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Basic work on homotopy (co)limits has been done by Segal [35], Bous�eld & Kan [6],tom Dieck [40], Vogt [42], and Dwyer & Kan [10, 11]. See Hollender & Vogt [19] for arecent survey.Two key results in this setting are the \Projection Lemma" [35] [6, XII.3.1(iv)], whichsometimes allows one to replace colimits by homotopy colimits, and the \Homotopy Lem-ma" [40] [6, XII.4.2] [42] which compares the homotopy types of diagrams over the samesmall category. These tools have found striking applications, for example, in the study ofsubspace arrangements [47] [39] [34].The choice of contents for our \toolkit for the manipulation of homotopy colimits" ispartially motivated by the usefulness of corresponding lemmas in the special case of ordercomplexes (the discrete case, when the spaces of the diagram are points). In this case,there is a solid amount of theory available, which has proved to be extremely powerfuland useful in quite diverse situations. The key result is the Quillen Fiber Theorem(Quillen's \Theorem A" [31, 32], see below). All other basic tools of the \homotopy theoryof posets," such as the crosscut theorem, order homotopy theorem, complementationformulas, etc., can be derived from it. We refer to Bj�orner [3] for an excellent account ofthe theory [3, Sect. 10], for an extensive survey of applications [3, Part I], and for furtherreferences.The homotopy limits have not found immediate applications in combinatorics anddiscrete geometry so far, and this is the reason why we restrict our attention to the caseof homotopy colimits. Also note that many results about homotopy limits can be derivedfrom the case of homotopy colimits by standard duality procedures (see Bous�eld & Kan[6, XII.4.1] and Hollender & Vogt [19, Sect. 3]).We provide several applications of our methods to various areas within mathematics.As a �rst application, in the �eld of topological combinatorics, we present a new proofof a result by Bj�orner on the homotopy type of complexes [4], which generalizes theHomotopy Complementation Formula of Bj�orner & Walker [5], a tool which hasproved to be very powerful in combinatorics. Since this proof a�ords the application ofmany of the techniques provided in this paper, we give a detailed exposition of it here.Then we present a new view of toric varieties. Namely, we start with the observationthat toric varieties are homeomorphic to homotopy colimits over the face poset of thefan de�ning the variety. This immediately leads to a spectral sequence to compute thehomology of toric varieties isomorphic to one already employed by Danilov [8] and to thecomputation of its rational cohomology.We derive a new \combinatorial formula" for the homotopy types of quite generalarrangements (such as \Grassmannian" arrangements) that are associated to linear sub-space arrangements by suitable functorial constructions. More brie
y we cover two ap-plications for which details are contained in other papers: We describe a new result onthe homotopy type of the order complex of the poset Sp(G) of non-trivial p-subgroups ofa �nite group G [29], and we review results obtained by homotopy limit methods on thetopology of subspace arrangements in [47], and provide the equivalence with the resultsof Vassiliev [41].
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2 Fundamental Concepts and Constructions2.1 Basic De�nitions and Motivating Examples of DiagramsIn the following, all categories are small, so their objects and morphisms form sets. Anypartially ordered set can be considered as a category \with morphisms pointing down,"that is, for x; y 2 P there is a (unique) arrow x! y if and only if x � y.A diagram of spaces over a small category A is a covariant functor F : A! Top intothe category Top of topological spaces. We denote for an object a 2 Obj(A) the imageunder F by Fa or by F (a), and for a morphism g : a ! b 2 Mor(A) the image F(g) byfg:a!b or by F (g). If there is a unique morphism g : a ! b in A between a and b, thenwe write fab for fg:a!b. A morphism (F; �) : X ! Y of diagrams X : A ! Top andY : B ! Top is a functor F : A ! B together with a natural transformation � fromX to Y � F =: F �(Y). Given a diagram F , the homotopy colimit hocolimF is a spaceassociated to F by a homotopy mixing construction, see Section 2.2. Before we proceedwith a reasonably detailed outline of the theory, we introduce several motivating examplesof diagrams of spaces.Constant Diagram. For a topological space X the constant diagram XA is de�nedby sending each object of A to the space X and each morphism to the identityid : X ! X. Of particular interest is the case when X = f�g is the one-pointspace. In this case the constant diagram PT A leads, via homotopy colimits, to theconstruction of the classifying space BA of the category A. In the special case whenA = P is a partially ordered set { a poset for short { the classifying space BP willbe seen to coincide with the order complex �(P ) of P .Group Diagram. Given a discrete group G, let AG be the category which consists ofone single object and a morphism for each element g 2 G. Then the classifying spaceof this category is the K(G; 1)-space BAG �= BG of the group G. Its universal coverEG is constructed in a similar way from the category whose objects are the elementsof the group. Here for each pair of elements g; h 2 G the unique morphism from gto h is given by hg�1. Finally, any AG-diagram X : AG ! Top can be interpretedas a G-space X and it turns out that hocolimAGX �= EG�G X.Subspace Diagrams. Let U := fXigi2I be a collection of subspaces of a topologicalspace X. The intersection poset PU of the family U is the partially ordered set ofall non-empty intersections Ti2J Xi, J � I, ordered by reversed inclusion. RegardPU as a small category. Then the subspace diagram associated to U is the diagramDU : PU ! Top sending each element of PU to the corresponding intersectionTi2J Xi, with inclusions as morphisms. This class of examples can be used to seemany results from topological combinatorics from a higher perspective (e.g. Borsuk'sNerve theorem [3]).Arrangements as Diagrams. An especially interesting class of examples arises if Xin the previous example is a linear space (a�ne space, sphere, projective space)and the family U is an (a�ne, spherical, projective) subspace arrangement. Thesubspace diagrams that arise this way have been successfully used to deduce both4



new and old results about the homotopy and homology of these arrangements andtheir complements (see Ziegler & �Zivaljevi�c [47], Schaper [34]).Orbit Diagrams. Let G be a Lie group acting on a space X with �nitely many orbittypes. From this arises a natural diagram O : OG ! Top over the category OG ofall G-orbits de�ned by O(G=H) := XH , see [13]. Recall that the orbit category OGis de�ned as the category with Obj(OG) := fG=H j H = H � Gg and a morphismG=H ! G=Q for every inclusion H ! Q. Generally any diagram over the orbitcategory OG will be referred to as an orbit diagram.Toric Diagrams. A toric diagram D is a diagram for which each space Dd is the stan-dard torus T j = S1�: : :�S1; j � 0, and each morphism dab : Da ! Db is a standardalgebraic homomorphism, i. e., a homomorphism that arises from an integer matrixK : Ri ! Rj , i = dim(Da), j = dim(Db). An important observation is that anycompact (complex) toric variety can be interpreted as the homotopy colimit of atoric diagram over the face poset of a complete fan, see Section 5.3.In order to avoid pathological behavior of the topological spaces involved and becausethis setting covers all application we can think of { in our combinatorial setting { weassume that all spaces are compactly generated. For the same reason we restrict ourattention to small categories which are not topologized. Note however that the generaltheory (see [19]) can be developed for the case of topological categories A for which themap Obj(A) ,! Mor(A) is a co�bration.2.2 Limit Space ConstructionsWe will now discuss several constructions of \limit spaces" from a diagram D. For thatwe recall the notion of a simplicial space and its geometric realization. The referencesprovide more information about simplicial sets and spaces, their geometric realizations,and other general categorical constructions used in this paper. Nevertheless, we try to beas self-contained as possible.The category Ord has as objects the �nite ordinals [n] := f0; : : : ; ng, n � 0; itsmorphisms are the non-decreasing maps f : [n] ! [m] (i.e., f(i) � f(i + 1)). The setof morphisms of Ord is generated [23, p. 4] [17, II.2.2] by the maps �in and �in, where�in : [n � 1] ! [n] is the increasing injection that does not assume the value i (for0 � i � n), and �in : [n+1]! [n] is the non-decreasing surjection that assumes the valuei twice (for 0 � i � n).A simplicial space is a contravariant functor F : Ord ! Top. A simplicial setis a contravariant functor F : Ord ! Set. We will not distinguish between simpli-cial sets and simplicial spaces equipped with the discrete topology. SimplicialSets andSimplicialSpaces are categories with the \obvious" morphisms, that is, whose morphismsare the natural transformations between functors Ord! Set resp. Ord! Top.There is a simple geometric realization functor R : Ord ! Top that associates with[n] the standard n-dimensional simplex�n := n(t0; t1; : : : ; tn) 2 Rn+1 : 0 � t0 � t1 � : : : � tn � 1; nXi=0 ti = 1o;5



and associates with �in and �in the \face operators" R(�in) resp. the \degeneracy operators"R(�in). (Viewing Ord as the category of �nite chains and order preserving maps, thefunctor R associates with chains their order complexes and with order preserving mapsthe corresponding simplicial maps.)Now we are able to review some important \limit space" or \total space" constructionsarising from categories and diagrams.Geometric Realization. Given a simplicial space F one de�nes its geometric realiza-tion kFk. Denote by Fn := F([n]) the image of [n] under F, by din the image of �inunder F and by sin the image of �in under F. Then kFk is obtained as the quotientof the disjoint union Un�0 Fn ��n modulo the equivalence relation \�" de�ned by(din(x); p) � (x;R(�in)(p)) for x 2 Fn and p 2 �n�1(sin(x); p) � (x;R(�in)(p)) for x 2 Fn and p 2 �n+1:With this geometric realization k � k is a functor from SimplicialSpaces to Top.Classifying Spaces. If A is any small category, then there is a natural simplicial setFA : Ord! Set associated to it. Namely, the image of [n] under FA consists of allsequences �n fn � � � f1 �0 of objects �i 2 Obj(A) and maps fi 2 MorA(�i�1; �i) inthe category A. The maps din are given bydin(�n fn � � � f1 �0) = 8>><>>: �n fn � � ��i fi �i�1 � � � f2 �1; i = 0;�n fn � � ��i+1 fi+1�fi �i�1 � � � f1 �0; 1 � i � n� 1;�n�1 fn�1 � � ��i fi �i�1 � � � f1 �0; i = n:The maps sin are given bysin(�n fn � � � f1 �0) = �n fn � � � fi+1 �i id�i �i fi � � � f1 �0:The geometric realization of the simplicial set FA is the classifying space B(A) ofthe category A.colimD. The colimit of a diagram D is the topological space obtained from the directsum Ua2ADa modulo the equivalence relation \�" generated by x � y for x 2 Da,y 2 Db if dg:a!b(x) = y for some g : a ! b. We write colimD for the colimit of thediagram D.hocolimD. The homotopy colimit of a diagram D is de�ned as the quotient of the directsumUa2AB(A#a)�Da by an equivalence relation \�." Here A#a denotes, for a givencategory A and a 2 Obj(A), the category of all arrows a! b emanating from a withcommutative triangles as morphisms between objects a! b1 and a! b2. If A = Pis a partially ordered set, then A#a = P�a = fp 2 P j p � ag. The equivalencerelation \�" is de�ned as follows. For all morphisms f : a! b consider the maps:� : � B(A#b)�Da �! B(A#b)�Db(p; x) 7�! (p; df :a!b(x))6



� : � B(A#b)�Da �! B(A#a)�Da(p; x) 7�! (B(f)(p); x):Then \�" is the transitive closure of �(p; x) � �(p; x).If it is important to emphasize the indexing category A, then the homotopy colimitof a diagram D is denoted by hocolimA D.Bar Construction. A very general construction of a limit space is a construction givenby Hollender & Vogt [19]. Given diagrams D : Aop ! Top and E : A ! Topover a category A and its opposite category Aop, there is an associated total spaceB(D; A; E). Its construction generalizes all limit space constructions presented sofar (except for the colimit construction). To the data D and E one associates asimplicial set �(D; A; E). The space of n-simplices of �(D; A; E) is the space of all\threads" (x; �n fn �n�1 fn�1 � � � f1 �0; y);where x 2 D�n and y 2 E�0 . More precisely, this space can be described as thespace U�n fn ��� f1 �0 D(�n) � E(�0), where the direct sum is taken over all n-chains�n fn � � � f1 �0 of morphisms in A. The maps din (0 � i � n) are given bydin(x; �n fn � � � f1 �0; y) = 8>><>>: (x; �n fn � � ��i fi �i�1 � � � f2 �1; ef1(y)); i = 0;(x; �n fn � � ��i+1 fi+1�fi �i�1 � � � f1 �0; y); 1 � i � n� 1;(dfn(x); �n�1 fn�1 � � ��i fi �i�1 � � � f1 �0; y); i = n:The maps sin (0 � i � n) are given bysin(x; �n fn � � � f1 �0; y) = (x; �n fn � � � fi+1 �i id�i �i � � � f1 �0; y):Denote by B(D; A; E) the geometric realization of the simplicial space �(D; A; E). Thehomotopy colimit and the classifying space are special cases of the geometric realizationof simplicial spaces of the form �(D; A; E). Namely, let PT A be the diagram over thecategory A that assigns to each object a in A the one-point space f�g. Then the clas-sifying space of the category A is the geometric realization of �(PT Aop; A;PT A). Fora diagram D : A ! Top the homotopy colimit hocolimD is homeomorphic to the spaceB(PT Aop; A;D).We may observe that for every diagram D over a category that is a poset P thereis a canonical partial order on P := Up2P Dp de�ned by setting x � x0 for x 2 Dp andx0 2 Dp0 if and only if p � p0 and dpp0(x) = x0. With this de�nition there is a canonicalbijection �(P) ! hocolim(D); however, the topology on the two spaces is di�erent: infact, with the usual topology on simplicial complexes the subspaces Dp � �(P) get adiscrete topology. Note however, see Section 4.1, that there exists a convenient geometricmodel for hocolim(D) realizing this space as a subspace of the join J(D) := �p2P Dp.This construction can be seen as a natural extension of the order complex constructionto diagrams over posets. 7



Examples 2.1 Here are some simple examples for the construction of homotopy colimitsof diagrams over posets.(i) If Dp is a one-point space for all p 2 P , i. e. D = PT , then hocolimD is (isomorphicto) the order complex of P .(ii) If P = fpg is a one-element poset, then hocolimD = Dp.(iii) If P = fp; p0g has two points and p0 > p, then hocolimD = Dp0 [f Dp is the mappingcylinder of the map f = dp0p : Dp0 ! Dp.(The mapping cylinder is homotopy equivalent to the image space Dp, which is thecolimit of the diagram.)(iv) If P = fp; p0g and p; p0 are not comparable, then hocolimD = Dp]Dp0 is the disjointunion.(In this case it agrees with the colimit colimD of the diagram.)(v) Let P = fp; p0; p00g be the three-element poset with p � p0, p � p00, for whichp0 and p00 are incomparable, and let D be a diagram over P with Dp00 = f�g aone-point space. Then the homotopy colimit hocolim(D) is homeomorphic to themapping cone of the map dpp0 : Dp ! Dp0.(vi) If D is a diagram such that all the spaces Dp are identical, and the maps are identitymaps, then hocolimD �= �(P )�Dp.(The colimit of such a diagram is Dp, if P is connected.)2.3 Simplicial Homotopy Lemma and the Gluing LemmaDe�nition 2.2 A simplicial space F : Ord! Top is called good if for any surjective map� : [n]! [n�1] in Ord the image of �, F (�) : F ([n�1])! F ([n]), is a closed co�bration.Proposition 2.3 (Simplicial Homotopy Lemma)Let A, B be two good simplicial spaces. Let F : A ! B be a map of simplicial spaces. IfFn : An ! Bn is a homotopy equivalence for all n, then the induced mapkFk : kAk ! kBkis a homotopy equivalence.Good simplicial spaces were de�ned by Segal [36, Appendix] under the name \proper"simplicial spaces. In [25] and in [24] the closely related, albeit not coinciding, classesof proper and strictly proper spaces are introduced. Proposition 2.3. is known as theMay-Tornehave or the May-Tornehave-Segal theorem. Proofs can be found in either ofthe references mentioned above.The Gluing lemma is a key result. It has repeatedly been used in inductive proofsof results establishing that two spaces are homotopy equivalent; a notable example is theproof of Proposition 2.3. This lemma is a basic example for an important general prin-ciple which informally says that a local homotopy equivalence is also a global homotopyequivalence | see the Homotopy lemma 3.7.8



Lemma 2.4 (Gluing lemma [7] [40])Consider the commutative diagram of spacesB f1 � A f2�! C# h1 # h0 # h2V g1 � U g2�! WAssume that h0; h1; h2 are homotopy equivalences and that either both f1 and g1 are co�-brations or both f2 and g2 are co�brations. Let X = B [AC (resp., Y = V [U W ) denotethe colimit (or push-out) of the diagram formed by the maps (f1; f2) (resp., (g1; g2)). Thenthe induced map h : X ! Y is also a homotopy equivalence.3 Comparison Results for Diagrams of SpacesIn this section we set up the toolkit for applications of diagrams of spaces. In the subse-quent section we will show how these very general results specialize to forms applicable invarious combinatorial situations where the emphasis is on diagrams over (locally) �niteposets. The toolkit consists of a sequence of propositions and lemmas most of whichare part of standard tools of an algebraic topologist. These results allow us to recognizea topological space as the homotopy colimit of a diagram (Projection Lemma), tocheck if a given morphism (F; �) : X ! Y of diagrams induces a homotopy equivalence�̂ : hocolimA X ! hocolimB Y of the corresponding homotopy colimits (HomotopyLemma), to change the underlying small category of the diagram without changing thehomotopy type of the homotopy colimit, to \compute" or to �nd a standard, combinato-rial form of the space hocolimA X (Wedge Lemma), etc.3.1 Projection, wedge and the quasi�bration lemmaProposition 3.1 (Projection Lemma [35] [6])Let X : C ! Top be a diagram such that Xf :a!b : X(a) ! X(b) is a closed co�brationfor any morphism f 2 Mor(a; b); a; b 2 Obj(C). Then the natural maphocolimCX �! colimCXis a homotopy equivalence.The next result that we are heading for, the Wedge Lemma, has been formulatedand used before in the case of diagrams over posets [47]. In order to formulate and provea more general form of this lemma we need two preliminary de�nitions.De�nition 3.2 A diagram X : A ! Top is called a diagram with constant maps iffor all a; a0 2 Obj(A) and any nonidentity morphism f : a ! a0; f 6= ida, the mapX(f) : X(a) ! X(a0) is a constant map. A special diagram with constant maps is adiagram with constant maps with the additional property that for any object a 2 Obj(A)there exists a point xa 2 X(a) such that for any morphism f : b ! a, f 6= ida, theone element set Im(X(f)) is precisely fxag. In addition it is assumed that all spaces9



X(a) are well pointed [7], which means that (X(a); fxag) is a co�bration pair. If thecategory A has an initial object a, i.e., an object such that for each a0 2 Obj(A) there is aunique morphism from a to a0, then a diagram with constant maps (resp. special diagramwith constant maps) over A is called an initial diagram with constant maps (resp. specialdiagram with constant maps).De�nition 3.3 Given a category A and a 2 Obj(A), the undercategory A#a, often de-noted by anA or a#Id, is the category with objects Obj(A#a) := Ub2Obj(A)Mor(a; b) andan arrow from a f! x to a g! y for each commutative triangle formed by f; g and a mor-phism x h! y; g = h � f . Given c 2 Obj(A), the truncated category obtained by deletingc and all incident morphisms is denoted by Annc. If we delete from A#a the initial objecta id! a and all incident morphisms we obtain the truncated undercategory A#annida whichis denoted by A+a. Specially, if A is a poset category P , then A#a and A+a are posetcategories P�a and P<a.Lemma 3.4 Let X be an initial diagram with constant maps over a category A with aas an initial object. Then the homotopy colimit of this diagram has the following joindecomposition: hocolimAX ' X(a) �B(Anna);where Anna is the truncated category de�ned above and B(Anna) its classifying space.Moreover, if X(a) is not a singleton these spaces are homeomorphic.Proof. For an object x 2 Obj(A) let fx 2 Mor(a; x) be the unique morphism connectinga and x, e.g. fa = ida. If g 2 Mor(x; a) then g � fx = ida, hence X(g) �X(fx) = idX(a). Ifx 6= a this is possible only if X(a) consists of a single element; in this case the formula iscorrect since both sides of the equation are contractible spaces. If jX(a)j > 1 then the onlymorphisms with a as the domain or codomain are of the form fx for some x 2 Obj(A).In this case the formula hocolimAX �= X(a) �B(Anna) follows by de�nition.Remark. There are interesting examples of diagrams X : A ! Top, see [47] and Sec-tion 5.4, which have the property that for all a; b 2 Obj(A) and f : a ! b; f 6= ida,the map X(f) : X(a) ! X(b) is homotopically trivial. Typically these diagrams can betransformed, usually with the aid of the Homotopy lemma (Proposition 3.7), into spe-cial diagrams with constant maps without a�ecting the homotopy type of the homotopycolimit. The following lemma shows that in these cases we can actually \compute" thesehomotopy types.Proposition 3.5 (Wedge lemma)Suppose that X is a special diagram with constant maps over A. If the category A isconnected then the homotopy colimit of X has the wedge decompositionhocolimAX ' B(A) _ _a2Obj(A)X(a) �B(A+a):If the category A is not connected, then the formula applies to each of the connectedcomponents. 10



Proof. Let � : X ! PT be the canonical \collapsing" map from X to the constantdiagram PT . The assumption about points xa 2 X(a) leads to a morphism of diagrams� : PT ! X which is a right inverse to �; ��� = Id, hence B(A) is a retract of hocolimAX .For each a 2 Obj(A) let Fa : A#a ! A be the naturally de�ned functor. There are threediagrams over A#a: the constant diagram Z[a] : A#a ! Top; b 7! X(a), the pullbackdiagram Y [a] := F �a X (cf. De�nition 3.9), and the special diagram with constant mapsX[a] obtained from Y [a] by collapsing to a point all spaces except for the space X(a) thatis associated to the object ida. It is clear that hocolimA#a Z[a] �= B(A#a)�X(a) and thatthere is an obvious retraction B(A#)�X(a) ra! hocolimA#a X[a]. By the de�nition of thehomotopy colimit hocolimAX = ]a2Obj(A)B(A#a)�X(a)= �; (1)so there is a map fa : B(A#a)�X(a)! hocolimAX which factors as followsB(A#a)�X(a) ra�! hocolimA#a X[a] sa�! hocolimAX :All identi�cations in (1) occur along the space B(A) and we observe that hocolimAX isobtained by simultaneous adjunction (pushout), for all a 2 Obj(A), of the following formhocolimA#aX[a] ja � B(A#a) ga�! B(A) (2)where ja is an inclusion map and ga is the map induced by the functor Fa : A#a ! A.The space B(A#a) is contractible so we can, according to the Gluing lemma, Lemma 2.4,replace maps ja and ga in (2) by constant maps without changing the homotopy typeof the adjunction space. This can be done simultaneously for all a 2 Obj(A) which,together with Lemma 3.4 and the observation that A#annida = A+a, leads to the desiredformula.The obvious \collapsing" map of diagrams � : X ! PT A where X is an arbitrary A-diagram and PT A is the constant point-diagram over A, induces a map �̂ : hocolimAX !B(A). Under certain strong conditions this map turns out to be a quasi�bration, aconcept introduced by Dold & Thom [9]. A map f : X ! Y between topological spaces isa quasi�bration if for any y 2 Y and x 2 f�1(y) the induced maps f� : �i(X; f�1(y); x)!�i(Y; y) are isomorphisms for all i � 0. The following proposition is essentially due toQuillen [31].Proposition 3.6 (Quasifibration Lemma) [31] [10, (9.10)])If X is an A-diagram such that all the maps X(f) : X(a) ! X(b); f 2 MorA(a; b)are homotopy equivalences, then the natural projection map hocolimA X �! B(A) is aquasi�bration. In particular, if B(A) is contractible, then for every a 2 Obj(A) the mapX(a)! hocolimA X is a homotopy equivalence.3.2 From local to global homotopy equivalencesThis is the �rst circle of results about homotopies between homotopy colimits of diagrams.11



Proposition 3.7 (Homotopy Lemma)Suppose that X and Y are diagrams over C and � = (id; �) : X ! Y is a morphism suchthat �(c) : X(c) ! Y (c) is a (weak) homotopy equivalence for all c 2 Obj(C). Then theinduced map �̂ : hocolimCX ! hocolimCYis also a (weak) homotopy equivalence.This Homotopy Lemma is a central result about diagrams of spaces. As noted aboveit has evolved from the Gluing lemma, Proposition 2.4, in the papers of tom Dieck [40],Bous�eld & Kan [6, XII.4.2], Vogt [42] and others. Both the Homotopy lemma andthe following more general result from [19], for the bar construction (as discussed inSection 2.2) can be deduced from the results of Section 2.Proposition 3.8 Let X ;X 0 : C ! Top and Y;Y 0 : Cop ! Top be diagrams. Suppose(id; �) : X ! X 0 and (id; �) : Y ! Y 0, are morphisms of diagrams such that �(c) :X(c) ! X 0(c) and �(c) : Y (c) ! Y 0(c) are homotopy equivalences for all c 2 Obj(C).Then the induced map B(�; id; �) : B(Y; C;X ) �! B(Y 0; C;X 0)is also a homotopy equivalence.The Homotopy Lemma is a very convenient tool if we want to compare homotopytypes of homotopy colimits of two diagrams over the same category C. For comparisonof homotopy colimits of diagrams over di�erent categories we have at our disposal thefollowing two elegant results. They both describe possible changes of the indexing categoryof a diagram that do not a�ect the homotopy type of the homotopy colimit.De�nition 3.9 Given a functor F : C ! D, the pullback functor F � associates a C-diagram with every D-diagram: It is de�ned by F �(Y) := Y � F for any D-diagramY. If d 2 Obj(D) let d#F be the category which has as objects all arrows of the formd! F (c) for some c 2 Obj(C) and for morphisms between arrows d f!F (c) and d f!F (c0)commutative triangles F (h)�f = g where h 2 MorC(c; c0). If F = Id is the identity functorwe recover the de�nition of undercategory from De�nition 3.3.Proposition 3.10 (Cofinality Theorem [6, XI,9.2], [11], [19])If a functor F : C ! D is right co�nal, i.e., if the classifying space B(d # F ) is homo-topically trivial for all d 2 D, then the induced maphocolimCF �Y �! hocolimDYis a homotopy equivalence.The (Segal's) homotopy pushdown functor Fh� associates a D-diagram to any C-diagram X : C ! Top, [36] [19]. 12



De�nition 3.11 For every category D there is a tautological (Dop �D)-diagram D(�;�) :Dop �D ! Top of discrete spaces de�ned by (d1; d2) 7! MorD(d1; d2). If d 2 Obj(D) is�xed, then let D(d;�) : D ! Top be the D-diagram de�ned by x 7! MorD(d; x). Similarly,for a �xed d0 2 Obj(D), the Dop-diagram de�ned by x 7! MorD(x; d0) is denoted byD(�;d0) Given a functor F : C ! D and d 2 Obj(D), the Dop-diagram D(�;d) is, via F ,seen also as a Cop-diagram, so the space B(D(�;d); C;X ) is well de�ned. The assignmentd 7! B(D(�;d); C;X ) de�nes a D-diagram Fh�(X ) which is called the homotopy pushdownof X or the left homotopy Kan extension along F .Proposition 3.12 (Homotopy Pushdown Theorem)Given a functor F : C ! D and a C-diagram X , there is a natural homotopy equivalencehocolimDFh�X �! hocolimCX :3.3 Homotopies Arising From Natural TransformationsA proposition of Segal [35, Prop. 2.1] says that any natural transformation of functorsF0; F1 : C ! D induces a homotopy on the level of geometric realizations. This principlehas numerous consequences and applications; some of them are collected in this section.Recall that a morphism (F; �) : X ! Y of diagrams X : A! Top and Y : B ! Topis a functor F : A ! B and a natural transformation � from X to Y � F . The result ofSegal deals with topological categories and not with diagrams. However, the connectionwith results quoted here becomes transparent if a diagram X : A ! Top is viewed as atopological category with Ua2Obj(A)X(a) as the space of objects and an arrow x f! y foreach pair of objects x; y and a morphism f 2 MorA(a; b) such that x 2 X(a); y 2 X(b)and X(f)(x) = y. We are indebted to the referee for the following proposition and itscorollaries. The referee also pointed out that these results can be immediately deducedfrom Proposition 3.1.7 in [19]; however, in the more explicit form presented here they arecloser to our intended combinatorial applications.Proposition 3.13 Suppose that X : A! Top and Y : B ! Top are diagrams of spacesover A and B. Assume that (F; �) : X ! Y and (G; �) : Y ! X are morphisms of thesediagrams such that either1. there exists a natural transformation � : G � F ! Id such that X(�) � � � � = id or2. a natural transformation �� : Id! G � F such that � � � = X(��).A X�! TopF # � + # idB �!Y TopG # � + # idA �!X Top13



Then (F; �) and (G; �) induce continuous maps f : hocolimAX ! hocolimBY and g :hocolimBY ! hocolimAY such that g is a left homotopy inverse to f ,g � f ' Id:Moreover, if there exists a morphism of diagrams (H; 
) : X ! Y and either a naturaltransformation � : H � G ! Id such that Y (�) � 
 � � = id or a natural transformation�� : Id ! H � G such that 
 � � = Y (��), then (F; �); (G; �) and (H; 
) induce homotopyequivalences hocolimAX ' hocolimBY:Corollary 3.14 Let i : B ! A be an inclusion of B as a full subcategory of A, F : A! Ba functor which maps B to B, and � : IdA ! i�F a natural transformation. Let X be anA-diagram, and let X jB denote the restriction of X to B. Then the canonical inclusionmap induces a homotopy equivalencehocolimBX jB '�! hocolimAX :Proof. The inclusion of diagrams � : X jB ! X induces an inclusion map h(�) :hocolimBX jB ! hocolimAX . The natural transformation � de�nes a map � : X ! XjBof diagrams, a 7! F (a), X(a) 7! X�a(a), which induces a map h(�) : hocolimAX !hocolimBX jB. Then h(�) is both the right and left homotopy inverse of h(�). Indeed,this follows from Proposition 3.13 with (F; �) = (H; 
) = (F;X�), (G; �) = (i; id),Y = X jB = X � i, �� = �, and �� = �i.Corollary 3.15 Let F : A! B be a left adjoint to G : B ! A. Let X be an A-diagram.Then (G; id) is a map of diagrams which induces a homotopy equivalencehocolimBX �G ' hocolimAX :Proof. Let � : Id! G�F and � : F �G! Id be the adjunction transformations. ApplyProposition 3.13 with (F; �) = (H; 
) = (F; �); Y = X �G; (G; �) = (G; id); �� = � : Id!G � F and � = � : F �G! Id.4 Diagrams over posetsDiagrams over posets play a special role in this paper since the majority of diagramsarising in combinatorics are of this type. The situation resembles the use of diagramsof spaces in the theory of transformation groups where this technique is also of utmostimportance. A topologist primarily interested in group actions may �nd it convenientto have the key statements formulated in the language of G-spaces although they areconsequences of more general results. An example is the result that an equivariant mapf : X ! Y induces a homotopy equivalence f̂ : EG�GX ! EG�G Y if fH : XH ! Y His a homotopy equivalence for any subgroup H � G [14].14



A similar tendency exists in combinatorics. For example, the reference [32], wherePropositions 4.2 and 4.3 are formulated, deals only with posets despite the fact thatQuillen himself was in possession of much more general statements, his well known The-orems A and B [31]. All these results are relatives of theorems formulated in Sections 3.3and 3.2 and they played an important role in the development of the general theory.This is the �rst reason why we collect some of the corollaries of the general results ina separate section. A second reason is that there exist results which hold for posets andwhich do not have useful analogs for general categories.4.1 Homotopy Colimits RevisitedThe homotopy colimit construction is supposed to be a direct extension of the ordercomplex construction for (locally) �nite posets P . It is shown in Section 5.1 that the join[3], J(X ) := X1 � : : : �Xn of a family X = fXig1�i�n of spaces has a simple descriptionas the homotopy colimit of a natural diagram of spaces. Here we note that conversely, atleast in the case of posets, the homotopy colimit can be described as a subspace of a joinof spaces.Proposition 4.1 Let D : P ! Top be a diagram over a (locally) �nite poset P . LetJ(D) := �p2P Dp be the join of all spaces in this diagram and let�(D) := nt0x0 + : : :+ tmxm 2 J(D) j xi 2 Dpi; p0 � : : : � pm; dpj+1pj(xj+1) = xjo:Then this space is naturally homeomorphic to the homotopy colimit of D,�(D) �= hocolimPD:This characterization of homotopy colimits generalizes the order complex construction,since �(P ) �= �(PT P ), where PT P is the constant diagram associated to P , as inSection 2.4.2 Comparison Results for Diagrams Over PosetsIn this section we brie
y review some of the most useful comparison lemmas which aremeaningful only for order complexes of posets. Examples of such results are the Cross-cut theorem 4.4 and the Homotopy Complementation Formula [5], the latter one beinga special case of Theorem 5.2. These result have found many interesting combinatorialapplications. Also, by showing some of the most useful corollaries of general results fromSection 3 we provide a link between these results and the general theory of diagrams.Quillen's Theorem A or the Fiber Theorem can be seen as a corollary and a resultthat motivates both the Cofinality Theorem (Proposition 3.10) and Segal's Push-down Theorem (Proposition 3.12). Quillen's Theorem B or the Order HomotopyTheorem is a corollary and a good illustration of results from Section 3.3.Proposition 4.2 (Quillen Fiber Theorem: Quillen [31, 32], Walker [43])If f : P ! Q is a map of posets such that the order complex of f�1(Q�q) is contractiblefor all q 2 Q, then the simplicial map �f : �(P )! �(Q) is a homotopy equivalence.15



Similarly, if the order complex of f�1(Q�q) is contractible for all q 2 Q, then �f is ahomotopy equivalence.Proposition 4.3 (Order Homotopy Theorem: Quillen [32], see Bj�orner [3, (10)])If f : P ! P is a decreasing poset map (that is, f(p) � p for all p 2 P ), then P ishomotopy equivalent to f(P ).A join semilattice is a poset P such that every �nite subset has a unique minimalupper bound. If P is of �nite length, then this implies that P has a unique maximalelement 1̂. The crosscut complex �(P ) of a join semilattice is the simplicial complex ofall nonempty subsets of min(P ) that have an upper bound in Pn1̂.Proposition 4.4 (Crosscut Theorem: see Bj�orner [3, (10.8)])For every join semilattice P of �nite length, the crosscut complex �(P ) is homotopyequivalent to the order complex of Pn1̂.Next we come to the combinatorial version of the Projection Lemma 3.1. The nat-ural combinatorial setting for its application (see Sections 5.2 and 5.4) is the following:A topological space X is covered by a (�nite) set (Xi)i2I of closed subspaces. The inter-section poset P of the covering X = Si2I Xi is de�ned on the set of all spaces Tj2J Xj,J � I, that occur as an intersection of spaces (Xi)i2I with the reversed inclusion as itsorder relation. There is a natural diagram D : P ! Top associated to the covering.Namely, to each element p 2 P one assigns the corresponding intersection Dp and de�nesthe maps as the natural inclusions.Lemma 4.5 (Projection Lemma: Segal [35], Bous�eld & Kan [6, XII.3.1(iv)])Let X = Si2I Xi be a covering of the space X by a �nite set of closed subspaces. Let Pbe the intersection poset P and let D be the corresponding P -diagram. Then the naturalmap hocolimD ! colimD �= X induces a homotopy equivalence hocolimD ' X.In general a `standard' application of the homotopy colimit tools proceeds from adiagram D associated to a covering to another `more simple' diagram by suitably modify-ing D using a poset version of the Homotopy Lemma 3.7, the Cofinality Theorem3.10 or the Upper Fiber Lemma.Lemma 4.6 (Homotopy Lemma)Let D and E both be P -diagrams, and assume that there is a map of diagrams (id; �) :D ! E such that �p : Dp ! Ep is a homotopy equivalence for each p 2 P , then � inducesa homotopy equivalence b� : hocolimD ! hocolimE.If one wants to change the poset underlying a diagram on needs an analog of theConfinality Theorem 3.10.Lemma 4.7 (Inverse image lemma)Let f : P ! Q be a poset morphism and let E be a Q-diagram. De�ne the P -diagramf �(E) by (f �E)p := Ef(p) and f �epp0 = ef(p)f(p0).If for all q 2 Q, f�1(Q�q) is contractible, then f induces a homotopy equivalencehocolimf �(E) ! hocolimE :16



In contrast to the preceding lemmas that are just reformulations of the general state-ments for small categories in the situation of diagrams over poset, the Upper FiberLemma does not follow immediately from the general tools presented here. Therefore weprovide a proof.Lemma 4.8 (Upper Fiber Lemma)Let D be a P -diagram and let E be a Q-diagram. Assume (f; �) : D ! E is a map ofdiagrams. If (f; �) induces a homotopy equivalence of the restrictionsb� : hocolimDjp2P :f(p)�q ' hocolimEjQ�q for all q 2 Q;then (f; �) induces a homotopy equivalence b� : hocolimD ! hocolimE.Proof. We proceed by induction on the cardinality jQj of Q. Let q 2 Q be a minimalelement of Q. Then Q = Q1[Q2 for Q1 = Q�q and Q2 = Qnfqg. The poset Q3 := Q1\Q2equals Q>q. We set Pi := f�1(Qi) for i = 1; 2; 3, which implies P1 \ P2 = P3 andP1 [ P2 = P .If q is the unique minimal element of Q (i.e., Q1 = Q), then the assertion follows triv-ially from the assumptions. Otherwise � induces a homotopy equivalence b� : holim�! DjPi !hocolimEjQi for i = 1; 2; 3, by induction. Since hocolimDjP1 \ hocolimDjP2 = hocolimDjP3and hocolimDjQ1 \ hocolimDjQ2 = hocolimDjQ3, it follows from the Gluing Lemma 2.4that � induces a homotopy equivalence between hocolimD = hocolimDjP1 [ hocolimDjP2and hocolimE = holim�! EjQ1 [ hocolimEjQ2.If one is lucky { and surprisingly often one is indeed lucky { one is able to transforma diagram D into a diagram that allows an application of the Wedge Lemma 3.5 whoseposet version we state next.Lemma 4.9 (Wedge lemma)Let P be a poset with maximal element 1̂. Let D be a P -diagram so that there exist pointscp0 2 Dp0 for all p0 < 1̂ such that dpp0 is the constant map dpp0 : x 7! cp0, for p > p0. ThenhocolimD ' _p2P��(P<p) �Dp�;where the wedge is formed by identifying cp 2 �(P<p) � Dp with p 2 �(P<1̂) � D1̂, forp < 1̂.We close this toolset of lemmas by a result that is a simple consequence of the de�nitionof a homotopy colimit.Lemma 4.10 (Embedding lemma)Let (id; �) : D ! E be a map of P -diagrams. If �p : Dp ,! Ep is a closed embedding forevery p 2 P , then � induces a closed embeddingb� : hocolimD ,! hocolim E :In particular, if D is a P -diagram and Q � P is a subposet, then hocolimDjQ ,! hocolimDis a closed embedding. 17



5 Applications5.1 Combinatorial Objects as Homotopy ColimitsIn this section we show how some well known combinatorial constructions can be usefullyrelated to diagrams and their homotopy colimits.Proposition 5.1 Let X = fXigni=0 be a collection of spaces. Denote by Bn the poset ofall nonempty faces of an n-simplex, i.e., the poset 2f1;:::;n+1g n f;g ordered by inclusion.Let DX : Bn ! Top be the following diagram associated to the collection X . For A 2 Bnlet DX (A) := Qi2A Xi and for A � B let dAB : DX (A) ! DX (B) be the canonicalprojection. Then the join J(X ) of all spaces in the family X is naturally homeomorphicto the homotopy colimit of this diagramJ(X ) := X0 �X1 � : : : �Xn �= hocolimBnDX :

Figure 1. The join of S0 and S1 as a homotopy colimitThe formula given in Proposition 5.1 is a very simple and useful representation of thejoin of spaces exposing much of the underlying combinatorial structure.An important variation of the diagram above arises if Xi = S1 for all i. This is atoric diagram in the sense of Section 5.3. There is a natural diagonal action of the circlegroup U(1) on all tori D(A) = (S1)jAj. Dividing by this action leads to a new diagramE := D=U(1) and a well known fact is that this leads to a combinatorial description ofthe complex projective space C Pn : hocolimBnE �= C PnA very useful concept, which has found numerous applications in combinatorics, is thedeleted join operation [3] [33] [48]. Given a simplicial complex K, the pth deleted joinK�(p)� is the subcomplex of the joinK�(p) := K�: : :�K of p copies ofK which consists of allsimplices � 2 K�(p) which have the form � = �1� : : :��p where �i; i = 1; : : : ; p, are pairwisevertex disjoint simplices of K. Some very important complexes can be constructed byiterating the join and the deleted join operation, for example the well known chessboardcomplexes �p;q [3], [48], arise this way. The simplest complex of this form is JN;q :=(�N)�(q)� , where �N is the standard N -dimensional simplex. This space, viewed as a18



space with the obvious cyclic Zq-action, has been applied in combinatorics to problemsof Tverberg type, to the `necklace' partition problem, etc., see [3]. Motivated by theseand other similar examples, it is natural to look for homotopy colimit representations fordeleted joins as well.There are two obvious ways to associate a diagram to the space of the form K�(p)� .One can view K�(p)� as a subspace of K�(p) which has the homotopy colimit representationdescribed in Proposition 5.1. The subdiagram which arises this way is similar except thatthe products Kj are replaced by deleted products Kj� ; j = 1; : : : ; p. Recall that the deletedproduct Kj� is a cell subcomplex of the cell complex Kj consisting of all cells of the form� = �1 � : : : � �j, where �k, k = 1; : : : ; j, are pairwise vertex disjoint simplices in K.Another possibility is to link K�(p)� with a diagram over the face poset of K itself via the`collapsing' map K�(p)� ! K. The diagram arising this way is a �nite space diagram. Forexample if K = �N , the space K�(q)� = JN;q is the homotopy colimit of a diagram of thetype described in Proposition 5.1 where Xi := [q] �= Zq for all i = 0; 1; : : : ; N . Theseand other examples seem to indicate that it may be useful to study discrete analogs oftoric diagrams with the discrete `tori' Zjq = Zq � : : :� Zq in place of T j = S1 � : : :� S1.Specially it is an interesting question which convex polytopes admit natural discrete toricdiagrams.5.2 Bj�orner's generalized homotopy complementation formulaBj�orner's generalized homotopy complementation formula [4] is an e�ective tool to com-pute the homotopy type of a simplicial complex � in the case when a large, contractibleinduced subcomplex �A is known, whose connections to the rest of the complex are nottoo complicated.In the following, we provide a \diagrammatic" proof of Bj�orner's result, therebydemonstrating the applicability of some of our lemmas.Let � � 2S be a �nite (abstract) simplicial complex with vertex set S, let A � S bea subset of its vertex set, and denote by A the complement SnA of A.Let �A := f� 2 � : � � Ag = �\ 2A be the induced subcomplex on A, and similarly�A the induced complex on A. In the following, the key assumption we will make is that�A is contractible.Theorem 5.2 (Generalized Homotopy Complementation Formula: Bj�orner [4])For any simplicial complex � � 2S and A � S, de�ne a new simplicial complex TA bytaking the union of all the simplicial complexes(p ] �) � (star�(�) \�A) for � 2 �;where p is an additional point p =2 S, and � denotes the join of two complexes.If �A is contractible, then � and TA are homotopy equivalent.Proof. Let P be the poset of all nonempty faces of �, ordered by inclusion, and letQ := f(�; �) 2 P � P : � � �g;19



partially ordered by the condition(�0; � 0) � (�; �) :() � � �0 � � 0 � �:(Thus Q is isomorphic to the poset of all intervals in P , ordered by inclusion: Q �= Int(P ).)For � 2 P we de�ne D� := star�(�) [�A:Then we clearly have inclusion maps d�� : D� ,! D� whenever � � �. This de�nes aP -diagram D, with � = colimD ' hocolimD;where the equality holds by de�nition of the colimit (this is a subspace diagram!), andthe homotopy equivalence is an application of the Projection Lemma 4.5.Similarly, for (�; �) 2 Q we de�neE(�;�) := (p ] �) � (star�(�) \�A):Then we get inclusion maps e(�;�)(�0 ;� 0) : E(�;�) ,! E(�0 ;� 0) whenever (�; �) � (�0; � 0). Thisde�nes a Q-diagram E , with TA = colimE ' hocolimE ;by de�nition of the colimit and the Projection Lemma.Thus, the claim of the theorem is reduced to proving that the homotopy colimits ofthe P -diagram D and the Q-diagram E are homotopy equivalent. This demands use ofour new homotopy lemmas, since the posets P and Q are quite di�erent.The canonical poset map to use isf : Q! P; (�; �)! �:This f induces a homotopy equivalence between the posets P and Q (Walker [44]). To seethis, we observe that the lower �bers f�1(P��) are canonically isomorphic to Int(P��).On the poset Int(P�� ) we have an increasing map g : Int(P�� ) ! Int(P�� ) given by(�0; � 0) 7! (�0; �). Thus, by the Order Homotopy Theorem 4.3 the �ber Int(P��) ishomotopy equivalent to the image g(Int(P�� )) �= P�� , which is a cone.Now we modify E and D a little. We de�ne a new Q-diagram E 0, whose spaces areE 0(�;�) := star�(�) [ (p ��A);and whose maps are the obvious inclusions. Furthermore, there is a map  1 : E ! E 0,which is the identity map on Q, and between the spaces uses the inclusion maps(p ] �) � (star�(�) \�A) ,! (p ] �) � (star�(�) \�A) ,! star�(�) [ (p ��A)which are clearly homotopy equivalences, since �A is contractible. Thus, by the Homo-topy Lemma 4.6,  1 induces a homotopy equivalenceb 1 : hocolimE ' hocolimE 0:20



Similarly, we de�ne a new P -diagram D0, whose spaces areD0� := star�(�) [ (p ��A);and whose maps are the obvious inclusions. Furthermore, there is a map  2 : D ! D0,which is the identity map on P , and between the spaces uses the inclusion mapsstar�(�) [ �A ,! star�(�) [ (p ��A)which are clearly homotopy equivalences. Thus, by the Homotopy Lemma,  2 inducesa homotopy equivalence b 2 : hocolimD ' hocolimD0:Finally, at this stage we see that E 0 is an inverse image diagram, E 0 = f �(D0), wheref is a poset map whose lower �bers we have already checked to be contractible. Hencethe Inverse Image Lemma 4.7 implies a homotopy equivalencehocolimE 0 ' hocolimD0which completes the proof.Alternatively, one could derive hocolimE 0 ' hocolimD0 also from the Upper FiberLemma 4.8, together with the Projection Lemma 4.5, since E 0 and D0 are subspacediagrams as well.We note that there are alternative ways to describe the construction of TA. Forexample, one can (as Bj�orner does in his manuscript [4]) start from a wedge (or a disjointunion) of the spaces E(�;�) = (p ] �) � (star�(�) \ �A), and then check that all theidenti�cations of the colimit colimE are generated by identifying, for � � � , the identicalsubcomplexes (p ] �) � (star�(�) \�A) in E(�;�) and in E(�;�).Also, there are countless variations possible, corresponding to di�erent coverings ofthe complex �. The beauty of Bj�orner's set-up is that his transformations of � end upwith a subspace diagram, and thus with a colimit instead of a homotopy colimit, whichleads to an e�ective model for �=�A. It seems to us that the diagram techniques yieldan extremely natural and convenient setting for the proof of the generalized homotopycomplementation formula and similar results.5.3 Toric VarietiesIn this section we give a representation of the topological space underlying a toric variety(see Danilov [8], Fulton [16], and Ewald [12] for general background on toric varieties) asthe homotopy colimit of a diagram. For this we recall a description, due to MacPherson(see Yavin & Fischli [46] [15]), of a toric variety. A decomposition of Rn into a complex� of closed, convex, polyhedral cones with apex 0 is called a complete fan. If all conesin � are generated by lattice points in Zn, then � is called rational. Assume that � is acomplete and rational fan in Rn . Then let P be the cell decomposition of the unit ballin Rn that is dual to the one induced by �. For � 2 � we denote by �� the cell in P thatcorresponds to �. Thus �� is a cell of dimension n� dim(�).21



We identify the n-torus T n with the image of the projection map � : Rn ! Rn=Zn. Forall cones � 2 � the image of � under this projection is a subtorus �(�) = �(spanR(�)) = T�of T . Since � is rational, this is a closed subtorus of dimension dim(�). Thus the quotientT n=T� is a real torus of dimension n� dim(�).The toric variety X� is obtained from P � T n by taking the quotient of (��)��T n bythe action of T� on T for each � 2 �. This leads to a nice (compact, Hausdor�) quotientspace since we take quotients by larger tori on @� � T n. In particular, we see that thetoric variety X� has a well-de�ned map � : X� ! P, for which the �ber over any interiorpoint of �� is isomorphic to T =T�.Let P� be the poset whose elements are in bijection with the cones in � and whoseorder relation is de�ned by reversed inclusion of the cones in �. Thus P� is the posetof non-empty faces of P, ordered by inclusion. In particular, P� has a largest element 1̂corresponding to the 0-dimensional cone f0g. We construct a diagram D� over the posetP� as follows. For � 2 �, set D� = T =T�. Topologically, D� is an (n � dim(�))-torus.The map d�;� for � � � is the map induced by the projection T =T� ! T =T�.Proposition 5.3 Let � be a complete and rational fan in Rn . Then the toric variety X�is homeomorphic to the homotopy colimit of the diagram D� associated with �:hocolimD� �= X�:Proof. Let � be the map that sends T =T� � P�� to its image in X�. By constructionof D� the map � is compatible with the equivalence relation � on U�2P T =T� � P��.Hence � induces a map b� : hocolimD� ! X�. It is routine to check that b� is indeed ahomeomorphism.The resolution of singularities of a toric variety also �ts our homotopy colimit frame-work. Namely, let �0, � be two complete, rational fans in Rn such that �0 is a re�nementof � (i.e., for every open cone � 0� in �0 there is an open cone � � in � such that � 0� � � �).Thus there is an induced map f : P�0 ! P�. Also assume that � 0 is a cone in �0 whoseinterior is contained in the interior of the cone � of �. Then the inclusion � 0 ,! � inducesa surjective map �� 0� : T =T� 0 ! T =T� . Is is easily seen that � induces a map of diagrams.Hence there is an induced map b� : hocolimD�0 �= X�0 ! hocolimD� �= X�. The map b� issurjective since f and all �� 0� are surjective.Proposition 5.4 Let �0 be complete rational fan which is the re�nement of the completerational fan �. Then there is a surjective map b� : X�0 ! X�.It is well known that X� is non-singular if and only if � is simplicial (i.e., all conesare simplicial) and unimodular (i.e., all full-dimensional cones are equivalent to fx 2 Rn :x � 0g under unimodular transformations from GL(Rn ;Z)). For an example that showsthat H�(X�;Q) is not a combinatorial invariant of � in general see [26]. It is also wellknown that for any complete rational fan � there is a simplicial and unimodular completerational fan �0 which re�nes �. In this case b� is a resolution of singularities.One can also use our results to investigate the (co)homology of a toric variety. Forthis we set up a spectral sequence introduced by Segal [35], which uses the �ltration of22



hocolimD by the s-skeleta of the order complexes. For a simplicial complex � we denoteby �s its s-skeleton.Assume D is a P -diagram for a poset P . Then we denote by hocolimDs the image ofUp2P Dp ��(P�p)s in hocolimD. The �ltration hocolimD0 � hocolimD1 � � � �hocolimDde�nes a spectral sequence with termination eH�(hocolimD) in the E2-term and E1st =eHs+t(hocolimDs; hocolimDs�1). Following Segal's arguments one �nds that E1st is givenby M�0<���<�s2�(P ) eHt(T =T�s). Now assume (�0 < � � � < �s)� c is a (s+ t)-cell in hocolimDs.Then the di�erential of the cell complex hocolimD is given by@(�0 < � � � < �s)� c = s�1Xi=0 (�1)i(�0 < � � � < b�i < � � � < �s)� c ++ (�1)s�1(�0 < � � � < �s�1)� d�s�s�1(c) + (�1)s(�0 < � � � < �s)� @c:Thus the di�erential d1st : E1st ! E1s�1;t applied to the cell (�0 < � � � < �s)� c equalss�1Xi=0 (�1)i(�0 < � � � < b�i < � � � < �s) � c + (�1)s�1(�0 < � � � < �s�1)� d�s�s�1(c), where cis a cycle in Ht(T =T�s).From this it is easily seen that our spectral sequence is isomorphic to the deRahm-Hodge spectral sequence applied by Danilov [8, Chap 3, x12] to compute the cohomologyof a toric variety.5.4 Subspace ArrangementsArrangements of a�ne subspaces in Rn also allow an application of the homotopy col-imit method. Let A be a �nite set of a�ne subspaces in Rn . Let us denote by bA thecorresponding arrangement of spheres in the one-point compacti�cation Sn of Rn . Underour assumptions intersections of spheres in bA are again spheres (or the compacti�cationpoint). The following result can be deduced from the Projection lemma 4.5, theHomotopy lemma 4.6, and the Wedge lemma 4.9.Theorem 5.5 (Ziegler & �Zivaljevi�c [47])Let A be a �nite set of a�ne subspaces in Rn . Let cUA be the one-point compacti�cationof the set-theoretic union of the subspaces in A and let P be the intersection poset of A.Then cUA ' _p2P Sdim(p) ��(P<p):An equivalent result can be found in Vassiliev [41, III. x6, Thm. 1]. In Vassiliev's for-mulation the spaces �(P<p) are replaced by quotients of simplices by crosscut complexes,the spaces K(p) in his notation. More precisely, for an arbitrary subspace V correspond-ing to some point p = pV in the intersection lattice P of A, let V1; : : : ; Vt be the subspacesin A such that Vi contains V as a subspace. Let �(p) be the simplex which is spanned,23



in the abstract sense, by the vertices V1; : : : ; Vt. Vassiliev calls a face � of �(p) marginalif V is not the intersection of the subspaces corresponding to the vertices of � . Thus themarginal faces are the simplices in the crosscut complex �(P�p) of P�p. By the Cross-cut Theorem 4.4 the complex of marginal faces is homotopy equivalent to �(P<p). InVassiliev's formula the spaces Sdim(p) � �(P<p) are replaced by Sdim(p)�1 � �(p)=�(P�p).Let us analyze �(p)=�(P�p). If �(P�p) is the full simplex �(p), then �(p)=�(P�p) and bythe Crosscut Theorem also �(P<p) are contractible. In particular, Sdim(p) � �(P<p)and Sdim(p)�1 � �(p)=�(P�p) are contractible. If �(P�p) is some non-empty part of theboundary of �(p) then �(p)=�(P�p) is the suspension of �(P�p). Thus again the Cross-cut Theorem shows that Sdim(p) ��(P<p) and Sdim(p)�1 ��(p)=�(P�p) are homotopic. If�(P�p) is empty, then we have to \interpret" �(p)=�(P�p) as the suspension of the emptyspace, which is in our de�nition the join with a two point space. Then the homotopyequivalence also follows in this case.By Alexander duality on Sn we infer from Theorem 5.5 the following formula ofGoresky & MacPherson [18].Corollary 5.6 (Goresky & MacPherson [18])Let A be a �nite set of a�ne subspaces in Rn . Let MA be the complement Sn � cUA andlet P be the intersection poset of A. TheneH i(MA;Z) �=Mp2P eHcodim(p)�i�2(�(P<p);Z);where codim(p) denotes the real codimension of the subspace corresponding to p.Analogous results for arrangements of spheres and projective spaces can be foundin Goresky & MacPherson [18] and in [47]. In the following, we describe a simpler,more general, and more powerful approach that provides combinatorial formulas for quitegeneral \Grassmannian arrangements." Let A be a central arrangement in Rn (or Cn, H n)with intersection poset P and a dimension function d : P ! N0 . LetD = D(A) = fApgp2Pbe the corresponding P -diagram of linear spaces. In case each of the linear subspaces Ap,p 2 P , is invariant under the action of a �nite (or just closed) subgroup G � O(n;R)(resp. U(n), Sp(n)) of the orthogonal (unitary, symplectic) group, a natural step to makeis to de�ne the associated orbit diagram. More generally, if T is an operation (a functor)associating a space T (V ) to a linear subspace V � K n , where K = R; C or H , then T (A)denotes the diagram T (A) = fT (Ap)gp2P associated to the corresponding arrangementof subspaces in T (K n). There are several examples that come up very naturally in themathematical practice. For example, if V 7! S(V ) is the operation of associating theunit sphere to the linear subspace V � Rn , then S(A) = fS(Ap)gp2P is the associatedspherical diagram. Similarly, functors V 7! RP(V ); V 7! C P(V ) or simply P (V ) inboth cases (and in the case of quaternionic spaces) lead to the corresponding projectivearrangements RP(A), C P(A) or H P(A), denoted simply by P (A). Projective diagrams arespecial cases of the associated Grassmann diagrams obtained with the aid of the functorV 7! Gk(V ) := fL � V : dim(V ) = kg. Lens space arrangements Lm(A) are de�nedsimilarly, where Lm(V ) = Lm(S(V )) := S(V )=Zm is the lens space associated to the unitsphere in a complex linear space V . 24



We illustrate how the Homotopy Lemma 4.6 can be applied to produce a combi-natorial description of the link of the related arrangement in all the special cases above.We obtain in particular simpler, stronger, and more natural proofs of some results from[47, Thms. 2.11 and 2.14] about projective arrangements. The advantage of the proofbelow is that it uses the Homotopy Lemma in its simplest form and allows a uniformtreatment of all the special cases above. It is clear that this method may be useful forother applications, say for other group actions, since the argument no longer requires thearrangement to be shifted to a more special position by a dilatation ei 7! �iei, i = 1; : : : ; n,for some � > 0.Our objective is to show that the homotopy type of the link has a purely combinatorialdescription in terms of the poset P and the associated rank function d : P ! N0 . Thelink of a (spherical, a�ne, projective, lens, Grassmann etc.) arrangement is the union ofall spaces in the arrangement. It follows from the Projection Lemma that the link hasthe same homotopy type as the homotopy colimit of the corresponding diagram.We uniformly construct a combinatorially de�ned diagram which serves for comparisonwith the original one. Choose a 
ag F = fFigni=0, f0g = F0 � F1 � � � � � Fn = K n .Let V 7! T (V ) be one of the functors described above. Then T [F ] = T [F ](A), the 
agdiagram associated with T (A), is de�ned by T [F ]p := T (Fd(p)) where the morphismsT [F ]p ! T [F ]q are the obvious inclusion maps. Every two 
ag diagrams T [F ] and T [F 0]are naturally isomorphic, thus the isomorphism type of T [F ] depends only on P and d.We want to compare our diagram T (A) with the combinatorially de�ned diagramT [F ](A). There does not seem to exist a natural map of diagrams between T (A) andT [F ](A) because e.g. the projection map is not natural. This di�culty was overcome in[47], in the case of projective diagrams, by shifting the diagram T [F ](A) to a more specialposition and by applying a more general version of the Homotopy Lemma by Vogt [42]that allows noncommutative diagrams if they commute up to coherent homotopies. Theproof of Theorem 5.8 shows that in practical problems a very natural idea to use is thecomparison with the third, so called \ample space" diagram that contains both T (A) andT [F ](A) as subdiagrams. We need a lemma which explains what is meant by \ample" inall the interesting cases above.Lemma 5.7 Let T : Vect(K n)! Top, V 7! T (V ), be one of the functors de�ned abovewhich to every vector space V � K n associates the corresponding projective space P (V ),Grassmann manifold Gk(V ), the lens space Lm(V ) (for V � C n), or the unit sphereS(V ). Then in each of these cases there exists a functor RT : Vect(K n) ! Top whichassociates with each subspace V � K n an \ample" subspace RT (V ) � T (K n) and to eachinclusion V !W an inclusion of spaces RT (V )! RT (W ) so that the following conditionis satis�ed.Let V � K n , dim(V ) = k. Then for any W of dimension k with dim(W \ V ?) = 0,there is an inclusion T (W ) � RT (V ) so that the inclusion mapiW : T (W ) ! RT (V )is a homotopy equivalence (actually, an inverse to a deformation retraction).Proof. The space RT (V ) is de�ned in a very similar way for all the examples above. Forexample in the case of the functor V 7! S(V ), we put RT (V ) := S(K n)nS(V ?). The25



construction in the case of a projective functor V 7! P (V ) is analogous, one removes theprojective space P (V ?) from P (K n). The inclusion map iV : P (V )! P (K n)nP (V ?) is ahomotopy equivalence since P (K n)nP (V ?) is the total space of a vector space bundle (atubular neighborhood) over P (V ). Obviously P (W ) � P (K n)nP (V ?) for anyW with theproperty W \ V ? = f0g. Finally, iW : P (W )! RT (V ) is a homotopy equivalence sincethere exists a linear map OV;W : K n ! K n which maps V to W and leaves V ? invariant.Something similar is done in the case of Grassmannians. Here, RGk(V ) is de�ned byRGk(V ) := fL 2 Gk(K n) : dim(L \ V ?) = 0g. In this case RGk(V ) is also the totalspace of a vector bundle over Gk(V ) which can be seen as follows. If Mk(V ) is the Stiefelmanifold of all 1�1 linear maps (matrices)D : K k ! V then Gk(V ) =Mk(V )=G(k) whereG(k) = GL(k;K) is the appropriate group of linear automorphisms. Let p : Mk(K n) !Gk(K n) be the projection map. Note that p�1(RGk(V )) = Mk(V ) � L(K k ; V ?), whereL(K k ; V ?) is the space of all linear maps, and that the group G(k) acts diagonally on theproductMk(V )�L(K k ; V ?). Now it is enough to recall that if X and Y are two G-spacesand if the action on Y is free, then the orbit space (X � Y )=G of the diagonal action isrepresented as a �ber bundle X ! (X � Y )=G! Y=Gwhich in our case means that RGk(V ) is �bered over Gk(V ) with the �ber L(K k ; V ?).Hence, iV is a homotopy equivalence. It is shown that iW is also a homotopy equivalenceanalogously to the case of projective diagrams.Finally, in the case of the \lens space" functor, let RLm(V ) := Lm(C n)nLm(V ?). Theproof that RLm(V ) is \ample" in the sense above is analogous and can rely on the factthat the sphere S(C n) is a join of spheres S(V ) and S(V ?), and that the action of thecyclic group Zm respects this decomposition.Theorem 5.8 (Homotopy types of Arrangements)Let A = fApgp2P be a linear subspace arrangement of K n , where K is one of the (skew)�elds R, C or H . Let P be the intersection poset of A, with the dimension functiond : P ! N0 , d(p) = dim(Ap), de�ned above, and set P[k] := fp 2 P : d(p) � kg for k � 0.Let T : Vect ! Top, V 7! T (V ), be the projective, sphere, Grassmann or the lensspace functor de�ned above and let T (A) be the corresponding arrangement of subspacesof T (K n). Then there is a homotopy equivalence[p2P T (Ap) ' n[k=0T (K k)��(P[k]):Proof. We start by choosing the 
ag F , Fi = spanfekgik=1, in su�ciently general positionwith respect to the arrangement A. This requirement means that for any Fi and Ap 2 A,if dim(Fi) = dim(Ap) then Ap \ F?i = f0g. Let us de�ne the associated \ample" spacediagram R = R(A) by R = fRpgp2P ; Rp := RT (Ap) = RT (Fd(p)), where V 7! RT (V ) isthe \ample" space functor associated with T described in Lemma 5.7. Hence, there existtwo naturally de�ned maps of diagrams � and �,� : T (A) ! R(A)  � T [F ](A) : �26



induced by the inclusion maps �p : T (Ap) ! Rp and �p : T [F ]p ! Rp. By Lemma 5.7these inclusion maps are homotopy equivalences. From here and the Homotopy Lemmait follows that hocolimT (A) ' hocolimR and hocolimT [F ](A) ' hocolimR, which implieshocolimT (A) ' hocolimT [F ](A):Finally, we notice that the embeddings T (Fk) ,! T (K n) induce a diagram map� : T [F ](A) ,! F ;where F denotes the \constant" P -diagram which has Fp = T (K n) for all p 2 P , andidentity maps fpp0 for p � p0. From the Embedding Lemma 4.10 we get that b� is anembedding b� : hocolimT [F ](A) ,! hocolimF �= T (K n)��(P );and we easily identify the image of b� with the space Snk=0 T (K k )��(P[k]).Note that for the homotopy formula for Grassmann arrangements in Theorem 6.4only the truncated poset P[k] = fp 2 P : d(p) � kg is relevant: This correspondsto the fact that spaces with d(p) < k do not have k-dimensional subspaces, so A andA[k] = fAp 2 A : d(p) � kg have the same associated k-Grassmann arrangement.The following proposition shows that there is a general decomposition formula for thehomology of 
ag diagrams and, a posteriori, of the T -links of K -arrangements for K = R,C or H .Proposition 5.9 (Homology of Flag Diagrams)Let A be an arrangement of linear subspaces in K n and let T be one of the functorsdescribed above. Let T [F ](A) be the combinatorially de�ned 
ag diagram associated to thearrangement A and the functor T . We set s = minfd(Ap)gp2P and t = maxfd(Ap)gp2P .Assume that for the coe�cient ring R and for all s � k � m � t� the exact sequence of the pair (T (Km); T (K k)) splits in homology and� the homology groups H�(T (Km);R) are free R-modules.Then, H�( hocolimT [F ](A);R) �=�H�(�(P[s]);R) 
 H�(T (K s);R)� � tMk=s+1�H�(�(P[k]);R) 
 H�(T (K k); T (K k�1);R)�.Proof. For this proof we �x the coe�cient ring R used for homology computations andwe writeH�(�) forH�(�;R). For an arbitrary poset Q and a natural number k we introduce\constant" diagramsMk;Q over Q, de�ned byMk;Q : Q! Top;Mk;Q(q) := T (K k ). If itis clear from the context which poset Q is used, we writeMk for the diagramMk;Q. Notethat our diagram T [F ](A) can be squeezed in between two constant diagramsMs;P andMt;P . Clearly, hocolimMk;Q �= �(Q)�T (K k ). The K�unneth theorem and the freeness ofR-modules H�(T (K k)) implyH�( hocolimMs;Q) �= H�(�(Q))
H�(T (K s)):27



From this observation and from the fact that the map H�(T (K k)) ! H�(T (Km)) is amonomorphism for k � m, we conclude that the map hocolimMk ! hocolimMm, fork � m, induces a monomorphism of homology groups. Then the composition of homo-morphisms H�( hocolimMs)! H�( hocolimT [F ](A))! H�( hocolimMt)is a monomorphism too. Thus the �rst of them is also a monomorphism. It follows thatthe long exact sequence of the pair ( hocolimT [F ](A) ; hocolimMs ) splits andH�( hocolimT [F ](A)) �= H�( hocolimMs)�H�( hocolimT [F ](A) ; hocolimMs ):Informally speaking, we peel from the homotopy colimit of the diagram T [F ](A) the partof its homology coming from the constant subdiagram Ms. Let E[i] be the restrictionof the diagram T [F ](A) on the poset P[s+i]; i � 0. By excision, recalling the de�nitionof the homotopy colimit hocolimT [F ](A), we have H�( hocolimT [F ](A) ; hocolimMs) �=H�(hocolimE[1] ; hocolimMs;P[s+1]). By induction on i we may assume that for some i � 0H�( hocolimT [F ](A)) �= �H�(�(P[s])) 
 H�(T (K s))�� s+iMk=s+1�H�(�(P[k])) 
 H�(T (K k ); T (K k�1))�� H�(hocolimE[i+1]; hocolimMs+i;P[s+i+1]):The long exact sequence of the triple( hocolimE[i+1] ; hocolimMs+i+1;P[s+i+1] ; hocolimMs+i;P[s+i+1] )splits by the same argument as above. This means that we can peel from the homologyH�( hocolimE[i+1] ; hocolimMs+i;P[s+i+1]) the part isomorphic toH�( hocolimMs+i+1;P[s+i+1] ; hocolimMs+i;P[s+i+1]) �=�= H�(�(P[s+i+1]))
H�(T (K s+i+1); T (K s+i)):The part that remains is isomorphic to the group H�( hocolimE[i+1] ;Ms+i+1;P[s+i+1]). Thelast group is by excision isomorphic to H�( hocolimE[i+2] ; hocolimMs+i+1;P[s+i+2]). So theK�unneth formula, the process described above and induction on i lead to the desiredformula.If the arrangement A is essential (i.e., if s = 0 and t = maxfd(Ap)gp2P = n), then bothK �1 and T (K �1) are interpreted as empty spaces and the formula given in Proposition 5.9can be rewritten as follows.Corollary 5.10 Let A be an essential arrangement satisfying the assumptions of Propo-sition 5.9. ThenH�( hocolimT [F ](A);R) �= nMk=0 H�(�(P[k]);R)
H�(T (K k ); T (K k�1);R):28



For example if T = P is the functor which associates the complex projective spaceP (V ) to every complex linear space V , then the formula given in Corollary 5.10 has thefollowing form Hr( hocolimT [F ](A);R) �= nMk=0 Hr�2k(�(P[k]);R);where r � 0 and H�k(X;R) := 0 for all k > 0. This formula together with its counterpartfor the real projective arrangements was formulated and proved in [47]. Unfortunately,as it was kindly pointed to us by Anders Bj�orner and Karanbir Sarkaria, the formulationthere su�ers from some misprints.The following example, which we also owe to A. Bj�orner and K. Sarkaria, shows how aformula of the type above arises in connection with the Stanley-Reisner ring of a simplicialcomplex �.Corollary 5.11 Let � be a simplicial complex on the vertex set f1; : : : ; ng. Let A� bethe arrangement of complex linear subspaces in C n de�ned by A� = fA�g�2�, whereA� := spanC fejgj2�, ei the ith unit coordinate vector in C n . Let P (A�) = fP (A�)g�2�be the associated projective arrangement. Then the homology of the union S�2� P (A�) ofthe arrangement P (A) is given byHr( [�2�P (A�) ;Z) �= nMk=0 Hr�2k(�(�[k]);Z);where �[k] := f� 2 � : dim(�) � kg is a subposet of (�;�) and �(�[k]) its order complex.Note that the union of the arrangement P (A�) is a projective variety whose homoge-neous coordinate ring is the Stanley-Reisner ring of �.Note that Proposition 5.9 deals with the case when H�(T (K i)) ! H�(T (K i+1)) isinjective in contrast to the Goresky-MacPherson formula (Corollary 5.6). We alreadymentioned that the Goresky-MacPherson formula for the cohomology of the complementof an arrangement A of (a�ne) subspaces can be proved by Alexander duality from thehomology of an associated arrangement S(A) of spheres. In the case when T = S the mapeH�(T (K i))! eH�(T (K i+1)) is trivial. Although it does not completely �t in the setting ofthis section one may regard toric varieties | seen from the point of view of Section 5.3| as an interesting third case, when the map in homology induced by the diagram mapsare surjective.5.5 Subgroup ComplexesThe order complex of the poset Sp(G) = fP � G : jP j = pi 6= 1g of non-trivial p-subgroups of a �nite group G has received considerable interest over that past few years(see for example [1]). It was already observed by Quillen [32] that Sp(G) is homotopyequivalent to the poset Ap(G) of non-trivial elementary abelian p-subgroups of G. In [29]the authors consider the covering of �(Ap(G)) by the subcomplexes �(Ap(NA)) for a�xed solvable normal p0-subgroup N and maximal elementary abelian p-subgroups A ofG. Then they use the following facts : 29



(a) Intersections of the spaces of type �(Ap(NA)) are again of the type �(Ap(ND))for some elementary abelian p-subgroup D of G.(b) For a solvable normal p0-group N and an elementary abelian p-subgroup A thecomplex �(Ap(NA)) is homotopy equivalent to a wedge of spheres of dimensionrank(D)� 1.Observation (a) follows by basic group theoretical argumentation. Assertion (b) ismuch less obvious. It was established by Quillen [32, Theorem 11.2], but also follows byapplications of the homotopy colimit methods (see [29, Theorem (A)]). Using facts (a)and (b), the Projection, the Homotopy and theWedge Lemma the following wedgedecomposition of �(Ap(G)) for �nite solvable groups G with non-trivial normal p0-groupis proved in [29].Theorem 5.12 (Pulkus & Welker [29, Theorem (B)])Let G be a �nite group and let p be a prime. Let N be a solvable normal p0-subgroup. LetCN=N be the intersection of all maximal elementary abelian p-subgroups of G=N . ForAN=N 2 Ap(G=N) let cAN=N be an arbitrary but �xed point in �(Ap(G=N)>AN=N). Then�(Sp(G)) is homotopy equivalent to_AN=N2Ap(G=N)>CN=N[fCN=Ng�(Ap(NA)) ��(Ap(G=N)>AN=N):where the wedge is formed by identifying, for AN=N > N=N ,the point cAN=N 2 �(Ap(G=N)>AN=N ) � Ap(NA)with the point AN=N 2 �(Ap(G=N)) ��(Ap(N1)):In particular, if A is a maximal elementary abelian group of rank r in G, then�(Ap(NA)) ��(Ap(G=N)>AN=N) is homotopic to a wedge of (r � 1)-spheres.AcknowledgmentsThanks to Eva-Maria Feichtner for helpful comments on the manuscript. We are grate-ful to Emmanuel Dror Farjoun and Rainer Vogt for some corrections and very valuableremarks and references. The referee's remarks on the paper were extremely helpful, andhopefully led to a substantial improvement of the exposition.We all thank the Konrad-Zuse-Zentrum in Berlin for its hospitality.References[1] M. Aschbacher and S. Smith. On Quillen's conjecture for the p-subgroups complex. Ann.of Math. (2), 137:473{529, 1993.[2] E. Babson. A Combinatorial Flag Space. PhD thesis, MIT, 1993.[3] A. Bj�orner. Topological methods. In R. Graham, M. Gr�otschel, and L. Lov�asz, editors,Handbook of Combinatorics. North-Holland, Amsterdam, 1995, pp. 1819-1872.30
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