Grobner Bases and Integer Programming*

Gunter M. Ziegler
Fachbereich Mathematik, MA 6-1
Technische Universitat Berlin
Strafle des 17. Juni 136

D-10623 Berlin, Germany

ziegler@math.tu-berlin.de

May 15, 1996

1 Introduction

“Integer programming” is a basic mathematical problem, of central importance in Optimization
and Operations Research. While a systematic body of theory has been developed here in the
last thirty years (see Schrijver [11]), it has been realized only very recently, first by Conti &
Traverso [5], that the Buchberger algorithm provides a solution strategy for the general integer
programming problem, in particular in the case of families of programs with “varying right-hand
side.”

In my first lecture (see Section 2 in the following notes), I intend to give a short introduction
to “what integer programming is about”. Then I present a simple combinatorial-geometric
version of the Buchberger algorithm applied to integer programming (Section 3), mostly following
Thomas [14, 15]. While the theory of Grébner bases [1, 2, 3, 6] yields most of the basic ideas
and tools, the presentation here will stay in an “elementary geometry” setting — nevertheless I
assume you will enjoy it more with the intuition from Mora’s talks.

My second lecture will sketch some connections between the geometry of integer programs,
and the combinatorics of Grébner bases (Section 4), following Sturmfels & Thomas [12]. Finally,
I will also present a simple adaption of Buchberger’s algorithm that seems to be even more useful
for integer programming (Section 5). The ideas for this are quite fresh, see [18]. Perhaps I can
report about some computational tests (encouraging, but without a breakthrough, yet).

Some of the problems to this talk deal with the relation between lattice vectors and binomi-
als in more depth, and thus with the “Grobner basis of a lattice”: this is a situation closely linked
to integer programming (the “local situation”, the “group problem”), but also, for example, to
the ideals of toric varieties.

2 “What is Integer Programming”

A polyhedron P is any intersection P := {x € R" : Ax < b} of closed halfspaces, in some R".
Here A € R™*" is a matrix, while x € R” and b € R™ are column vectors. A bounded polyhe-

“Lecture Notes for the EIDMA minicourse “Computer Algebra with emphasis on discrete algebra and geome-
try,” Eindhoven, September 1994 (slightly revised version, February 1995).

dron is a polytope. (We refer to [19] for a recent exposition of the geometry and combinatorics
of polytopes.)

Given any linear function x — c¢'x on R, the linear programming problem is to determine
a point xg € P C R" in the polyhedron P for which the linear function ¢’x is minimal. The
points in P are called feasible. If P is a non-empty polytope, then the existence of an optimal
point xq is guaranteed. Furthermore, if the linear function ¢! is generic (with respect to the
inequalities that define P), then the optimal point x(is unique.

It is both useful and customary to deal only with a restricted class of rational polyhedra in
some “standard form.” That is, for example, one considers only polyhedra of the form

P = {xeR':Ax=Db, x >0},

with the additional assumptions that A and b have only integral coordinates. This is not much
of a loss of generality: non-rational data do not occur “in nature,” and general polyhedra can be
represented by polyhedra in this equality standard form by suitable coordinate transformation,
introduction of slack variables, etc.

Linear programming is a well-established theory (see Chvatal [4], Schrijver [11]). In some
sense the linear programming problem is “solved”: after essential progress in the eighties (in-
cluding the construction of polynomial algorithms such as the “ellipsoid method”, the rise of
“interior point methods” that are both theoretically polynomial and practically competitive,
and a considerable refinements of the classical “simplex method”), we have now codes available
(such as CPLEX, by Bob Bixby) which will solve virtually every linear program that you can
cook up and store in a computer.

The situation is vastly different with integer programming: the task to compute an integral
vector x; € PN Z" that minimizes c¢’. In this situation, the points in P NZ" are called feasible.
Here a basic result of polyhedral theory states that the convex hull

Pr = conv{xe€Z": Ax =b, x > 0},

is also a polyhedron with finitely many facets. However, the facet-defining inequalities for
the polyhedron P; are not usually known in general (otherwise we would be done by linear
programming), they are hard to determine, and their number may be huge. Thus the integer
programming problem — of essential importance in many practical applications — is still a
great challenge. It is still not difficult to produce integer programs of reasonable size (m = 20
and n = 30, say) that none of the currently available codes can solve. Here solution, as we will
see, really comprises two separate tasks, both of them non-trivial: to find an optimal solution,
and to prove that it is optimal.

While several “good”, or at least “interesting”, solution strategies exist, integer programming
is still a difficult problem. The object of these lectures is an introduction to one such strategy:
the construction of test sets for integer programming via the Buchberger algorithm. In a basic
version, we will present this in the following section.

3 A Buchberger Algorithm for Integer Programming

In this section, we present a “Buchberger algorithm for integer programming.” As mentioned in
the introduction, the basic idea for this is due to Conti & Traverso [5]. Our presentation follows
Thomas [14] [15, Chap. 2]. A successful application of the Buchberger approach to a class of
integer programming problems was reported in Natraj, Tayur & Thomas [10] [15, Sect. 4.3].

For the following exposition, we consider the integer programs for which A € N™*" ig a fixed,
non-negative integer matrix. The right hand side vector, b € Z™, is considered as variable. Thus
we consider the integer polyhedra

Pr(b) := conv{x € N*: Ax = b}.

Now let ¢ # 0 be a (fixed) linear objective function. To make life easier, we will also assume
that the linear program

LP(b) min ¢’x: Ax=b, x>0

is bounded for every b. This is not much of a restriction: for example, it is satisfied if ¢ > 0, or
if A has a 1 row. In particular, this implies that the integer programs

IP(b) min ¢x: Ax=b, x€N"

are bounded.
In the following, we also need that the objective function is generic. To simulate this, we
choose a term order = (for example, lexicographic) that can be used as a tie breaker, by defining

clx < cty, or

< <~
* ey {ctx:cty and x <y.

One might note that <. is a term order if and only if ¢ > 0. With this, we get that the following
integer programs

IP(b) ming_ : Ax=b, xe N

either have no feasible solution, or they have a unique optimal solution. We will use 1P, to
denote the whole family of these integer programs, with fixed A and ¢, but varying right-hand
side b. The key idea is to consider this whole class of programs simultaneously.

Lemma 3.1 There is a unique minimal (finite!) set of vectors ay,...,a; € N* such that
{x € N" : x non-optimal} = {x€N":x>a; for some i}.
Proof. Use the Gordan-Dickson lemma! [l

Definition 3.2 A subset G C Z% is a test set for the family IP, ¢ of integer programs if and
only if

e Ag =0 and g >0 forallg € G, and

e for every non-optimal point x € N, there is some g € G with x —g > 0.

The definition of a “test set” immediately provides the following algorithm for integer pro-
gramming — provided we have a feasible point to start with, and we know how to compute a
test set! Note the similarity to “improvement heuristics”, such as the ones used to find good
solutions to traveling salesman problems.

Algorithm 3.3 to solve programs in a family IPsc:

INPUT G, some x € N, (feasible for IP(Ax))
REPEAT find g € G, such that x —g > 0,
X—X—g
UNTIL optimal.

Theorem 3.4 (Thomas [14, Cor. 2.1.10])
The unique minimal test set for the family 1P ¢ of integer programs is given by

Ge = {ai —b; :a; € MIN<{x € N" non-optimal}, Aa; = Ab;,b; optimal}.

This minimal test set corresponds to the (unique!) reduced Grébner basis of the “toric ideal”

at

Iy = (x* —x® :4a=0, acZ")

with respect to the term order <. (for ¢ > 0).

(Here a™ is our shorthand for the vector we obtain by replacing all negative coordinates of
a by zero. Similarly, we will use a~ := (—a)™, so that we have a=a"t —a~, withat,a~ > 0.)

The information that G, is a Grobner basis of 14 is not terribly helpful, since in general we
do not know a generating set for the ideal — so we can’t compute a Grobner basis, either. Thus
we use a small dirty trick: we create a larger integer program, which has an obvious integer
feasible point, and for which the ideal has an nice generating set to start from.

For this, we consider the “extended integer programs”

EIP(b) minz,, . Ey+Ax=b, xe N',y eN"

where M € N is a large constant, F is the identity matrix, and 1 denotes the vector of all ones.
We will use EIP, . to denote the whole family of these integer programs, with fixed A and c,
but varying right-hand side b. What have we gained? On the one hand, all of the programs
EIP(b) are feasible: they have the obvious solution x = 0, y = b. However, an optimal solution
will satisfy y = 0, x = xq if the program IP(b) is feasible, because M is sufficiently large. If
IP(b) is infeasible, then the extended program EIP(b) has an optimal solution with y > 0.
Putting both cases together, we see that it is sufficient to solve the extended programs.

Proposition 3.5 (Conti & Traverso [5])

The ideal
T = (o —yoix® o (1,4) (a) —o, (a) e Zmn)
’ as as
1s generated by the binomials
Ae; . .
vy — for1 <j<n.

The reduced Grobner basis of I(r ay with respect to the term order <(yr1,c) yields the minimal
test set Gnra,c) for that family EIPs ¢, via the canonical bijection

ai + gt - a-
< > +— yhx® — yhix?,
az

Proof. The binomials y4® — z; in fact form a Grobner basis for I1,4), for a lexicographic term
order with z; ¢, y;. Thus they certainly generate the ideal. [l

Putting things together, we get a simple algorithm for integer programming: we “only” need
to compute a reduced Grobner basis with respect to the term order <(asq), and then use this
with the above algorithm to solve the extended programs ETP, .

Algorithm 3.6 “Integer programming via Buchberger’s algorithm”
The following procedure solves the integer program

IP(b) ming, : Ax=Db, xe N"

for Ae N™*" beN" ceN'.
First Phase: Compute a test set

INPUT 4, ¢
COMPUTE reduced Grobner basis Gny,c) for I:= (yAei — Tj),
OUTPUT test set Gpr1,c)-

Second Phase: Reduction
INPUT Gpr1,c), b
REDUCE y" with respect to G(M1,c), get yHx2.
OUTPUT if a; # 0, output “infeasible”.
if a1 = 0, output Xy = as is optimal”.

However, there is still quite a detour involved: one can formulate the Buchberger algorithm
in such a way that it directly operates on lattice points (no ideals, binomials, etc. involved!)
This geometric formulation (given in the next lecture) yields an extremely simple algorithm for
integer programming: also one that is very easy to implement! The basic version is not terribly
efficient: but we will discuss a few basic issues in “how to speed it up”.

Note here that while the first phase is hard work, the second one is quite trivial (if we
manage to search efficiently the Grébner basis, which may be huge). If we don’t have a complete
Grobner basis, then we can still use any partial basis to reduce the monomial yP, which may
yield a feasible, or even the optimal, point.

4 The Geometry of Buchberger’s Algorithm

The Buchberger algorithm for integer programming is just a special case of the general Buch-
berger algorithm. However, there is a lot of special features in the special situation of “toric
ideals” we consider here. In particular, one only has to deal with “binomials with disjoint
supports”: thus we can get an entirely geometric formulation of the algorithm, dealing with
lattice vectors in Z™ — no polynomials whatsoever appear. This simplifies the data structures
considerably!
The first observation is that
I:= (yAej — (L‘j>

is a binomial ideal. (See [7] for more on binomial ideals.) Now the S-pair of two binomials is a
binomial (see Problem 6.3 for a sharper version of this fact). Also the reduction of a binomial
by binomials leads to binomials. Thus the reduced Grobner basis of I will consist of binomials.

As a second step, notice that in this situation, if x* — x® € I (with a,b > 0) is a binomial
such that the two monomials have common factors, then we can remove them: x(@a-P)* _x(b—a)*
is also contained in I. To see this, apply Exercise 6.4 to the lattice

L = 7" N {(y> : Iy + Ax = 0}.
X

Thus every reduced Grobner basis of I can only contain binomials of the form xa" — x27 with
ac L.

Thus we are really dealing with a geometric algorithm operating on lattice vectors. The
following two algorithms compute the reduced Grobner basis of a lattice, that is, the finite
subset G C L£70 corresponding to the reduced Grébner basis of Iz. The assumption for this is
that we know a “good” generating set for the lattice, i.e., a subset of the lattice corresponding
to a set of binomials that generates I,.

Algorithm 4.1 “Reduction”
The following algorithm computes the reduction of a vector £ € Z™t™ by a set G of integer
vectors.

INPUT G C L0, f 0.
REPEAT If there is some g € G with g™ < 7, then replace £ by +=(f — g) = 0.
If there is some g € G with g™ < £, then replace £ by f + g.
OUTPUT f:=f.

Algorithm 4.2 “Buchberger algorithm on lattice vectors”
The following algorithm computes the reduced Grébner basis of the lattice L, for o fized term
order >.

First Step: Construct a “Grobner basis”

INPUT A basis {ai,...,a,} C L of the lattice L such that the binomials x2" —x2 generate
I
SET gold = @, g = {al, Ce ,an}
REPEAT While G,q # G, repeat the following steps
Goid == G
(S-pairs) construct the pairs g :=a—a' = 0 with a,a’ € G.
(reduction) reduce the vectors g by the vectors in Goq. If g # 0, set G := GU{g}.

Second Step: Construct a minimal “Grobner basis”

REPEAT If for some g € G the point g can be reduced by some g' € G\g, then delete g from
g.

Third Step: Construct the reduced “Grobner basis”

REPEAT If for some g € G the point g~ can be reduced by some g € G\g, then replace g by
the corresponding reduced vector: G := G\g UE.

OUTPUT G,.q :=G.

All these operations are easy to visualize (at least in the 2-dimensional situation), see the
lecture. They are also easily implemented — just do it. There is also a lot of flexibility: in fact,
for a successful implementation it is important to reduce earlier, otherwise the Grobner bases
in constructed in the “First Step” will be too large. See the ideas in [5, 9, 18] for further ideas
about how to make this efficient.

Let us just remark that the elements that can occur in a reduced Grébner basis can be
characterized geometrically in a different way. The following theorem is due to Sturmfels &
Thomas [12], see also Thomas & Weismantel [16].

Theorem 4.3 The universal Grébner basis (that is, the union of all the reduced Gréobner bases
Ge of IP4 ¢, for different objective functions c) consists of all the primitive lattice vectors a € Z™
(with Aa =0, and %a ¢ 7™ for X\ > 1) such that [a*,a "] is an edge of the polyhedron

Pr(a’) = conv{x € N": Ax = Aa™"}.

This theorem be applied as well to the extended integer programs EIP,4, where we know
how the minimal test sets (Grobner bases) can be computed via Buchberger’s algorithm.

We just mention that Thomas & Sturmfels [12] also have a technique to compute universal
Grobner bases via a single application of a Buchberger algorithm (to a larger problem).

5 A Variant of Buchberger’s Algorithm

In the following I sketch the basic version of a simple adaption of Buchberger’s algorithm that
seems to be even more useful for integer programming. The ideas for this are quite fresh, from
Urbaniak, Weismantel & Ziegler [18].

Given a matrix A € N™*" an objective function ¢ € N*, and a right hand side vector
b € N, we denote by I P4 . the optimization problem

max-, {x e N": Ax <b, 0 <x <u}.

(This is again a quite special type of integer program, which we call a problem in inequality
standard form. See also Exercise 6.2. Again, in order to avoid dealing with degenerate cases we
have refined the objective function c’x to get a term order <..)

We now present the basic form of an algorithm that computes a test set for the above integer
programming problem. It is not too hard to see that the algorithm terminates after finitely many
steps and determines a test set for TPy ..

Roughly speaking, a test set, G say, can be computed as follows. Start with the n unit
vectors, i.e., set G := {e; : 1 < i < n}. Iteratively, compute the difference vectors between all
pairs of vectors that are in G and direct each such difference vector such that it is greater than
0 with respect to the order. All such difference vectors which are currently not in G and which
are the difference of feasible vectors for 1P, ., are now added to G. The algorithm terminates
if no more vectors are added to G.

More precisely, the basic algorithm can be formulated as follows:

Algorithm 5.1
(1) Set Gog:=0, G :={e;:1<i<n}.
(2) While Goq # G perform the following steps:

(21) Set gold = Q
(2.2) For all pairs of vectors v,w € G such that v. < w, —b < A(w —v) < b and
—u<w-v<u,set§G:=GU{w—v}

Whenever Step 2 of the above algorithm is executed (except for the last time), a new vector
was added to the set G,q4. Since the number of integral vectors x satisfying —u < x < u is
bounded by], (2u; + 1), the above algorithm terminates after finitely many steps.

Let us now show that the set G generated by the above algorithm is a test set for TPy ..
Suppose that x is a feasible point, i.e., Ax < b, 0 < x < u, that is not optimal and that cannot
be improved via some element in G. Let x’ be some feasible vector with x < x’. Then, x’ —x
is not an element of G. However, as x' — x can be written as a certain linear combination of
unit vectors and since unit vectors are elements of G, we can decrease from x to reach 0, then
increase to reach x’. Hence, there exists a sequence P = (x°,...,x?) of vectors x* and a number
1 < 7 < p with the properties:

(i) x¥ =x, x? =%/,

(i) foralli=1,...,7, —(x* —x""1) € G,
(iii) foralli =714+1,...,p, (x' —x'~1) € G,
(iv) every vector in P is feasible.

Let pin be the smallest number such that there exists some sequence

0

Ppin = (x,...,xPmin)

of vectors x' and a number 1 < 7 < pyp satisfying (i), (i), (iii) and (iv).
Since —(x” —x" ') € G and (x"t! —x") € G, the difference vector

v i— (XT+1_XT) o (_(XT_XT—I)) _ x7'+1 o XT—I

has been computed in Step 2.2 of Algorithm 5.1. Moreover, both vectors x”*! and x7~! are
feasible. It follows that —b < Av < b and —u; < v; < u; for all 4.
In case that 0 < v, the vector v was added to G. Consequently,

P o= (X0,...,x7 L xTHL L xPmin)

and 7 — 1 again satisfy properties (i) — (iv), yet involving pp, — 1 vectors, a contradiction.
Therefore v < 0. In this case the vector —v was added to G in Step 2.2 of Algorithm 5.1. Then,

P o= (x0... . x7 L xTTL L xPmin)

and 7 satisfy properties (i) — (iv). Since again only p,,i, — 1 vectors belong to P’, we obtain a
contradiction. [l
From our discussions we derive the following theorem.

Theorem 5.2 Algorithm 5.1 terminates after a finite number of steps. The output is a test set
for the integer programming problem 1Py ..

This extremely simple algorithm has some essential advantages as compared to Algorithm 3.6:
in particular, we do not have to increase dimension to obtain the extended problem: here the
computation takes place in original space. However, in Algorithm 5.1 we still have the problem
that we compute way to many elements: the partial Grobner basis computed here is way too
large. Thus one has to reduce elements, and discard superfluous elements during the computa-
tion. Also, this algorithm sometimes makes way too many comparisons, while generating only
relatively few new basis elements. Such observations, made on a practical implementation, led
to further variations of the algorithm that are currently still under investigation [18].

References

[1] W. W. Apawms & P. LOUSTAUNAU: An Introduction to Grébner Bases, American Math-
ematical Society, Graduate Studies in Math., Vol. ITI, 1994.

[2] T. BECKER & V. WEISPFENNIG: Grébner bases: a computational approach to commutative
algebra, Graduate Texts in Mathematics 141, Springer-Verlag 1993.

[3] B. BUCHBERGER: Grébner bases: an algorithmic method in polynomial ideal theory, in:
N.K. Bose (ed.), “Multidimensional Systems Theory”, D. Reidel 1985, 184-232.

[4] V. CHVATAL: Linear Programming, Freeman, New York 1983.

[5] P. ConTI & C. TRAVERSO: Buchberger Algorithm and Integer Programming, Proceedings
AAECC-9 (New Orleans), Springer LNCS 539, 1991, pp. 130-139.

[6] D. A. Cox, J. B. LiTTLE & D. O’SHEA: Ideals, Varieties, and Algorithms. An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate
Texts in Mathematics, Springer-Verlag, New York 1992.

[7] D. EISENBUD & B. STURMFELS: Binomial ideals, preprint 1994, 44 pages; Duke Math.
Journal, to appear.

[8] R. E. GOMORY: Some polyhedra related to combinatorial problems, Linear Algebra and its
Applications 2 (1969), 451-455.

[9] C. MOULINET & L. POTTIER: Grobner bases of toric ideals: properties, algorithms, and
applications, preprint, INRIA Sophia Antipolis, 10 pages.

[10] N. R. NATRAJ, S. R. TAYUR & R. R. THOMAS: An algebraic geometry algorithm for

scheduling in presence of setups and correlated demands, Mathematical Programming 69
(1995), 369-402.

[11] A. SCHRUIVER: Theory of Linear and Integer Programming, Wiley-Interscience, Chichester
1986.

[12] B. STURMFELS & R. R. THOMAS: Variation of cost functions in integer programming,
preprint, Cornell University 1994, 31 pages.

[13] B. STURMFELS, R. WEISMANTEL & G. M. ZIEGLER: Grdébner bases of lattices, corner

polyhedra, and integer programming, Beitrdge zur Algebra und Geometrie/Contributions to
Algebra and Geometry 36 (1995), 281-298.

[14]

[15]

[16]

[17]

[18]

[19]

R. R. THOMAS: A geometric Buchberger algorithm for integer programming, preprint,
Cornell 1993, 25 pages; Mathematics of Operations Research, to appear.

R. R. THOMAS: Grobner basis methods for integer programming, Ph. D. Thesis, Cornell
University 1994, 157 pages.

R. R. Thomas & R. Weismantel: Truncated Grobner bases for integer programming,
Preprint SC-95-09, ZIB Berlin, May 1995, 12 pages.

R. R. THOMAS & R. WEISMANTEL: Test sets and inequalities for integer programs: ex-
tended abstract, in: Proc. IPCO-96, Vancouver, June 1996, to appear.

R. UrRBANIAK, R. WEISMANTEL & G. M. ZIEGLER: A wvariant of Buchberger’s algorithm
for integer programming, Preprint SC 94-29, ZIB-Berlin, January 1995, 19 pages; SIAM J.
Discrete Math., to appear.

G. M. ZIEGLER: Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-
Verlag New York Berlin Heidelberg 1995, 370 pages; Updates, corrections, and more avail-
able at http://www.math.tu-berlin.de/~ziegler

10

Giinter M. Ziegler:
Grébner bases and integer programming

6 Problems

Problem 6.1 “Upper bounds”
For a problem in the form
max{c'x : Ax < b, x > 0},

with A € N™*" ‘b € N and ¢ € Z", how can we compute upper bounds u; for the variables x;?
What happens in the special case where A has a zero-column?

Problem 6.2 “Standard forms of integer programs”
Show that for the “equality standard form?”

min{c'x : Ax = b, x > 0},
and the “inequality standard form”
max{c'x: Ax < b, 0 < x < u}.

of linear programs are equivalent: for any problem in one form we can construct a problem in

the other form that solves it.
(Assume A € N, b e N™, and c € Z™.)

The following problem sharpens our observation that S-pair formation corresponds to differ-
ence of vectors: we explicitly identify the “superfluous” monomial factors occur in the formation
of S-pairs.

Problem 6.3 “S-pairs and difference vectors”
For a,b € £LXO, the S-polynomial of x2" —x2” € I, and xPT —xP” €I, is

min(a~,b™) (x(afb)"" - X(afb)_)

X ’

a monomial times the binomial corresponding to a — b.

Problem 6.4 “Binomial criterion”
Let I be an ideal generated by the binomials corresponding to some sublattice L C Z":

at

Ir = (x* —x* ;acl).

Then a binomial x* — x°, with a,b > 0, is contained in I if and only ifa —b € L.
(Hint: x* and x® reduce to the same standard monomial.)

The following problems deal with the relation between lattice vectors and binomials in more
depth, and thus with the “Grobner basis of a lattice”: this is a situation closely linked to integer
programming (the “local situation”, Gomory’s [8] “group problem”), but also, for example, to
the ideals of toric varieties.

Let £ C Z" be an n-dimensional integral lattice, and associate with it the lattice ideal

Ip = (xa+—xaf: ac/l).

Here we assume that the lattice £ is generated by the columns of a nonnegative matrix A € N**",

11

Problem 6.5 “Ideal of a lattice: generators”
Show that if the columns (ay,...,a,) of A generate L, and if they are all non-negative, then the
ideal I; is generated by the binomials

+ - ,
x - x% = xM -1

Show that this can fail if we do not assume A to be non-negative.

Problem 6.6 “Grobner bases of a lattice: example”

Let L4 C 7Z? be the 2-dimensional lattice generated by the columns of A = <i g)

Compute all the (four) different reduced Grobner bases for the corresponding ideal. Describe the
structure of the various Grobner basis elements.
How many standard monomials are there in each case?

Problem 6.7 “Grobner bases of a lattice: geometry”
Show that if L C Z? is a 2-dimensional integral lattice, then the universal Grobner basis (that
is, the union of all the reduced Grébner bases) consists of the following lattice vectors:

e the vertices a € 72 of the polyhedron conv(L N N?\0),

e the vectors a € L that have one positive and one negative component, and for which 0 and
a are two adjacent vertices of the polyhedron conv(LN{x € Z? :x > —a }).

(Remark: a similar structure theorem is true in higher dimensions as well, but harder to prove.
See [13].)

Problem 6.8 “The variant of Buchberger’s algorithm: example”
Apply Algorithm 5.1 to compute a test set G for the 0/1 knapsack problem

max{z, + 2x9 + 3z3 : 1 + 229 + 323 < 3, x; € {0,1}, 1 =1,2,3}.

Identify a minimal test set Gpim C G.

12

