) for details.) In particular, two stably equivalont
semlalgebrale sots have the same number of components, they are homotopy-
eguivalent, and elther both or nelther of them have eatbonal polnes.

One of the maln problems In orlented mateold theory s to design algorithms
that find & pealkzatlon of a given eriented mateold i1t exlsts. However, for orlented
matroplds with large numbers of polnts, one cannot be oo optimistie, sinee the
realizability problem [or orlented mateolds s NP-hard. This Is one of the conse
cueenees of Mniw's unlversality theorem below. An upper bound for the woest-case
complexity of the pealkzabilicy problem s glven by the following theorem. It follows
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from general complexity bounds for alporithmle problems about semlalgebralc seis
Ly Basu, Pollack, and Roy [BPR96 (see also Chapter 33 of this Handbook).

THEOREM 6.3.2 Complexity of the Best Jeneral Algorithm Known

The realizability af a mnk-d eriented maolroid on n peinis con be decided by soluing
a sgetem of 8§ = () real polynomial squations and striet inequalities of degres at
mo D =d -1 m K =(n—d— 1){d— 1) cadables. Thus, wilh the algorithms
of [BPROG), the number of bit operations needed o decide realizability is (in the
Turing machine model of complesity) bownded by (57RO} - 5. DTS

THE UNIVERSALITY THEOREM

A hasle observatlon 5 that all orented mateolds of rank 2 ave reallzable. In partic-
ular, up to change of orlentatlons and permusting the elements In & there Is only one
uniform orlented mateobd of rank 2. The reallzatlon space of an orlented matrold
of rank 2 Is always stably equivalent to {0}; in particular, if A4 5 uniform of rank 2
on n elements, then R{A) s lsomorphic to an open subset of B*—1.

In contrast to the rank-2 case, Mofv's unlversality theerem states that foe
oriented matrolds of rank 3, the realkzatlon space can be “arbitrarily complicated.”
Here Is the fist glimpse of this:

& The roealleation spaces of all reallzable uniform orlented matrolds of rank 3
and at most 9 elements are contractible [Richter [Ric8S]).

o There 5 a reallzable rank-3 oriented matroid on 9 elements that has no real-
kation with rational coordinates (Perles [GrilGT, p. 93]).

a There 5 & realizable rank-3 oriented matroid on 14 elemenis with disconneeted
realization space [Suvorov [SuvBE|: see also Richter-Gebert [RicS6h] ).

The universality theorem = & fundamental statement with varlous lmplications for
the configuration spaces of various types of combinatorial objects.

THEOREM 6.3.3 Mnév's Universality Theorem |[Mniag)

For every basic pramary semiolpebraic sef ¥V defined mier E there 15 o elarofope ¥
of rank 3 such that V7 oand B(y) are stably sguiualent.

Alithough some of the facts In the following lst were proved eaclior than Modv's
unlversality theorem, they all can be considered as consequences of the constroction
technlgues used by Moy,

CONSEQUENCES OF THE UNIVERSALITY THEOREM

L. The [ull feld of algebrale numbers = needed to realize all orlented mateolds
of rank 3.

2. The realizability problem for orlented matroids I8 NP-hard (Mniv [Mniag),
Shor [Sho9l]).

3. The realleability profalem for orented matealds b8 | poly nomial-time- jeguivalent
to the “Exlstentlal Theory of the Reals” (Mniv [MnBEE]).
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4. For every fnlve simplicial complex A, there I8 an orlented matrold whose
realization space I8 homotopy-equivalent to A,

Reallzability of rank-3 orlented matrolds cannot be characterlzed by exclisding
a finite set of “forbidden minoes™ (Bokowskl and Sturmfels [BS89]).

6. In order to pealize all combinatorial types of Integral rank-3 orfented ma-
teolds on n eloments, even uniform ones, In the integer geid {1,2,.. ., ﬂﬂ]}",
the “coordinate slee™ function fin) has to geow doubly exponentially in «
{Goodman, Pollack, and Sturmfels |GPS90]).

T. The isotepy problem for orlented matrelds (Can one glven realization of A
b continuously deformed, through reallzatbons, to another glven one?) has
a negative solutlon In general, even for unlform orlented matrolds of rank 3
[IMSWED].

5'..1

6.3.3

TRIANGLES AND SIMPLICIAL CELLS

There 1s & long teadition of studylng triangles In arrangements of peeudolines. In
his 1926 paper [Lev2G), Lovi already consldered thom to be Important stroctures.
There are good reasons foe this. On the one hand, they form the simplest possible
cells of Tull dimension, and are therefore of basle Interest. On the other hand, T
the arrangement s slmple, telangles locate the reglons where a “smallest™ local
change of the combinatorial type of the arrangement §5 possible. Such a change
can be performed by taking one skde of the triangle and “pushing™ It over the
vertex formed by the other two sldes. It was observed by Ringel [RinSG) that
any two simple arcangements of pseudolines can be deformed Into one another Ty
perlorming a sequence of such “triangle fips.”

Moreover, the reallzability of a peeudoline areangement may depemd on the
situation at the trlangles. For Instance, i any one of the triangles In the nonpe
alkzable example of Figure 6.1.2 other than the central one I8 flipped, the whole
conflguration hecomes realizable

TRIANGLES IN ARRANGEMENTS OF PSEUDOLINES

Let P be any arrangement of n pseudollnes.

L. For any pseudoling £ In P there are at least 3 trlangles adjacent to £
Elither the n— 1 pseudolines dilferent from £ Intersect In one point (e, P ls a
mear-petseil ), or there are at least 0 — 3 wlangles that are not adjacent vo £
Thus P contalns at least n triangles (Levi [Lev26]).

2. P I aimnplicial I all its reglons are bounded by exactly 3 (paeudo]lines.
Except for the near-pencils, there are two Infinite classes of simplicial line
arrangements and 91 additional “sporadic” simplicial line arrangements (and
many more simpliclal psendoarrangements) known [(Grilnbaum [GrilT1]).

A P s slmple, then it contalns at most M irlangles.

For infinitely many values of i, there exlsts a slmple arrangement. with ﬂ“j—"l
telangles (Roudnel, Harborth).

4. Any two slple arrangements Py and P can be deformed Into one anothes
by & sequence of simplicial fips (Ringel [RinfS4]).
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FIGURE 6.3.1
A simple armangement of 28 paendelines
with o marimo! number of 252 frigngles.

Every arrangement. of pseadospheres in 7~ has a centrally symmetrle repre-
sentatlon. Thus we can always derlve an arrangement of projectlve pseudoby per-
planes { paoudo (d—2)-planes o ]tP“r'l] by Identifying antipodal polnis. The proper
analogue for the trlangles in rank 3 are the (d—1-simplices In projectlve arcange-
ments of pesewdohyperplanes In rank d, Le., the reghons bounded by the minloal
number, o, of peewdohyperplanes. We call an arrangement sismple 1 oo more than
d— | planes meet ln a point.

It was conjectured by Las Vergnas n 1980 [Las80] that (a8 in the rank-3 case)
any two slmple arrangements can be transformed Inio each other by a soquence of
flips of slmplicial reglons. In particular this requires that every simple arrangement
contaln al least ene slmplicial reghon (which was also conjectured by Las Vergnas).
IT we consider the case of reallzable arrangements only, I I8 oot difflealt to peove
that any two members In this subelass can be connected by a sequence of flips of slm-
plicial regions and that each pealkzable arrangement gontalng at least one slmplicial
cell. In fact, Shannon [ShaT¥] proved that every arrangement (even the nonslmple
ones) of 1 projectlve by perplanes in rank d contalng at least n slmplicial reghons.
More procisely, lor every hyperplane i there are at least o simplices adjacont v
Fooand at least i — d simplices not adjacent to b The contrast between the Lag
Virgnas conjecture and the resulis known or the noneealizable case s dramatlbe:

SIMPLICIAL CELLS IN PSEUDOARRANGEMENTS

1. There |s an arrangement of B pseudoplanes in rank 4 having only T slmplicial
regions (Alishuler and Bokowskl [ABS80), Roudnel and Sturmicls [RS88]).

2. Every rank-4 arrangement with n < L3 pseudoplanes has at beast one slmpli-
clal reglon {Bokowskl and Rohlfs [BRO1]).

3. For every kB = 2 there s a rank-4 arrangement of 4% pseudoplanes having only
3k+ 1 simplielal roglons. (This result of Richter-Gebert [RicS3] was Improved
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by Bokowski and Rohlfs [BROL) to arrangements of 5k pseudoplanes with
Tk — ¢ simpliclal reglons.)

4. There Is a rank-4 arrangement conslsting of 20 pseudoplanes for which one
plane 1s not adjacent to any simplicial region (Richter-Gebert [Rle83): im-
proved to 17 peeudoplanes by Bokowskl and Rohlfs [BROL]).

OPEN PROBLEMS

The tople of simpliclal cells s Interesting and rich o structure even in cank 3. The
case of higher dimensions & full of unsolved problems and challenging conjectures.
These problems are relevant for various problems of great geometric and topologheal
Interest, such as the structure of apaces of trlangulations. Three key problems ape:

1. Classily slmplical arrangements. I8 It true, at least, that there are oaly
flmitely many types of simpliclal arrangersents of stealght lines gutalde the
three known Infinite families”

2. Dwoes every arcangement. of psendohy perplanes contaln at least one slmplicial
reglon?

3. Is it true that any two simple arrangersents of pseudospheres can be {rans-
formed] Inbo one another by a sequence of triangle Qips?

6.3.4

MATROID POLYTOPES

The convexity properties of a polot configuration X are modeled superbly by the
oriented matrodd M.r The combinatorial werslons of many theorems coneern-
Ing convexity also hold on the level of general [Including nonreallzable] oriented
matrolds. For instance, there are purely eombinatorlal verslons of Carathoedory's,
Radon’s, and Helly's theorems [BLE93, Section 9.2).

In particular, orlented matveld theory provides us with an entlvely comblina-
torial mode]l of convex polytopes, known as “mateold polytopes.”™ The followlng
definitlon provides this context In terms of [ace lattlees.

Definition: The lace lattlce of an acyelle orlented matrold M = [(E, £ 1s the set

FL{M) = {C" | C € £n {0, +}F)
partially ordered by Inclusbon. The elements of FLIAM ) are the faces of M. M =
a matroid polytope I {e} s a face for every ¢ € E.

Every polytope glves rlse to & matrold polytope: If P C BY 18 a d-polytope with
n vertices, then the eanonleal embedding 2 — (7)) ereates a voctor configuration
Xpe of rank d + 1 om the vertex sot of P. The orlented matrodd of Xpe I8 &
matrold polytope M e, whose face lattioe FL{AA) I8 canonbeally somosphic to the
face lattlee of P.

Matrold polytopes provide a very precize model of [the combinatorial structure
of | conwex polytopes. In partieular, the topological representation theorem lmplics
that every matmld polytope of rank o I8 the Gee lattiee of a pegular plecewise
linear (PL) ¢ell decomposition of a8 (d—2)-sphere. Thus matrold polytopes form an
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cxcellent eombinatorial medel for convex polytopes: In Geet, much betier than the
midel of PL spheres [which does not have an entively combinatorial definition).
However, the construction of & polar falls In gencral for matrold polytopes.
The cellular spheres that represent. matrold polytopes have dual cell decompositions
[Epcause thoy are plecowlse linear), but this dual cell decomposiilon is not In general
a matrold polytope, even In rank 4 (Billera and Munson [BME4); Bokowskl and
Schuchert [BS85]). In other words, the order dual of the face lattice of a matroid
polytope (as an absiract laitlee) B nol in general the face lattlee of & matroid
polytope. (Matrobd polytopes form an lmportant tool Tor polytope theory, not only

because of the parts of polviope theory that work for them, but alse because of
those that Fall.)

For pvery matrold polyiope one has the dwal orfented mateold (which ls totally
cyclic, henee nod & matrold polytope). In partieular, the setup for Gale dlsgrams
generalizes o the ramework of mateobd polytopes: this makes It posaible to also
In¢lude nonpolyiopal spheres In a discussion of the realleability propertles of poly-
topes. This amounts to perhaps the most powerful slngle tool ever developed for
polytope theory. It leads to, among other things, the classifleatbon of d-dlimenslonal
polytopes with at most d + 3 vertices, the peoof that all mateold polytopes of rank
d+ 1 with at most d + 3 vertlees are meallzable, the construction of nonratlonal
polytopes as well as of nonpolviopal aphercs with d 4 4 vertices, ete.

ALGORITHMIC APPROACH TO POLYTOPE CLASSIFICATION

A powerful approach, via matrold polytopes, to the peoblem of classilylng all convex
polytopes with given parameters ks largely due to Bokowskl and Sturmfels [B589a).
Here we restelet our attention to the simpliclal case—there are additional technleal
problems 1o deal with In the nonsimpliclal case, and very little work has been
done there a8 yet. However, the program has been successlully completed for the
classificatbon of all simpliclal J-spheres with 9 vertices (Alishuler, Bokowskl, and
Steinberg [ABS80]) and of all neighborly 5-spheres with 10 vertices {Bokowski and
Shemer [BS37)) into polytopes and nonpolytopes. At the core of the matrobdal
approach les the lollowing hlerarchy:

slnplicial uniform CONVEY
( apheres = (mmm&d polyicpes = (]:u]}-iup-u.lu '

The plan of attack & the following. First, one enumerates all Bomorphism Ly pes
of slmplicial spheres with glven parameters. Then, for cach sphere, one computes
all {uniform] matrold polytopes that bhave the given sphere as thelr face lattices.
Flnally, for each matvold polytope, one tries to declde roalizability.

At both of the steps of this hlerarchy there are conslderable subtletbes Involved
that lead to boportant lnsights. For a glven slmpliclal sphere, there may he

& na matrokd pelyiope that supports it In this case the sphere 1s called fion-
matroidal. The Barnette sphere [BLST03, Propesition 9.5.3] s an example.

a epactly one mateobd polytope. In this (Important) case the spheee I8 called
vigid. That I8, & matrold polytope A §s rigid If FL{A") = FLi M) alveady
lnplies A" = Aq. For rigid matrold polytopes the face lattlee unlguely defines
the orlented matmold, and thus every statement about the matrodd polytope
vields & statement about the sphere. Tn particular, the matveld polytope and
the aphere have the same reallzation space.
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Rigid matrold polytopes are & priord rave; however, the Dowrence conslrue-
tion [BLSH93, Section 0.3 [Ziefb, Section 6.6) associates with every oriented
matrodd A on 1 elements In rank d a righd matredd polyiope A} with 20
vertioes of rank n + d. The reallzatlons of ALM) can be melranslated Dnoo
realizations of 4.

a or many matoodd polytopes.

The situatlon s sbmllarly complex for the second step, Teom mateold polviopes to
convex polybopes. In fact, for each mattold polytope there may be

« g convex polytope—this 8 the case for a nonreallzable matvold polytope.
These exlst aleeady with relatively few vertioes: namely In rank § with 9 ver-
thees [BS95), and in rank 4 with 10 vertices [BLS+93, Proposition 9.4.5].

& psaentlally enly ene—this = the rare case where the matrold polytope s “pro-
Jectively uniogpe™

& of tangy conves polytopes—the space of all pelytopes for & glven matvoedd
polytope i the reallzation space of the orlonted mateold, and this may be ar-
bltrarily complicated. In fact, 8 comblnation of Modv's unlversality theoronm,
the Lawrence construction, and a scattering technigue [BS8%a, Theorem 6.2)
(o oeder to handle the simpliclal case] yviolds the following amazing woiver-
gality thepraem.

THEOREM 6.3.4 Mnev's Unsversality Theorem for Polytopes |Mniad)

For every fopen] bagic primary semialpebraic set V defined over £ there is an integer
d and a [rmplicial] d-dimensdonal polytope P oon d +4 vertices such that V' and the
realization spoce of P oare stably equivalent.

6.4

SOURCES AND RELATED MATERIAL

FURTHER READING

The basle theory of orbented mateolds was Inteoduced In two lundamental papers,
Bland and Las Vergnas [BLTE] and Folkman and Lawrence [FLTE|. We refer to the
monograph by Bjbrmer, Las Vergnas, Sturmiels, White, and Elegler [BLS+93] for
a broad Introduction, and for an extenslve development of the theory of orlented
matrolds. Oiher Introductlons and basle sources of Information include Bachem
and Kern [BKOZ), Bokowskl [Bok83), Bokowskl and Sturmfels [B588a), and Ziegler
\Fiedl, Lectures 6 and 7).

RELATED CHAPTERS

Chapter 5: Pseudoline arrangements

Chapter 16: Basie properties of convex polytopes

Chapter 24: Arrangements

Chapter 33: Computational real algebeale geormetry

Chapter 46: Mathematical programming

Chapter 59: Gegmetrle applications of the Grassmann-Cayley algehra
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