Some Tapas of
Computer Algebra

Editors:
A.M. Cohen, H. Cuypers, H. Sterk

Eindhoven University of Technology

The Netherlands

Table of Contents

Grobner bases and integer programming

Giinter M. Zieglert 1
1. Introduction.t e 1
2. ‘What is Integer Programming’ i 1
3. A Buchberger Algorithm for Integer Programming 2
4. A Geometric Buchberger Algorithm 8
5. A Variant of the Buchberger Algorithm 10
6. Problems 13
T NS . oo 14

Grobner bases and integer programming

Giinter M. Ziegler

MA 6-1, Department of Mathematics, Technical University Berlin
10623 Berlin, Germany

1. Introduction

‘Integer programming’ is a basic mathematical problem, of central importance
in Optimization and Operations Research. While a systematic body of theory
has been developed for it in the last fifty years [14], it has been realized only
very recently, first by Conti & Traverso [5], that the Buchberger algorithm (cf.
Chapter 1) provides a solution strategy for integer programming problems, in
particular in the case of families of programs with ‘varying right-hand side.’

Section 2. gives a short introduction to ‘what integer programming is
about’. Then we discuss a basic version of the Buchberger algorithm applied
to integer programming (Section 3.). In Section 4. we show how, in the special
case of the binomial ideals that arise from integer programs, the Buchberger
algorithm can be formulated as a combinatorial-geometric algorithm that
operates on lattice vectors. A surprisingly simple variation of the Buchberger
algorithm for integer programming is presented in Section 5..

The problems to this chapter treat the relation between lattice vectors
and binomials, and the ‘Grobner basis of a lattice’, in more detail.

2. ‘What is Integer Programming’

A polyhedron P is any intersection P := {x € R® : Ax < b} of closed
halfspaces, in some R"”. Here A € R™*™ is a matrix, while x € R"” and
b € R™ are column vectors. A bounded polyhedron is a polytope.

Given any linear function x — c¢'x on R”, the linear programming
problem is to determine a point x in the polyhedron P for which the lin-
ear function ¢'x is minimal. The points in P are called feasible. If P is a
non-empty polytope, then the existence of an optimal point x¢ is guaran-
teed. Furthermore, if the linear function ¢’ is generic (with respect to the
inequalities that define P), then the optimal point xq is unique.

It is both useful and customary to deal only with a restricted class of ra-
tional polyhedra in some ‘standard form.” That is, one considers, for example,
only polyhedra of the form

P = {xeR"|Ax=b, x>0},

2 Ziegler

with the additional assumptions that A and b have only integral coordinates.
This is not much of a loss of generality: non-rational data do not occur ‘in na-
ture,” and general polyhedra can be represented by polyhedra in this equality
standard form by suitable coordinate transformation, introduction of slack
variables, multiplication by common denominators, etc.

Linear programming is a well-established theory. In a practical sense the
linear programming problem is ‘solved’: after essential progress in the eight-
ies (including the construction of polynomial algorithms such as the ‘ellip-
soid method’, the rise of ‘interior point methods’ that are both theoretically
polynomial and practically competitive, and considerable refinements of the
classical ‘simplex method’), we have now codes available (such as CPLEX,
by Bob Bixby) which will solve virtually every linear program that you can
cook up and store in a computer.

The situation is vastly different for integer programming, the task to com-
pute an integral vector in P that minimizes ¢ ' x. In this situation, the points
in PN Z™ are called feasible. A basic result of polyhedral theory states that
the convex hull

Pr = conv{x€Z"| Ax =b, x > 0},

is also a polyhedron with finitely many facets. However, the facet-defining in-
equalities for the polyhedron P; are not usually known in general (otherwise
we would be done by linear programming), they are hard to determine, and
their number may be huge. Thus the integer programming problem — of es-
sential importance in many practical applications — is still a great challenge.
It is still not difficult to produce integer programs of reasonable size (m = 20
and n = 30, say) that none of the currently available codes can solve. Here
solution, as we will see, really comprises two separate tasks, both of them
non-trivial: to find an optimal solution, and to prove that it is optimal.

While several ‘good’, or at least ‘interesting’, solution strategies exist,
integer programming is still a difficult problem. The object of this chapter
is an introduction to one (relatively new) such strategy: the construction of
test sets for integer programming via the Buchberger algorithm. In a basic
version, we will present this in the following section.

3. A Buchberger Algorithm for Integer Programming

For the following exposition, we consider a family of integer programs for
which A € N™*™ ig a fixed, non-negative integer matrix. The right hand
side vector, b € N is considered as variable. Thus we consider the integer
polyhedra

Pr(b) := conv{x € N" | Ax = b}.

Now let ¢ # 0 be a (fixed) linear objective function. To make life easier, we
also assume that the linear program

Grobner bases and integer programming 3

LP(b) mine' x: Ax=b, x>0

is bounded for every b. This is not much of a restriction: for example, it is
satisfied if ¢ > 0. In particular, it implies that the integer programs

IP(b) minec' x: Ax=b, xe N?

are bounded.

In the following, we also need that the objective function is generic. To
enforce this, we choose a term order < (lexicographic, for example) that can
be used as a tie breaker, and define

c'x < cTy, or

X < =
c ¥ {ch:cTy and x < y.

We will use a total order such as <., derived from the “original” objective
function, as the input for the integer programming algorithms of this chapter.
Note that <. is a term order (in the sense of Grébner basis theory) if and
only if ¢ > 0.

With the above assumptions, we get that each of the integer programs

IP(b) miny, {x € N* | Ax = b}

either has no feasible points, or it has a unique optimal solution. (The optimal
solution, but not its objective function value, will in general depend on the
tie breaker used to define <..) We use

IPAc

to denote the whole family of these integer programs, with fixed A and c,
but varying right-hand side b. The key idea is to consider this whole class of
programs simultaneously.

Example 3.1. For n = 2 we can draw figures such as the following, which is
obtained for A = (2 3), where P;(b1) denotes the convex hull of the feasible
(integer) points of IP(b), for b = (by). We get that Pr(0) = @, the set Pr(b;)
is a point for by € {0,2,3,4,5,7}, while Pr(b;) is a (bounded) line segment
for by = 6 and for b; > 8.

4 Ziegler

We call a vector x € N non-optimal if there is another vector y € N
that is feasible for the same right-hand side (that is, Ax = Ay), and that is
“better” than x in the sense that y <. x. A simple but crucial observation
is that if x is non-optimal, and if X' > x is componentwise larger than x,
then x’ is non-optimal as well. Thus the Gordan-Dickson lemma, according
to which every subset of N* has only finitely many minimal elements (for the
componentwise order), yields the following key fact.

Lemma 3.2 (Minimal non-optimal points). The minimal (with respect
to inclusion) set of vectors a; € N* such that

{x € N* | x non-optimal} = {x €N |x>a; for some i}
is unique and finite, and thus it can be written as {aj,as,...,a;}.

This lemma is important since it yields the indexing set for both the min-
imal test set for IP 4 ¢, as follows, and for the Grébner basis of the associated
ideal, see Theorem 3.7 below.

Ezample 3.3. For n < 2 we necessarily have ¢ = 1 (Exercise!). Our figure
depicts the situation for n = 2, A = (2 3), b = (6), and ¢ = (1 4). The
shaded region covers all the non-optimal integral points for this family of
programs.

T2

T

Here both a; and aj are contained in Pr(b), for b = Aa; = Aaj = (6).

Definition 3.4. A subset G. C Z" is a test set for the family IP 4 of integer
programs if and only if

Ag =0 forall g € G,

g > 0 for all g € G¢, and
for every non-optimal point x € N, there is some g € G. with x —g > 0.

Grobner bases and integer programming 5

The definition of a test set immediately provides us with the following
algorithm for integer programming — once we have a feasible point to start
with, and we know how to compute a test set. One might note the similarity
to ‘improvement heuristics’, such as the ones used to find good solutions to
traveling salesman problems.

Algorithm 3.5. To solve programs in a family IP 4 ¢:
Input a test set Gc for the family IP4 ¢
and some x € N (x is feasible for IP(Ax))
Repeat find g € G such that x — g > 0,
X—X—g
Until optimal.

Ezample 3.6. (Thomas [18])
For the family of integer programming problems that are given by

/1111 _—
A_<0 L) 3> and ¢’ = (131417)

a minimal test set consists of just three vectors,

0 1 1
-1 -1 2

g1 =)) g2 = -1) g3 = 1)
-1 1 0

and these three are sufficient to do the optimization for an arbitrary right-

hand side. For b = (10 15) T, we obtain the situation displayed in the figure,
which shows the projection to the (1, z2)-plane: there are 18 feasible points,
and the three test set vectors are sufficient (and necessary!) to get you from
any feasible point to the optimal one.

<— the optimal solution)

>—

—83

[e=l) &) Rlen)
> —
727

<7

IO O Lt

6 Ziegler

Theorem 3.7. (Thomas [18, Cor. 2.1.10]) The unique minimal test set for
the family IP 4 . of integer programs is given by

Ge = {ai —a | a; € minc{x € N non-optimal},
a; optimal for IP(Aa}), where Aa; = Aaj }.

The connection from Integer Programming to Grobner Basis Theory can
now be made by observing that the minimal test of Theorem 3.7 corresponds
to the reduced Grobner basis of the binomial ideal

Iy = (X2 —X* |4a=0, acZ")

with respect to the term order <.. (Here a™ is our shorthand for the vector
we obtain by replacing all negative coordinates of a by zero. Similarly, we
use a~ := (—a)*, so that we have a = a™ — a~, with at,a~ > 0. As is
customary, X2 is a notation for X" --- X2, etc.)

The information that G. is a Grébner basis of 14 is not terribly helpful,
since in general we do not know a generating set for the ideal — so we can’t
compute a Grobner basis, either. Thus we use a small dirty trick: we create
a larger integer program, which has an obvious integer feasible point, and
for which the ideal has a nice generating set to start from. (Versions of this
trick appear both in algebra, see [6, Sect. 3.3], and in linear programming,
where slack variables are introduced to obtain “Phase I” problems that have
feasible starting basis, see the “big-M method” in [14, Sect. 11.2].)

For this, we consider the ‘extended integer programs’

X

>€N"+m |Imy+AX:b}
y

EIP(b) ming,,,., {(
where M € N is a large constant, I,, is the m x m identity matrix, and 1
denotes the vector of all ones. We use

EIP 4

to denote the whole family of these integer programs, with fixed A and ¢, but
varying right-hand side b. What have we gained? On the one hand, all of the
programs EIP(b) are feasible: they have the obvious solution x = 0, y = b.
However, an optimal solution will satisfy y = 0, x = xg if the program IP(b)
is feasible, because M was chosen to be wvery large. If IP(b) is infeasible,
then the extended program EIP(b) has an optimal solution with y # 0. The
binomial ideal that corresponds to EIP 4. does have a nice generating set
that we can use to start a Buchberger algorithm.

Proposition 3.8. (Conti & Traverso [5]) The ideal

(I, A) (:;) —0, (Z;) c Zm+">

I, = <Yal+xaz+—Yaf X2

is generated by the binomials

Grobner bases and integer programming 7

YA — X; for1<j<n.

The reduced Grobner basis of Iy, ay with respect to the term order <(pr1,c)
yields the minimal test set G(pr1,c) for the family EIP 4 ¢, via the canonical
bijection
(al> s YN XA ymiXee
az

The binomials Y4® — X; form a Grobner basis for the ideal that they
generate, for a lexicographic term order with X; >« Y;. To see that this
is the whole ideal [(r,,), start with any binomial in I(7, a), reduce it to a
binomial that contains no X-variables using the generators of I(s, a), and
then conclude that you have arrived at the zero binomial, using Exercise 6.4.

Putting things together, we have an extremely simple algorithm for inte-
ger programming: we ‘only’ need to compute a reduced Grébner basis with
respect to the term order <(ar1,¢), and then use this with the above algorithm
to solve the extended programs EIP 4 c.

Algorithm 3.9 (Integer programming via Buchberger’s algorithm).
The following procedure solves the extended integer program

IP(b) min._ {x € N*|Ax = b}
for Ae N**" b e N*, ce N,
First Phase: Compute a test set
Input A, ¢
Compute the reduced Grébner basis Gy ¢y for I := (YA — X,
Output the test set Gipr1,c)-

Second Phase: Reduction
Input Gpr1,c), b
Reduce the monomial Y® with respect to G(Mm1,c), get Y21 XA2,
Output If a; # 0, return ‘infeasible’.
If a; = 0, return ‘xg = a, is optimal’.

While the first phase of this algorithm (computation of a Grébner basis)
amounts to hard work, the second one should typically be quite easy & fast
(if we manage to efficiently search the Grobner basis, which may be huge).
But even if we cannot obtain a complete Grobner basis from the first phase,
then we can still use any partial basis to reduce the monomial Y, which
may yield a feasible, or even the optimal, point.

However, we are still making quite a detour in Algorithm 3.9: one can for-
mulate the Buchberger algorithm so that it operates directly on lattice points
(no ideals, binomials, etc. involved!) This geometric formulation (given in the
next section) yields an extremely simple algorithm for integer programming;:
also one that is very easy to implement! The basic version is not terribly
efficient: but we will discuss a few basic ideas about ‘how to speed it up’.

8 Ziegler

4. A Geometric Buchberger Algorithm

The Buchberger algorithm for integer programming is a special case of the
general Buchberger algorithm. However, there is a lot of special features in the
special situation of ‘toric ideals’ that we are dealing with here. In particular,
one only has to deal with ‘binomials with disjoint supports’: thus we can
get an entirely geometric formulation of the algorithm, dealing with lattice
vectors in Z™ — no polynomials whatsoever appear. This simplifies the data
structures considerably!

The translation process may be done as follows. The first observation is
that, by definition

Ir,ay = (Y3 —X;:1<j<n)

is a binomial ideal, an ideal generated by binomials. Any S-pair of two bi-
nomials is a binomial (see Problem 6.3 for a sharper version of this fact).
Also the reduction of binomials by binomials leads to binomials. Thus the
entire Buchberger process produces only binomials during its lifetime, and
any reduced Grobner basis of I(;, 4) consists of binomials.

As the second step in our translation process we notice that, whenever a
binomial appears in the computation whose two terms have a common factor,
we may remove that factor, and the corresponding ‘reduced’ binomial is also
contained in I(,). This follows from the stronger statement that I is a
‘lattice ideal’, in the following way.

A lattice is a discrete additive subgroup £ C Z", that is, the set of all
integral linear combinations of a finite set of linearly independent vectors
in R™. With every lattice £ C Z"™ we associate associate the lattice ideal

Ip = (X* —X* | a€L).

Thus, Proposition 3.8 shows that I(;, 4) is a lattice ideal. Note that in the
definition of I, we can replace £ by the subset of all lattice vectors that are
positive with respect to the ordering > that we consider, that is, by

L£70 .= {a€eL:a> 0}

Thus the Buchberger algorithm can immediately remove the common fac-
tors from all binomials that it produces. (In particular, any reduced Grébner
basis of I contains only binomials of the form X2 — X2 with a € £70.)
Thus the Buchberger algorithm can really be formulated as a geometric al-
gorithm operating on lattice vectors. So we get the following two algorithms
to compute the reduced Grébner basis of a lattice, that is, the finite subset
G C £79 that corresponds to the reduced Grébner basis of I-. The assump-
tion for this is that we know a ‘good’ generating set for the lattice, i.e., a
subset of the lattice corresponding to a set of binomials that generates I.

Grobner bases and integer programming 9

Algorithm 4.1 (Reduction). The following algorithm computes the re-
duction of a vector f € Z™*" by a set G of integer vectors.
(Compare it to the algorithm Reduce of Chapter 1!)
Input G C £, f >~ 0.
Repeat
If there is some g € G with g© < £, then replace f by +(f —g) > 0.
If there is some g € G with g™ < f~, then replace f by f + g.
Output f :=f.

Our figure illustrates the first case in the reduction algorithm, where we have
ft < g™, and the reduced vector arises as a difference. (Lattice vectors such
as f can be drawn with the head at f* and the tail at f~.)

You should check that this reduction process corresponds to the reduction
of X" — X = X3 — X} by X8 — X8 = X2 — X, where the resulting
polynomial X} — X; X5 has a common factor X, whose removal corresponds
to a translation of the dotted vector.

Algorithm 4.2 (Buchberger algorithm on lattice vectors).
The following algorithm computes the reduced Grobner basis of the lattice £,
for a fixed term order >.
First Step: Construct a Grobner basis
Input A basis {a,...,a,} C £ of the lattice £ such that the binomials
X2" _ X2 generate I. (See Problem 6.5!)
Set Goig : =0, G:={ay,...,an}
Repeat While G,;4 # G, repeat the following steps
Gold == G
(S-pairs) construct the pairs g:=a —a’' = 0 with a,a’ € §.
(Reduction) reduce the vectors g by the vectors in Gyq. If § # 0, set
G:=GgUg.

Second Step: Construct a minimal Grobner basis

Repeat If for some g € G the point g can be reduced by some g’ € G\g,
then delete g from G.

Third Step: Construct the reduced Grébner basis

Repeat If for some g € G the point g~ can be reduced by some g’ € G\g,
then replace g by the corresponding reduced vector: G := G\g UE.
Output G,.q :=G.

10 Ziegler

All these operations are easy to visualize (at least in the 2-dimensional
situation). They are also easily implemented — just do it. There is also a lot
of flexibility: in fact, for a successful implementation it is important to reduce
earlier, otherwise the Groébner bases constructed in the ‘First Step’ will be
too large. See [5, 12, 21] for further ideas about how to make this efficient.

We just remark that the elements that can occur in a reduced Grobner
basis can be characterized geometrically in a different way. The following
theorem is due to Sturmfels & Thomas [16].

Theorem 4.3. The universal Griobner basis (that is, the union of all the
reduced Gréobner bases Ge of IP 4 ¢, for all objective functions c) consists of
all the primitive lattice vectors a € Z™ (with Aa = 0, and ya ¢ Z" for X > 1)
such that [a™,a~] is an edge of the polyhedron

Pr(at) = conv{x € N" | Ax = Aa™"}.

This theorem can be applied as well to the extended integer programs
EIP 4, where we know how the minimal test sets (Grobner bases) can be
computed via Buchberger’s algorithm. Sturmfels & Thomas [16] also have a
technique to compute universal Grébner bases via one single application of
a Buchberger algorithm (to a larger problem).

5. A Variant of the Buchberger Algorithm

The following presents a variation of the Buchberger algorithm that may be
even more useful for integer programming.

Given a matrix A € N™*" an objective function ¢ € N?, and a right
hand side vector b € N, we denote by IP 4 . the optimization problem

maxs, {x e N" | Ax <b, 0 <x <u}.

This is a special but quite common type of integer program, which we call a
problem in inequality standard form with upper bounds. See also Exercise 6.1.
Again, in order to avoid dealing with degenerate cases we refine the objective
function ¢'x to get a term order <.. A test set for a problem of the type
IPAp,c is a set G of vectors g >. 0 such that every non-optimal feasible
point can be improved by one of the test set vectors. Algebraically, both u
and b provide “degree bounds” for Buchberger algorithms. Thus test sets
for families of problems of the type IP 4 p correspond to certain truncated
Grobner bases. However, our discussion in the following stays in the elemen-
tary geometry setting of [21]; The algebraic picture can be found in [20].
Roughly speaking, a test set, G say, can be computed as follows. Start
with the n unit vectors, i.e., set G := {e; | 1 < i < n}. Iteratively, compute
the difference vectors between all pairs of vectors that are in G and direct
each such difference vector such that it is greater than 0 with respect to

Grobner bases and integer programming 11

the order. All such difference vectors are added to G, if they are not already
in G, and if they are differences of feasible points for IP 4 p, . The algorithm
terminates when no more vectors are added to G.

More precisely, the basic algorithm can be formulated as follows:

Algorithm 5.1. To computes a test set for integer programs IP 4 1, ¢ in in-
equality standard form with upper bounds,
Input A and <.
Initialize Set Gy :=0, G:={e; |1 <i<n}.
While G,;q # G perform the following steps:
Set Gorg :=G.
For all pairs of vectors v,w € G such that
WV, —b<Aw-v)<b and —u<w-v <u,
set G:=GU{w —v}.

Whenever the loop in this algorithm is executed (except for the last time),
a new vector is added to the set G,4. Since the number of integral vectors
x satisfying —u < x < u is bounded by [];_, (2u; + 1), the above algorithm
terminates after finitely many steps.

Let us now show that the set G generated by the above algorithm is a
test set for IP4 p . Suppose that x is a feasible point (Ax < b, 0 <x < u)
that cannot be improved by any element in G, and let x’ be a feasible vector
with x’ =¢ x. Then x’ — x is not an element of G. However, as x' — X can
be written as a linear combination of unit vectors and since unit vectors are
elements of G, we can decrease from x to reach 0, then increase to reach x’.

T2

Hence, there exists a sequence P = (x°,...,xP) of vectors x’ and a number
1 < 7 < p with the properties:

(i) foralli=1,...,7, —(x' —x'"1) €@,
(iii) for alli=7+1,...,p, (x' —x"1) €,
(iv) every vector in P is feasible.

12 Ziegler

Let pmin be the smallest number such that there exists some sequence
Puin = (xY,...,xPmin)

of vectors x! and a number 1 < 7 < pmin satisfying (i), (i), (iii) and (iv).

T2

T

Since —(x” —x7!) € G and (x"*! —x7) € G, the difference vector
V= (XT+1 _XT) _ (_(XT _X-r—l)) — XT+1 _ X-r—l

has been computed in Step 2.2 of Algorithm 5.1. Moreover, both vectors x™+!
and x7 ! are feasible. It follows that —b < Av < b and —u; < v; < u; for
all 4.

In case that 0 <. v, the vector v was added to G. Consequently,

P o= (x%...,x"h xTT L xPmin)

and 7 — 1 again satisfy properties (i) — (iv), yet involving pmin — 1 vectors, a
contradiction.

Therefore v <. 0. In this case the vector —v was added to G in Algo-
rithm 5.1. Then,

P o= (x0...,x" L xTT L xPmin)

and 7 satisfy properties (i)-(iv). Since again only pmin — 1 vectors belong
to P’, we obtain a contradiction.
Thus we have proved the following theorem.

Theorem 5.2. Algorithm 5.1 terminates after a finite number of steps. The
output is a test set for the integer programming problem IP 4, c.

Compared to Algorithm 3.9, this extremely simple algorithm has some es-
sential advantages. In particular, it works without the increase in dimension
to obtain the extended problem: the computation takes place in the original
space. However, Algorithm 5.1 still has the problem that it computes too

Grobner bases and integer programming 13

many elements: the partial Grébner basis computed is way too large. (For
the basic version of the algorithm presented here, nearly all difference vectors
of feasible points will be contained in G!) Thus one has to work with reduc-
tion, and thus discard superfluous elements during the computation (see [21]).
Also, this algorithm sometimes makes way too many comparisons, while gen-
erating only relatively few new basis elements. Such observations, made on a
practical implementation, led to further variations of the algorithm that are
currently still under investigation.

6. Problems

Exercise 6.1 (Standard forms of integer programs). Show that the
‘equality standard form’

min{c'x | Ax = b, x > 0},
and the ‘inequality standard form’
max{c x| Ax < b, 0 < x < u}.

of linear programs are equivalent: for any problem in one form we can con-
struct a problem in the other form that solves it.
(Assume that A € N*, A has no zero columns, b € N and c € Z™.)

Exercise 6.2 (Upper bounds). For a problem of the form
max{c'x | Ax < b, x >0},

with A € N*, b € N, and ¢ € Z", how can we compute upper bounds
u; for the variables x;7 What happens in the special case when A has a
zero-column?

The following problem sharpens our observation that S-pair formation
corresponds to difference of vectors: we explicitly identify the ‘superfluous’
monomial factors that occur in the formation of S-pairs.

Exercise 6.3 (S-pairs and difference vectors). For a,b € Z", a,b > 0,
the S-polynomial of Xa' _xa~ ¢ I, and Xbt _XPT ¢ I, is

Xmin(a+,b+) (X(afb)"' _ X(afb)_)

a monomial times the binomial corresponding to a — b.

Exercise 6.4 (Binomial criterion). A binomial X2 — XP, with a,b > 0,
is contained in I if and only if a — b € L.
(Hint: X2 and XP reduce to the same standard monomial.)

14 Ziegler

Exercise 6.5 (Ideal of a lattice: generators). Assume that the lattice £
is generated by the columns of a nonnegative matrix A € N**"_ Show that
then the ideal I is generated by the binomials

) U Gl
Show that this can fail if we do not assume A to be non-negative.
(A more general version of this is [21, Lemma 2.1].)

Exercise 6.6 (Grobner bases of a lattice: an example). Let £4 C Z2
be the 2-dimensional lattice generated by the columns of

A:(}1 g)

Compute all the (four) different reduced Grébner bases for the corresponding
ideal. Describe the structure of the various Grébner basis elements.
How many standard monomials are there in each case?

Exercise 6.7 (Grobner bases of a lattice: geometry). Show that if £
is a 2-dimensional integral lattice, then the universal Grébner basis (the union
of all the reduced Grébner bases) consists of the following lattice vectors:

e the vertices a € Z? of the polyhedron conv(£ N N?\0), and
e the vectors a € £ that have one positive and one negative component, and
for which 0 and a are two adjacent vertices of the polyhedron

conv(£LN{x €Z?|x > —a"}).

(Remark: a similar structure theorem is true in higher dimensions as well,
but harder to prove [17].)

Exercise 6.8 (A variant of Buchberger’s algorithm: an example).
Apply Algorithm 5.1 to compute a test set G for the 0/1 knapsack problem

max{zy + 2x2 + 3x3 | ©1 + 222 + 323 <3, z; € {0,1}, i =1,2,3}.

Identify a minimal test set Gmin C G.

7. Notes

While the theory of Grébner bases [1, 2, 3, 6] yields basic ideas and tools,
the discussion in this chapter stays in an ‘elementary geometry’ setting.
Chvétal [4] and Schrijver [14] are excellent guides to all topics related to
Linear and Integer Programming. [22] is a recent exposition of the geometry
and combinatorics of polytopes.

As mentioned in the introduction, the basic ideas of Section 3. are due to
Conti & Traverso [5]. The connection between lattices, binomial ideals and

Grobner bases and integer programming 15

Grobner bases is relevant to interesting aspects in the theory of integer pro-
gramming (the ‘local situation’, Gomory’s [9] ‘group problem’), but also, for
example, to the ideals of toric varieties. The key reference for these directions
is Sturmfels [15]. See [8] for more on binomial ideals.

Our presentation in Sections 3. and 4. is based on Thomas [18] [19,
Chap. 2]. T am very grateful to Rekha Thomas for many helpful comments
and discussions on this chapter, and for her permission to report about and
draw on her materials.

The ideas for Section 5. are from [21]. An algebraic interpretation of the
situation in terms of “truncated Grobner bases” was given by Weismantel &
Thomas [20].

We refer to Hosten & Sturmfels for an alternative approach to the
“phase I” problem. Recently, Li, Guo, Ida & Darlington [11] have described a
combination of truncated Grobner bases with the Hosten-Sturmfels approach.
They also reported some computational tests: on random problems of sizes
up to “8 x 16” — which must still be considered very modest for all practical
purposes. Computational results (also for larger, structured problems) are
also presented in [10], in [7], and in [21].

A successful application of the Buchberger approach to a class of integer
programming problems arising in practice was reported in Natraj, Tayur &
Thomas [13].

References

1. W. W. Adams & P. Loustaunau: An Introduction to Grébner Bases, Graduate
Studies in Math., Vol. IIT, American Math. Soc., Providence RI 1994.

2. T. Becker & V. Weispfennig: Grobner Bases: A Computational Approach to
Commutative Algebra, Graduate Texts in Mathematics 141, Springer-Verlag,
New York 1993.

3. B. Buchberger: Grobner bases: An algorithmic method in polynomial ideal the-
ory, in: N.K. Bose (ed.), ‘Multidimensional Systems Theory’, D. Reidel 1985,
184-232.

4. V. Chvatal: Linear Programming, Freeman, New York 1983.

5. P. Conti & C. Traverso: Buchberger Algorithm and Integer Programming, Pro-
ceedings AAECC-9 (New Orleans), Springer LNCS 539, 1991, pp. 130-139.

6. D. A. Cox, J. B. Little & D. O’Shea: Ideals, Varieties, and Algorithms. An
Introduction to Computational Algebraic Geometry and Commutative Algebra,
Undergraduate Texts in Mathematics, Springer-Verlag, New York 1992.

7. F. Di Biase & R. Urbanke: An algorithm to calculate the kernel of certain
polynomial ring homomorphisms, Experimental Math. 4 (1995), 227-234.

8. D. Eisenbud & B. Sturmfels: Binomial ideals, Duke Math. J. 84 (1996), 1-45.

9. R. E. Gomory: Some polyhedra related to combinatorial problems, Linear Al-
gebra and its Applications 2 (1969), 451-455.

10. S. Hosten & B. Sturmfels: GRIN: An implementation of Grébner bases for inte-
ger programming, in: “Integer Programming and Combinatorial Optimization”
(E. Balas, J. Clausen, eds.), Proc. 4th Int. IPCO Conference (Copenhagen, May
1995), Lecture Notes in Computer Science 920, Springer-Verlag 1995, 267-276.

16

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ziegler

. Q. Li, Y. Guo, T. Ida & J. Darlington: The minimised geometric Buchberger
algorithm: An optimal algebraic algorithm for integer programming, in: Proc.
ISSAC‘97, ACM Press 1997, pp. 331-338.

C. Moulinet & L. Pottier: Grobner bases of toric ideals: properties, algorithms,
and applications, preprint, INRIA Sophia Antipolis, 10 pages.

N. R. Natraj, S. R. Tayur & R. R. Thomas: An algebraic geometry algorithm for
scheduling in presence of setups and correlated demands, Math. Programming
69A (1995), 369-401.

A. Schrijver: Theory of Linear and Integer Programming, Wiley-Interscience,
Chichester 1986.

B. Sturmfels: Grobner Bases and Convex Polytopes, AMS University Lecture
Series, Vol. 8, American Math. Soc., Providence RI 1995.

B. Sturmfels & R. R. Thomas: Variation of cost functions in integer program-
ming, Math. Programming 77 (1997), 357-387.

B. Sturmfels, R. Weismantel & G. M. Ziegler: Grobner bases of lattices,
corner polyhedra, and integer programming, Beitrdge Algebra und Geome-
trie/Contributions to Algebra and Geometry 36 (1995), 281-298.

R. R. Thomas: A geometric Buchberger algorithm for integer programming,
Math. Operations Research 20 (1995), 864-884.

R. R. Thomas: Grébner basis methods for integer programming, Ph. D. Thesis,
Cornell University 1994, 157 pages.

R. R. Thomas & R. Weismantel: Truncated Grobner bases for integer pro-
gramming, Applicable Algebra in Engineering, Communication and Computing
(AAIECC), 8 (1997), 241-257.

R. Urbaniak, R. Weismantel & G. M. Ziegler: A variant of Buchberger’s algo-
rithm for integer programming, SIAM J. Discrete Math. 10 (1997), 96-108.

G. M. Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics,
Springer-Verlag, New York 1995.

