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Abstract
We provide a “toolkit” of basic lemmas for the comparison of homotopy types
of homotopy colimits of diagrams of spaces over small categories. We show how this
toolkit can be used on quite different fields of applications. We demonstrate this
with respect to

1. Bjorner’s “Generalized Homotopy Complementation Formula” [4],
2. the topology of toric varieties,

3. the study of homotopy types of arrangements of subspaces,

4. the analysis of homotopy types of subgroup complexes.
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1 Introduction

The aim of this paper is to advertise homotopy colimit considerations for topological inves-
tigations in combinatorics. For this, we provide a toolkit and demonstrate its usefulness
by a number of applications.

A diagram of spaces is a functor from a small category to the category of topological
spaces. In various topological, geometric, algebraic and combinatorial situations one
has to deal with structures that can profitably be interpreted as (co)limits or homotopy
(co)limits of diagrams over small categories, specially over (finite) posets. In fact, if a space
is written as a finite union of (simpler) pieces, then it is the colimit of a corresponding
diagram of spaces. While (co)limits do not have good functorial properties in homotopy
theory, they can usually be replaced by homotopy (co)limits (Puppe [30] may have been
the first to exploit this). Homotopy (co)limits have much better functorial properties.
Thus there is a wide variety of techniques to manipulate diagrams of spaces in such a way
that the homotopy (co)limit is preserved (up to homotopy type).



Basic work on homotopy (co)limits has been done by Segal [35], Bousfield & Kan [6],
tom Dieck [40], Vogt [42], and Dwyer & Kan [10, 11]. See Hollender & Vogt [19] for a
recent survey.

Two key results in this setting are the “Projection Lemma” [35] [6, XIL.3.1(iv)], which
sometimes allows one to replace colimits by homotopy colimits, and the “Homotopy Lem-
ma” [40] [6, XII.4.2] [42] which compares the homotopy types of diagrams over the same
small category. These tools have found striking applications, for example, in the study of
subspace arrangements [47] [39] [34].

The choice of contents for our “toolkit for the manipulation of homotopy colimits” is
partially motivated by the usefulness of corresponding lemmas in the special case of order
complexes (the discrete case, when the spaces of the diagram are points). In this case,
there is a solid amount of theory available, which has proved to be extremely powerful
and useful in quite diverse situations. The key result is the QUILLEN FIBER THEOREM
(Quillen’s “Theorem A” [31, 32], see below). All other basic tools of the “homotopy theory
of posets,” such as the crosscut theorem, order homotopy theorem, complementation
formulas, etc., can be derived from it. We refer to Bjorner [3] for an excellent account of
the theory [3, Sect. 10], for an extensive survey of applications [3, Part I, and for further
references.

The homotopy limits have not found immediate applications in combinatorics and
discrete geometry so far, and this is the reason why we restrict our attention to the case
of homotopy colimits. Also note that many results about homotopy limits can be derived
from the case of homotopy colimits by standard duality procedures (see Bousfield & Kan
[6, XII.4.1] and Hollender & Vogt [19, Sect. 3]).

We provide several applications of our methods to various areas within mathematics.
As a first application, in the field of topological combinatorics, we present a new proof
of a result by Bjorner on the homotopy type of complexes [4], which generalizes the
HoMoTOPY COMPLEMENTATION FORMULA of Bjérner & Walker [5], a tool which has
proved to be very powerful in combinatorics. Since this proof affords the application of
many of the techniques provided in this paper, we give a detailed exposition of it here.

Then we present a new view of toric varieties. Namely, we start with the observation
that toric varieties are homeomorphic to homotopy colimits over the face poset of the
fan defining the variety. This immediately leads to a spectral sequence to compute the
homology of toric varieties isomorphic to one already employed by Danilov [8] and to the
computation of its rational cohomology.

We derive a new “combinatorial formula” for the homotopy types of quite general
arrangements (such as “Grassmannian” arrangements) that are associated to linear sub-
space arrangements by suitable functorial constructions. More briefly we cover two ap-
plications for which details are contained in other papers: We describe a new result on
the homotopy type of the order complex of the poset S,(G) of non-trivial p-subgroups of
a finite group G [29], and we review results obtained by homotopy limit methods on the
topology of subspace arrangements in [47], and provide the equivalence with the results
of Vassiliev [41].



2 Fundamental Concepts and Constructions

2.1 Basic Definitions and Motivating Examples of Diagrams

In the following, all categories are small, so their objects and morphisms form sets. Any
partially ordered set can be considered as a category “with morphisms pointing down,”
that is, for z,y € P there is a (unique) arrow x — y if and only if z > y.

A diagram of spaces over a small category A is a covariant functor F : A — Top into
the category Top of topological spaces. We denote for an object a € Obj(A) the image
under F by F, or by F(a), and for a morphism g : a — b € Mor(A) the image F(g) by
fg:amsp or by F(g). If there is a unique morphism g : @ — b in A between a and b, then
we write fg for fo.p. A morphism (F,a) : X — Y of diagrams X : A — Top and
Y : B — Topis a functor F' : A — B together with a natural transformation a from
X to YoF =: F*(Y). Given a diagram F, the homotopy colimit hocolimF is a space
associated to F by a homotopy mizing construction, see Section 2.2. Before we proceed
with a reasonably detailed outline of the theory, we introduce several motivating examples
of diagrams of spaces.

Constant Diagram. For a topological space X the constant diagram X4 is defined
by sending each object of A to the space X and each morphism to the identity
id : X — X. Of particular interest is the case when X = {x} is the one-point
space. In this case the constant diagram P7T 4 leads, via homotopy colimits, to the
construction of the classifying space BA of the category A. In the special case when
A = P is a partially ordered set — a poset for short — the classifying space BP will
be seen to coincide with the order complex A(P) of P.

Group Diagram. Given a discrete group G, let Ag be the category which consists of
one single object and a morphism for each element g € G. Then the classifying space
of this category is the K (G, 1)-space BAg = BG of the group G. Its universal cover
EG is constructed in a similar way from the category whose objects are the elements
of the group. Here for each pair of elements g, h € G the unique morphism from g
to h is given by hg~!. Finally, any Ag-diagram X : Az — Top can be interpreted
as a G-space X and it turns out that hocolimy, X = EG x4 X.

Subspace Diagrams. Let U := {X,};c; be a collection of subspaces of a topological
space X. The intersection poset Py of the family U is the partially ordered set of
all non-empty intersections (7),.; X;, J C I, ordered by reversed inclusion. Regard
Py as a small category. Then the subspace diagram associated to U is the diagram
Dy : Py — Top sending each element of Py to the corresponding intersection
N;es Xi, with inclusions as morphisms. This class of examples can be used to see
many results from topological combinatorics from a higher perspective (e.g. Borsuk’s
Nerve theorem [3]).

Arrangements as Diagrams. An especially interesting class of examples arises if X
in the previous example is a linear space (affine space, sphere, projective space)
and the family U is an (affine, spherical, projective) subspace arrangement. The
subspace diagrams that arise this way have been successfully used to deduce both
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new and old results about the homotopy and homology of these arrangements and
their complements (see Ziegler & Zivaljevié [47], Schaper [34]).

Orbit Diagrams. Let G be a Lie group acting on a space X with finitely many orbit
types. From this arises a natural diagram O : Og — Top over the category Og of
all G-orbits defined by O(G/H) := X see [13]. Recall that the orbit category Og
is defined as the category with Obj(O¢) := {G/H | H = H < G} and a morphism
G/H — G/Q for every inclusion H — (). Generally any diagram over the orbit
category O¢ will be referred to as an orbit diagram.

Toric Diagrams. A toric diagram D is a diagram for which each space Dy is the stan-
dard torus 77 = S'x...xS', 5 > 0, and each morphism d,; : D, — Dy is a standard
algebraic homomorphism, i. e., a homomorphism that arises from an integer matrix
K :R — R, i=dim(D,), j = dim(D;). An important observation is that any
compact (complex) toric variety can be interpreted as the homotopy colimit of a
toric diagram over the face poset of a complete fan, see Section 5.3.

In order to avoid pathological behavior of the topological spaces involved and because
this setting covers all application we can think of — in our combinatorial setting — we
assume that all spaces are compactly generated. For the same reason we restrict our
attention to small categories which are not topologized. Note however that the general
theory (see [19]) can be developed for the case of topological categories A for which the
map Obj(A) < Mor(A) is a cofibration.

2.2 Limit Space Constructions

We will now discuss several constructions of “limit spaces” from a diagram D. For that
we recall the notion of a simplicial space and its geometric realization. The references
provide more information about simplicial sets and spaces, their geometric realizations,
and other general categorical constructions used in this paper. Nevertheless, we try to be
as self-contained as possible.

The category Ord has as objects the finite ordinals [n] := {0,...,n}, n > 0; its
morphisms are the non-decreasing maps f : [n] — [m] (i.e., f(i) < f(i +1)). The set
of morphisms of Ord is generated [23, p. 4] [17, 11.2.2] by the maps ¢} and ¢!, where
8¢+ [n — 1] — [n] is the increasing injection that does not assume the value i (for
0 <i<n),and ¢ : [n+ 1] — [n] is the non-decreasing surjection that assumes the value
i twice (for 0 <i < n).

A simplicial space is a contravariant functor F : Ord — Top. A simplicial set
is a contravariant functor F : Ord — Set. We will not distinguish between simpli-
cial sets and simplicial spaces equipped with the discrete topology. SimplicialSets and
Simplicial Spaces are categories with the “obvious” morphisms, that is, whose morphisms
are the natural transformations between functors Ord — Set resp. Ord — Top.

There is a simple geometric realization functor R : Ord — Top that associates with
[n] the standard n-dimensional simplex

n
A, = {(to,tl,...,tn) ER™ : 0<ty <t <. . <t, <1, Zti:1},
i=0



and associates with 6° and 0! the “face operators” R(8¢) resp. the “degeneracy operators”
R(oi). (Viewing Ord as the category of finite chains and order preserving maps, the
functor R associates with chains their order complexes and with order preserving maps
the corresponding simplicial maps.)

Now we are able to review some important “limit space” or “total space” constructions

arising from categories and diagrams.

Geometric Realization. Given a simplicial space F one defines its geometric realiza-
tion ||F||. Denote by F,, := F([n]) the image of [n] under F, by d’ the image of &’
under F and by s, the image of o under F. Then ||F|| is obtained as the quotient
of the disjoint union |4, ., F, x A, modulo the equivalence relation “~” defined by

(d' (2),p) ~ (z,R(6)(p)) forx € F, andpe A,_;

n

(s'(x),p) ~ (x,R(c%)(p)) forz €F,andp € A,,.

n n

With this geometric realization || - || is a functor from Simplicial Spaces to Top.

Classifying Spaces. If A is any small category, then there is a natural simplicial set
4 Ord — Set associated to it. Namely, the image of [n] under F4 consists of all
sequences o, ﬁ--wf—lao of objects a; € Obj(A) and maps f; € Mora(a; 1, ;) in

the category A. The maps d’, are given by

anif—"---aiﬁazl -«fial, 1 =0,
di(an & Loag) = anf—"---aﬁlfﬁl—"fla” Loy, 1<i<n—1,

o1 1 .
Qpq & & Otz‘_l"'\LOég, i =n.

The maps s, are given by

sfl(anf—“--wf—lag):anf—"---fl“azl(dilazL Lag

The geometric realization of the simplicial set F4 is the classifying space B(A) of
the category A.

colimD. The colimit of a diagram D is the topological space obtained from the direct
sum |#,. 4 Do modulo the equivalence relation “~” generated by x ~ y for x € D,,
y € Dy if dgqyp(2) = y for some g : a — b. We write colimD for the colimit of the

diagram D.

hocolimD. The homotopy colimit of a diagram D is defined as the quotient of the direct
sum 4, 4 B(A}q) x D, by an equivalence relation “~.” Here A, denotes, for a given
category A and a € Obj(A), the category of all arrows @ — b emanating from a with
commutative triangles as morphisms between objects a — by and a — by. If A= P
is a partially ordered set, then A, = P<, = {p € P | p < a}. The equivalence

relation “~” is defined as follows. For all morphisms f : @ — b consider the maps:

o { B(Ap) x D, — B(Ay) x D
' (p. x) — (D, dfiamp(2))



ﬂ . { (Aib) X D — B(Aia) X Da
' (p, ) — (B(f)(p), ).

Then “~” is the transitive closure of a(p,x) ~ ((p, z).

If it is important to emphasize the indexing category A, then the homotopy colimit
of a diagram D is denoted by hocolim,y D.

Bar Construction. A very general construction of a limit space is a construction given
by Hollender & Vogt [19]. Given diagrams D : A” — Top and £ : A — Top
over a category A and its opposite category A°’, there is an associated total space
B(D, A, €£). Tts construction generalizes all limit space constructions presented so
far (except for the colimit construction). To the data D and £ one associates a
simplicial set A(D, A, ). The space of n-simplices of A(D, A, E) is the space of all

“threads” f
(z, anLan & Lao, ),

where ©z € D,, and y € E,,. More precisely, this space can be described as the
space |4 ;. 5, D(an) X E(ap), where the direct sum is taken over all n-chains
Qp g

ay, LN g of morphisms in A. The maps d’, (0 < i < n) are given by

(z,anf—"---oziﬁaz 1 gal,efl i=0,
di(a, o & ag,y) = (:c,anf—"--amﬁ“ﬁ <f—a0, ), 1<i<n-l,
(dy, (@), a1 azLaz v Lagy), i=n

The maps s, (0 < i < n) are given by
; . 1da
s;(x,anf—"---«&ag,y):(m,an<f—“---f<ila — «&ao,y)

Denote by B(D, A, £) the geometric realization of the simplicial space A(D, A, E). The
homotopy colimit and the classifying space are special cases of the geometric realization
of simplicial spaces of the form A(D, A,£). Namely, let PT 4 be the diagram over the
category A that assigns to each object a in A the one-point space {*}. Then the clas-
sifying space of the category A is the geometric realization of A(PT 400, A, PT 4). For
a diagram D : A — Top the homotopy colimit hocolimD is homeomorphic to the space
B(PT aer, A, D).

We may observe that for every diagram D over a category that is a poset P there
is a canonical partial order on P := E—Jpep D, defined by setting z > 2’ for x € D, and
x' € Dy if and only if p > p’ and d,y(x) = 2’. With this definition there is a canonical
bijection A(P) <— hocolim(D); however, the topology on the two spaces is different: in
fact, with the usual topology on simplicial complexes the subspaces D, C A(P) get a
discrete topology. Note however, see Section 4.1, that there exists a convenient geometric
model for hocolim(D) realizing this space as a subspace of the join J(D) := *,cp D,.
This construction can be seen as a natural extension of the order complex construction
to diagrams over posets.



Examples 2.1 Here are some simple examples for the construction of homotopy colimits
of diagrams over posets.

(i) If D, is a one-point space for all p € P, i. e. D = PT, then hocolimD is (isomorphic
to) the order complex of P.

(ii) If P = {p} is a one-element poset, then hocolimD = D,

(iii) If P = {p,p'} has two points and p’ > p, then hocolimD = D,, Uy D, is the mapping
cylinder of the map f = d,, : Dy — D,.
(The mapping cylinder is homotopy equivalent to the image space D,, which is the
colimit of the diagram.)

(iv) If P = {p,p'} and p, p" are not comparable, then hocolimD = D, D, is the disjoint
union.
(In this case it agrees with the colimit colimD of the diagram.)

(v) Let P = {p,p',p"} be the three-element poset with p > p', p > p”, for which
p' and p" are incomparable, and let D be a diagram over P with D,» = {x} a
one-point space. Then the homotopy colimit hocolim(D) is homeomorphic to the
mapping cone of the map d,, : D, — D,.

(vi) If D is a diagram such that all the spaces D, are identical, and the maps are identity
maps, then hocolimD = A(P) x D,.
(The colimit of such a diagram is D,, if P is connected.)

2.3 Simplicial Homotopy Lemma and the Gluing Lemma

Definition 2.2 A simplicial space F : Ord — Top is called good if for any surjective map
o : [n] = [n—1] in Ord the image of o, F'(0) : F([n—1]) — F([n]), is a closed cofibration.

Proposition 2.3 (SivMpLICIAL HOMOTOPY LEMMA)
Let A, B be two good simplicial spaces. Let F : A — B be a map of simplicial spaces. If
F.: A, — B, is a homotopy equivalence for all n, then the induced map

[IFI} = |A] —1[B]]
15 a homotopy equivalence.

Good simplicial spaces were defined by Segal [36, Appendix] under the name “proper”
simplicial spaces. In [25] and in [24] the closely related, albeit not coinciding, classes
of proper and strictly proper spaces are introduced. Proposition 2.3. is known as the
May-Tornehave or the May-Tornehave-Segal theorem. Proofs can be found in either of
the references mentioned above.

The GLUING LEMMA is a key result. It has repeatedly been used in inductive proofs
of results establishing that two spaces are homotopy equivalent; a notable example is the
proof of Proposition 2.3. This lemma is a basic example for an important general prin-
ciple which informally says that a local homotopy equivalence is also a global homotopy
equivalence — see the HOMOTOPY LEMMA 3.7.



Lemma 2.4 (GLUING LEMMA [7] [40])
Consider the commutative diagram of spaces

B &4 oo
1 m 1 ho 1 hs

v & v 5w

Assume that hg, hy, ho are homotopy equivalences and that either both fi and g, are cofi-
brations or both fy and gy are cofibrations. Let X = BU, C (resp., Y =V Uy W) denote
the colimit (or push-out) of the diagram formed by the maps (f1, f2) (resp., (g1,92)). Then
the induced map h : X — 'Y s also a homotopy equivalence.

3 Comparison Results for Diagrams of Spaces

In this section we set up the toolkit for applications of diagrams of spaces. In the subse-
quent section we will show how these very general results specialize to forms applicable in
various combinatorial situations where the emphasis is on diagrams over (locally) finite
posets. The toolkit consists of a sequence of propositions and lemmas most of which
are part of standard tools of an algebraic topologist. These results allow us to recognize
a topological space as the homotopy colimit of a diagram (PROJECTION LEMMA), to
check if a given morphism (F,«) : X — ) of diagrams induces a homotopy equivalence
& : hocolimy X — hocolimp ) of the corresponding homotopy colimits (HomMoTOPY
LEMMA), to change the underlying small category of the diagram without changing the
homotopy type of the homotopy colimit, to “compute” or to find a standard, combinato-
rial form of the space hocolimy X (WEDGE LEMMA), etc.

3.1 Projection, wedge and the quasifibration lemma

Proposition 3.1 (PrRoOJECTION LEMMA [35] [6])
Let X : C' — Top be a diagram such that Xy.,—p, : X(a) — X (b) is a closed cofibration
for any morphism f € Mor(a,b), a,b € Obj(C). Then the natural map

hocolimgX — colima X
15 a homotopy equivalence.

The next result that we are heading for, the WEDGE LEMMA, has been formulated
and used before in the case of diagrams over posets [47]. In order to formulate and prove
a more general form of this lemma we need two preliminary definitions.

Definition 3.2 A diagram X : A — Top is called a diagram with constant maps if
for all a,a’ € Obj(A) and any nonidentity morphism f : a — ', f # id,, the map
X(f) : X(a) —» X(a') is a constant map. A special diagram with constant maps is a
diagram with constant maps with the additional property that for any object a € Obj(A)
there exists a point z, € X(a) such that for any morphism f : b — a, f # id,, the
one element set Im(X(f)) is precisely {z,}. In addition it is assumed that all spaces
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X (a) are well pointed [7], which means that (X (a),{z,}) is a cofibration pair. If the
category A has an initial object a, i.e., an object such that for each a’ € Obj(A) there is a
unique morphism from a to @, then a diagram with constant maps (resp. special diagram
with constant maps) over A is called an initial diagram with constant maps (resp. special
diagram with constant maps).

Definition 3.3 Given a category A and a € Obj(A), the undercategory Ay,, often de-
noted by a\A or alld, is the category with objects Obj(A,,) := @beObj(A) Mor(a, b) and

an arrow from a 5 @ to a % y for each commutative triangle formed by f, g and a mor-

phism =z LN y, g = ho f. Given ¢ € Obj(A), the truncated category obtained by deleting
c and all incident morphisms is denoted by A\\c. If we delete from A}, the initial object

a4 o and all incident morphisms we obtain the truncated undercategory A,,\\id, which
is denoted by Aj,. Specially, if A is a poset category P, then A, and Ay, are poset
categories P<, and P,.

Lemma 3.4 Let X be an initial diagram with constant maps over a category A with a
as an initial object. Then the homotopy colimit of this diagram has the following join
decomposition:

hocolim, X ~ X (a) * B(A\\a),

where A\\a is the truncated category defined above and B(A\\a) its classifying space.
Moreover, if X (a) is not a singleton these spaces are homeomorphic.

Proof. For an object z € Obj(A) let f, € Mor(a, z) be the unique morphism connecting
aand z, e.g. f, =id,. If g € Mor(z,a) then go f, = id,, hence X(g) o X(f;) = idx(y. If
x # a this is possible only if X (a) consists of a single element; in this case the formula is
correct since both sides of the equation are contractible spaces. If | X (a)| > 1 then the only
morphisms with a as the domain or codomain are of the form f, for some x € Obj(A).
In this case the formula hocolim X = X (a) x B(A\\a) follows by definition. O

Remark. There are interesting examples of diagrams X' : A — Top, see [47] and Sec-
tion 5.4, which have the property that for all a,b € Obj(A) and f : a — b, f # id,,
the map X (f) : X(a) — X(b) is homotopically trivial. Typically these diagrams can be
transformed, usually with the aid of the HOMOTOPY LEMMA (Proposition 3.7), into spe-
cial diagrams with constant maps without affecting the homotopy type of the homotopy
colimit. The following lemma shows that in these cases we can actually “compute” these
homotopy types.

Proposition 3.5 (WEDGE LEMMA)
Suppose that X is a special diagram with constant maps over A. If the category A is
connected then the homotopy colimit of X has the wedge decomposition

hocolimsX ~ B(A) v \/  X(a) B(Ay).
a€0bj(A)

If the category A is not connected, then the formula applies to each of the connected
components.
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Proof. Let a : X — PT be the canonical “collapsing” map from X to the constant
diagram PT. The assumption about points z, € X (a) leads to a morphism of diagrams
f: PT — X which is a right inverse to a, ao3 = Id, hence B(A) is a retract of hocolim 4 X'.
For each a € Obj(A) let F, : A, — A be the naturally defined functor. There are three
diagrams over Aj,: the constant diagram Z[a] : A, — Top, b — X(a), the pullback
diagram Yla] := F} X (cf. Definition 3.9), and the special diagram with constant maps
X [a] obtained from Y'[a] by collapsing to a point all spaces except for the space X (a) that
is associated to the object id,. It is clear that hocolimy,, Z[a] = B(A},) x X (a) and that

there is an obvious retraction B(A}) x X (a) = hocolim,,, X[a]. By the definition of the
homotopy colimit
hocolimy¥ = |4 B(A}) x X(a)/ ~, (1)
a€Obj(A)

so there is a map f, : B(A},) X X(a) — hocolim4 X which factors as follows
B(A},) x X(a) = hocolim,,, X[a] == hocolim,X.

All identifications in (1) occur along the space B(A) and we observe that hocolim,X is
obtained by simultaneous adjunction (pushout), for all a € Obj(A), of the following form

hocolim 4, X[a] €% B(A,,) 2 B(A) (2)

where j, is an inclusion map and g, is the map induced by the functor Fj : A, — A.
The space B(Aj,) is contractible so we can, according to the Gluing lemma, Lemma 2.4,
replace maps j, and g, in (2) by constant maps without changing the homotopy type
of the adjunction space. This can be done simultaneously for all a € Obj(A) which,
together with Lemma 3.4 and the observation that A},\\id, = Ay, leads to the desired
formula. 0

The obvious “collapsing” map of diagrams o : X — PT 4 where X is an arbitrary A-
diagram and P7T 4 is the constant point-diagram over A, induces a map & : hocolim, X —
B(A). Under certain strong conditions this map turns out to be a quasifibration, a
concept introduced by Dold & Thom [9]. A map f: X — Y between topological spaces is
a quasifibration if for any y € Y and x € f~'(y) the induced maps f, : (X, f~'(y), ) —
m; (Y, y) are isomorphisms for all i > 0. The following proposition is essentially due to
Quillen [31].

Proposition 3.6 (QUASIFIBRATION LEMMA) [31] [10, (9.10)])

If X is an A-diagram such that all the maps X(f) : X(a) — X(b), f € Mora(a,b)
are homotopy equivalences, then the natural projection map hocolimy X — B(A) is a
quasifibration. In particular, if B(A) is contractible, then for every a € Obj(A) the map
X (a) — hocolimy X is a homotopy equivalence.

3.2 From local to global homotopy equivalences

This is the first circle of results about homotopies between homotopy colimits of diagrams.
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Proposition 3.7 (HOMOTOPY LEMMA)
Suppose that X and Y are diagrams over C and o = (id, ) : X — Y is a morphism such
that a(c) : X(c) = Y(c) is a (weak) homotopy equivalence for all ¢ € Obj(C). Then the
induced map

& : hocolimg X — hocolimg)

is also a (weak) homotopy equivalence.

This HoMmoTOPY LEMMA is a central result about diagrams of spaces. As noted above
it has evolved from the GLUING LEMMA, Proposition 2.4, in the papers of tom Dieck [40],
Bousfield & Kan [6, XI.4.2], Vogt [42] and others. Both the HOMOTOPY LEMMA and
the following more general result from [19], for the bar construction (as discussed in
Section 2.2) can be deduced from the results of Section 2.

Proposition 3.8 Let X. X' : C — Top and Y,Y' : C? — Top be diagrams. Suppose
(id,) : X = X' and (id,3) : Y — V', are morphisms of diagrams such that a(c) :
X(c) = X'(c) and B(c) : Y(c) — Y'(c) are homotopy equivalences for all ¢ € Obj(C).
Then the induced map

B(B,id,a) : B(Y,C,X) — B()',C, X"
18 also a homotopy equivalence.

The HoMmoTOPY LEMMA is a very convenient tool if we want to compare homotopy
types of homotopy colimits of two diagrams over the same category C. For comparison
of homotopy colimits of diagrams over different categories we have at our disposal the
following two elegant results. They both describe possible changes of the indexing category
of a diagram that do not affect the homotopy type of the homotopy colimit.

Definition 3.9 Given a functor F' : C' — D, the pullback functor F* associates a C-
diagram with every D-diagram: It is defined by F*()) := Y o F for any D-diagram
Y. If d € Obj(D) let d}F be the category which has as objects all arrows of the form

d — F(c) for some ¢ € Obj(C') and for morphisms between arrows d EN F(c) and FER F(d)
commutative triangles F'(h)of = g where h € Morc¢/(c, ). If F' = Id is the identity functor
we recover the definition of undercategory from Definition 3.3.

Proposition 3.10 (COFINALITY THEOREM |6, X1,9.2], [11], [19])
If a functor F . C — D is right cofinal, i.e., if the classifying space B(d | F) is homo-
topically trivial for all d € D, then the induced map

hocolimcF*Y — hocolimp)

18 a homotopy equivalence.

The (Segal’s) homotopy pushdown functor Fj,, associates a D-diagram to any C-
diagram X : C' — Top, [36] [19].
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D x D — Top of discrete spaces defined by (dy, ds) — Morp(dy,ds). If d € Obj(D) is
fixed, then let D) : D — Top be the D-diagram defined by z — Morp(d, x). Similarly,
for a fixed d € Obj(D), the D’-diagram defined by x — Morp(z,d') is denoted by
D4y Given a functor F' : C' — D and d € Obj(D), the D-diagram D. 4 is, via F,
seen also as a C’-diagram, so the space B(Dy.q4),C, X) is well defined. The assignment
d — B(Dy.a),C, X) defines a D-diagram F,(X') which is called the homotopy pushdown

of X or the left homotopy Kan extension along F.

Definition 3.11 For every category D there is a tautological (D x D)-diagram D. ., :

Proposition 3.12 (HoMoTOPY PUSHDOWN THEOREM)
Given a functor F : C'— D and a C-diagram X, there is a natural homotopy equivalence

hocolimp F},,. X — hocolimo X.

3.3 Homotopies Arising From Natural Transformations

A proposition of Segal [35, Prop. 2.1] says that any natural transformation of functors
Fy, Fy - C — D induces a homotopy on the level of geometric realizations. This principle
has numerous consequences and applications; some of them are collected in this section.

Recall that a morphism (F,«) : X — Y of diagrams X : A — Top and Y : B — Top
is a functor ' : A — B and a natural transformation o from X to )} o F. The result of
Segal deals with topological categories and not with diagrams. However, the connection
with results quoted here becomes transparent if a diagram X' : A — Top is viewed as a

topological category with E-Janbj(A) X (a) as the space of objects and an arrow z EN y for
each pair of objects z,y and a morphism f € Mor(a,b) such that z € X(a),y € X(b)
and X (f)(z) = y. We are indebted to the referee for the following proposition and its
corollaries. The referee also pointed out that these results can be immediately deduced
from Proposition 3.1.7 in [19]; however, in the more explicit form presented here they are
closer to our intended combinatorial applications.

Proposition 3.13 Suppose that X : A — Top and Y : B — Top are diagrams of spaces
over A and B. Assume that (F,a) : X = Y and (G, ) : Y — X are morphisms of these
diagrams such that either

1. there exists a natural transformation € : G o F' — Id such that X (e) o foa =id or

2. a natural transformation € : Id — G o F such that o o = X (€).

A5 Top
rl al i
B 7 Top
al Bl lia
A 7 Top
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Then (F,«) and (G, () induce continuous maps f : hocolimyX — hocolimp) and g :
hocolimg) — hocolim ) such that g is a left homotopy inverse to f,

go f~1Id.

Moreover, if there exists a morphism of diagrams (H,~) : X — Y and either a natural
transformation n : H o G — Id such that Y (n) o v o 8 = id or a natural transformation
f:Id — H oG such that vo  =Y(7), then (F,a), (G, 3) and (H,~) induce homotopy
equivalences

hocolim4X ~ hocolimg.

Corollary 3.14 Leti: B — A be an inclusion of B as a full subcategory of A, F: A — B
a functor which maps B to B, and & : Idy — 1o F' a natural transformation. Let X be an
A-diagram, and let X|B denote the restriction of X to B. Then the canonical inclusion
map induces a homotopy equivalence

hocolimg X |B — hocolim 4 X'

Proof. The inclusion of diagrams ® : X|B — X induces an inclusion map h(®) :
hocolimpX|B — hocolim4X. The natural transformation ¢ defines a map = : X — X|B
of diagrams, a — F(a), X(a) = X&,(a), which induces a map h(Z) : hocolimsX —
hocolimpX'|B. Then h(®) is both the right and left homotopy inverse of h(Z). Indeed,
this follows from Proposition 3.13 with (F,a) = (H,v) = (F,X¢), (G,5) = (i,id),
Y=X|B=Xoi,é=¢, and 7] = &i. 0

Corollary 3.15 Let F': A — B be a left adjoint to G : B — A. Let X be an A-diagram.
Then (G, id) is a map of diagrams which induces a homotopy equivalence

hocolimgX o G ~ hocolim4X.

Proof. Let n:Id — GoF and € : FFoG — Id be the adjunction transformations. Apply
Proposition 3.13 with (F,a) = (H,v) = (F,n),Y = X oG, (G, ) = (G,id),e =n: Id —
GoFandn=¢: FoG — Id. U

4 Diagrams over posets

Diagrams over posets play a special role in this paper since the majority of diagrams
arising in combinatorics are of this type. The situation resembles the use of diagrams
of spaces in the theory of transformation groups where this technique is also of utmost
importance. A topologist primarily interested in group actions may find it convenient
to have the key statements formulated in the language of G-spaces although they are
consequences of more general results. An example is the result that an equivariant map
f+X =Y induces a homotopy equivalence f: EG x¢ X = EG xq Y if f7: X" 5 yH
is a homotopy equivalence for any subgroup H C G [14].
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A similar tendency exists in combinatorics. For example, the reference [32], where
Propositions 4.2 and 4.3 are formulated, deals only with posets despite the fact that
Quillen himself was in possession of much more general statements, his well known The-
orems A and B [31]. All these results are relatives of theorems formulated in Sections 3.3
and 3.2 and they played an important role in the development of the general theory.

This is the first reason why we collect some of the corollaries of the general results in
a separate section. A second reason is that there exist results which hold for posets and
which do not have useful analogs for general categories.

4.1 Homotopy Colimits Revisited

The homotopy colimit construction is supposed to be a direct extension of the order
complex construction for (locally) finite posets P. It is shown in Section 5.1 that the join
3], J(X) = X; *...% X, of a family X = {X;}1<;<, of spaces has a simple description
as the homotopy colimit of a natural diagram of spaces. Here we note that conversely, at
least in the case of posets, the homotopy colimit can be described as a subspace of a join
of spaces.

Proposition 4.1 Let D : P — Top be a diagram over a (locally) finite poset P. Let
J(D) := xpep D, be the join of all spaces in this diagram and let

A(D) := {tgaro + ooty € J(D) | 25 € Dyyypo < oo < Py, (Tj41) = :rj}.
Then this space is naturally homeomorphic to the homotopy colimit of D,
A(D) = hocolimpD.

This characterization of homotopy colimits generalizes the order complex construction,
since A(P) = A(PTp), where PTp is the constant diagram associated to P, as in
Section 2.

4.2 Comparison Results for Diagrams Over Posets

In this section we briefly review some of the most useful comparison lemmas which are
meaningful only for order complexes of posets. Examples of such results are the CROSS-
CUT THEOREM 4.4 and the Homotopy Complementation Formula [5], the latter one being
a special case of Theorem 5.2. These result have found many interesting combinatorial
applications. Also, by showing some of the most useful corollaries of general results from
Section 3 we provide a link between these results and the general theory of diagrams.

Quillen’s THEOREM A or the FIBER THEOREM can be seen as a corollary and a result
that motivates both the COFINALITY THEOREM (Proposition 3.10) and SEGAL'S PUSH-
DOWN THEOREM (Proposition 3.12). Quillen’s THEOREM B or the ORDER HOMOTOPY
THEOREM is a corollary and a good illustration of results from Section 3.3.

Proposition 4.2 (QUILLEN FIBER THEOREM: Quillen [31, 32], Walker [43])
If f : P = Q is a map of posets such that the order complex of f~'(Q>,) is contractible
for all g € Q, then the simplicial map Af : A(P) — A(Q) is a homotopy equivalence.
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Similarly, if the order complex of f~'(Q<,) is contractible for all ¢ € Q, then Af is a
homotopy equivalence.

Proposition 4.3 (ORDER HoOMOTOPY THEOREM: Quillen [32], see Bjorner [3, (10)])
If f: P — P is a decreasing poset map (that is, f(p) < p for all p € P), then P is
homotopy equivalent to f(P).

A join semilattice is a poset P such that every finite subset has a unique minimal
upper bound. If P is of finite length, then this implies that P has a unique maximal
element 1. The crosscut complez T'(P) of a join semilattice is the simplicial complex of
all nonempty subsets of min(P) that have an upper bound in P\1.

Proposition 4.4 (CrROsSCUT THEOREM: see Bjorner [3, (10.8)])
For every join semilattice P of finite length, the crosscut complex T'(P) is homotopy
equivalent to the order complex of P\1.

Next we come to the combinatorial version of the PROJECTION LEMMA 3.1. The nat-
ural combinatorial setting for its application (see Sections 5.2 and 5.4) is the following:
A topological space X is covered by a (finite) set (X;);e; of closed subspaces. The inter-
section poset P of the covering X = J;.; X; is defined on the set of all spaces ﬂngXja
J C I, that occur as an intersection of spaces (X;);e; with the reversed inclusion as its
order relation. There is a natural diagram D : P — Top associated to the covering.
Namely, to each element p € P one assigns the corresponding intersection D, and defines
the maps as the natural inclusions.

Lemma 4.5 (PROJECTION LEMMA: Segal [35], Bousfield & Kan [6, XII1.3.1(iv)])

Let X = |J;c; Xi be a covering of the space X by a finite set of closed subspaces. Let P
be the intersection poset P and let D be the corresponding P-diagram. Then the natural
map hocolimD — colimD = X induces a homotopy equivalence hocolimD ~ X.

In general a ‘standard’ application of the homotopy colimit tools proceeds from a
diagram D associated to a covering to another ‘more simple’ diagram by suitably modify-
ing D using a poset version of the HoMoTOPY LEMMA 3.7, the COFINALITY THEOREM
3.10 or the UPPER FIBER LEMMA.

Lemma 4.6 (HoMoTOPY LEMMA)

Let D and & both be P-diagrams, and assume that there is a map of diagrams (id, ) :
D — & such that o, : D, — E,, is a homotopy equivalence for each p € P, then o induces
a homotopy equivalence a : hocolimD — hocolim&.

If one wants to change the poset underlying a diagram on needs an analog of the
CONFINALITY THEOREM 3.10.

Lemma 4.7 (INVERSE IMAGE LEMMA)
Let f: P — @ be a poset morphism and let £ be a @Q-diagram. Define the P-diagram

f(E€) by (f*E)p = Eyp) and [*epy = €f(p)1)-
If for all g € Q, f 1(Q<q) is contractible, then f induces a homotopy equivalence

hocolimf*(£) — hocolim&.
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In contrast to the preceding lemmas that are just reformulations of the general state-
ments for small categories in the situation of diagrams over poset, the UPPER FIBER
LEMMA does not follow immediately from the general tools presented here. Therefore we
provide a proof.

Lemma 4.8 (UPPER FIBER LEMMA)
Let D be a P-diagram and let € be a Q-diagram. Assume (f,a) : D — £ is a map of
diagrams. If (f, «) induces a homotopy equivalence of the restrictions

a :hocolimD|,ep.fp)>g =~ hocolim&lq, —forall q € Q,
then (f, ) induces a homotopy equivalence @ : hocolimD — hocolim&.

Proof. We proceed by induction on the cardinality |@Q| of Q. Let ¢ € @ be a minimal
element of Q. Then @ = Q,UQ; for Q1 = Q>4 and Q> = Q\{¢}. The poset Q3 := Q1NQ>
equals Qs,. We set P, := f1(Q;) for i = 1,2,3, which implies P, N P, = P; and
PLUP,=P.

If ¢ is the unique minimal element of @ (i.e., @1 = @), then the assertion follows triv-
ially from the assumptions. Otherwise a induces a homotopy equivalence @ : ho_Ii)m D|p, —
hocolim&|g, for i = 1,2, 3, by induction. Since hocolimD|p, N hocolimD|p, = hocolimD|p,
and hocolimD|g, N hocolimD|g, = hocolimD|g,, it follows from the GLUING LEMMA 2.4
that o induces a homotopy equivalence between hocolimD = hocolimD|p, U hocolimD|p,
and hocolim& = ho_Ii)m Elo, U hocolim&|g, . O

If one is lucky — and surprisingly often one is indeed lucky — one is able to transform
a diagram D into a diagram that allows an application of the WEDGE LEMMA 3.5 whose
poset version we state next.

Lemma 4.9 (WEDGE LEMMA)
Let P be a poset with maximal element 1. Let D be a P-diagram so that there exist points
¢y € Dy for all p' <1 such that dyy is the constant map dpy @ x +— ¢y, for p>p'. Then

pepP
where the wedge is formed by identifying ¢, € A(P<,) x D, with p € A(P_j) * Dj, for
p < 1.

We close this toolset of lemmas by a result that is a simple consequence of the definition
of a homotopy colimit.

Lemma 4.10 (EMBEDDING LEMMA )
Let (id, ) : D — & be a map of P-diagrams. If a, : D, — E, is a closed embedding for
every p € P, then a induces a closed embedding

a : hocolimD® < hocolimé&.

In particular, if D is a P-diagram and QQ C P is a subposet, then hocolimD|@Q) — hocolimD
15 a closed embedding.

17



5 Applications

5.1 Combinatorial Objects as Homotopy Colimits

In this section we show how some well known combinatorial constructions can be usefully
related to diagrams and their homotopy colimits.

Proposition 5.1 Let X = {X;}", be a collection of spaces. Denote by B, the poset of
all nonempty faces of an n-simplex, i.e., the poset 2{1n+1} \ {0} ordered by inclusion.
Let Dy : B, — Top be the following diagram associated to the collection X. For A € B,
let Dx(A) := [lica Xi and for A D B let dyp : Dx(A) — Dx(B) be the canonical
projection. Then the join J(X) of all spaces in the family X is naturally homeomorphic
to the homotopy colimit of this diagram

J(X) = Xox Xy *%...x X, = hocolimg, Dy.

e

Figure 1. The join of S and S! as a homotopy colimit

The formula given in Proposition 5.1 is a very simple and useful representation of the
join of spaces exposing much of the underlying combinatorial structure.

An important variation of the diagram above arises if X; = S' for all 7. This is a
toric diagram in the sense of Section 5.3. There is a natural diagonal action of the circle
group U(1) on all tori D(A) = (S')4l. Dividing by this action leads to a new diagram
€ :=D/U(1) and a well known fact is that this leads to a combinatorial description of
the complex projective space CP":

hocolimg, & = CP"

A very useful concept, which has found numerous applications in combinatorics, is the
deleted join operation [3] [33] [48]. Given a simplicial complex K, the pth deleted join
K;(p) is the subcomplex of the join K*® := Kx...%K of p copies of K which consists of all
simplices § € K*® which have the form 6 = 6, x. . x0, where 0;, 1 = 1,...,p, are pairwise
vertex disjoint simplices of K. Some very important complexes can be constructed by
iterating the join and the deleted join operation, for example the well known chessboard
complexes A, , [3], [48], arise this way. The simplest complex of this form is Jy, =

(AN);‘(Q), where AV is the standard N-dimensional simplex. This space, viewed as a

18



space with the obvious cyclic Z;-action, has been applied in combinatorics to problems
of Tverberg type, to the ‘necklace’ partition problem, etc., see [3]. Motivated by these
and other similar examples, it is natural to look for homotopy colimit representations for
deleted joins as well.

There are two obvious ways to associate a diagram to the space of the form K;(p).

One can view K;(p) as a subspace of K*® which has the homotopy colimit representation
described in Proposition 5.1. The subdiagram which arises this way is similar except that
the products K7 are replaced by deleted products K1,j =1,...,p. Recall that the deleted
product K7 is a cell subcomplex of the cell complex K7 consisting of all cells of the form
0 =06, x...x0; where 0, k = 1,...,j, are pairwise vertex disjoint simplices in K.
Another possibility is to link K;(p) with a diagram over the face poset of K itself via the

#) _, K. The diagram arising this way is a finite space diagram. For

‘collapsing” map K
example if K = A, the space K;(q) = Jn,q is the homotopy colimit of a diagram of the
type described in Proposition 5.1 where X; := [¢] = Z, for all i = 0,1,...,N. These
and other examples seem to indicate that it may be useful to study discrete analogs of
toric diagrams with the discrete ‘tori’ ZJ = Zg x ... X Zg in place of T7 = S' x ... x S'.
Specially it is an interesting question which convex polytopes admit natural discrete toric

diagrams.

5.2 Bjorner’s generalized homotopy complementation formula

Bjorner’s generalized homotopy complementation formula [4] is an effective tool to com-
pute the homotopy type of a simplicial complex A in the case when a large, contractible
induced subcomplex A+ is known, whose connections to the rest of the complex are not
too complicated.

In the following, we provide a “diagrammatic” proof of Bjorner’s result, thereby
demonstrating the applicability of some of our lemmas.

Let A C 2° be a finite (abstract) simplicial complex with vertex set S, let A C S be
a subset of its vertex set, and denote by A the complement S\ A of A.

Let Ay :={o € A:0 C A} = AN24 be the induced subcomplex on A, and similarly
A the induced complex on A. In the following, the key assumption we will make is that
A is contractible.

Theorem 5.2 (Generalized Homotopy Complementation Formula: Bjorner [4])
For any simplicial compler A C 2% and A C S, define a new simplicial complez Ty by
taking the union of all the simplicial complezes

(pWo)* (stara(o) N Ag) for o€ A,

where p is an additional point p ¢ S, and % denotes the join of two complexes.
If A is contractible, then A and Tx are homotopy equivalent.

Proof. Let P be the poset of all nonempty faces of A, ordered by inclusion, and let

Q = {(o,71)ePxP:0<T},
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partially ordered by the condition
(o', 7") < (0,7) = o< <7 <7

(Thus @ is isomorphic to the poset of all intervals in P, ordered by inclusion: @ = Int(P).)
For o € P we define
D, := stara(o) U A

Then we clearly have inclusion maps d,, : D, < D, whenever 7 > o¢. This defines a
P-diagram D, with
A = colimD ~ hocolimD,

where the equality holds by definition of the colimit (this is a subspace diagram!), and
the homotopy equivalence is an application of the PROJECTION LEMMA 4.5.
Similarly, for (o, 7) € @ we define

Eory = (pWo) x (stara(r) NAy).

Then we get inclusion maps €.r)(o',7) : E(o,r) < E(o' ) Whenever (o,7) > (o', 7'). This
defines a -diagram &, with

Ty = colim& =~ hocolim&,

by definition of the colimit and the PROJECTION LEMMA.

Thus, the claim of the theorem is reduced to proving that the homotopy colimits of
the P-diagram D and the ()-diagram £ are homotopy equivalent. This demands use of
our new homotopy lemmas, since the posets P and () are quite different.

The canonical poset map to use is

f:Q— P, (o,7) — T.

This f induces a homotopy equivalence between the posets P and () (Walker [44]). To see
this, we observe that the lower fibers f !(P<,) are canonically isomorphic to Int(P<,).
On the poset Int(P<;) we have an increasing map g : Int(P<,.) — Int(P<;) given by
(o',7") = (o', 7). Thus, by the ORDER HOMOTOPY THEOREM 4.3 the fiber Int(P<;) is
homotopy equivalent to the image g(Int(P<,)) = P<,, which is a cone.
Now we modify £ and D a little. We define a new ()-diagram £’, whose spaces are
E; = stara(7) U (p* Ay),

(,7)

and whose maps are the obvious inclusions. Furthermore, there is a map ¢, : £ — &/,
which is the identity map on @, and between the spaces uses the inclusion maps

(pWo) x (stara(T)NA%x) <= (pWr) * (stara(r) NAx) < stara(r) U (p*Ay)

which are clearly homotopy equivalences, since A is contractible. Thus, by the Homo-
TOPY LEMMA 4.6, ¢y induces a homotopy equivalence

~

Y : hocolimE€ ~ hocolim&'.
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Similarly, we define a new P-diagram D', whose spaces are
D, = stara(r) U (pxAy),

and whose maps are the obvious inclusions. Furthermore, there is a map 1, : D — D',
which is the identity map on P, and between the spaces uses the inclusion maps

stara(7) U Ag < stara(7) U (p* Ay)

which are clearly homotopy equivalences. Thus, by the HoMOTOPY LEMMA, 15 induces
a homotopy equivalence

~

)5 : hocolimD ~ hocolimD'.

Finally, at this stage we see that £’ is an inverse image diagram, £ = f*(D'), where
f is a poset map whose lower fibers we have already checked to be contractible. Hence
the INVERSE IMAGE LEMMA 4.7 implies a homotopy equivalence

hocolimE’ ~ hocolimD’

which completes the proof.

Alternatively, one could derive hocolim&’ ~ hocolimD’ also from the UPPER FIBER
LEMMA 4.8, together with the PROJECTION LEMMA 4.5, since £ and D’ are subspace
diagrams as well. 0

We note that there are alternative ways to describe the construction of 7. For
example, one can (as Bjorner does in his manuscript [4]) start from a wedge (or a disjoint
union) of the spaces E,, = (p® o) * (stara(o) N Ag), and then check that all the
identifications of the colimit colim& are generated by identifying, for o C 7, the identical
subcomplexes (p W o) * (stara(7) N Ax) in Ey, 0 and in E; 5.

Also, there are countless variations possible, corresponding to different coverings of
the complex A. The beauty of Bjorner’s set-up is that his transformations of A end up
with a subspace diagram, and thus with a colimit instead of a homotopy colimit, which
leads to an effective model for A/A+. It seems to us that the diagram techniques yield
an extremely natural and convenient setting for the proof of the generalized homotopy
complementation formula and similar results.

5.3 Toric Varieties

In this section we give a representation of the topological space underlying a toric variety
(see Danilov [8], Fulton [16], and Ewald [12] for general background on toric varieties) as
the homotopy colimit of a diagram. For this we recall a description, due to MacPherson
(see Yavin & Fischli [46] [15]), of a toric variety. A decomposition of R" into a complex
Y of closed, convex, polyhedral cones with apex 0 is called a complete fan. If all cones
in ¥ are generated by lattice points in Z", then X is called rational. Assume that ¥ is a
complete and rational fan in R”. Then let P be the cell decomposition of the unit ball
in R” that is dual to the one induced by ¥. For ¢ € ¥ we denote by & the cell in P that
corresponds to 0. Thus & is a cell of dimension n — dim(o).
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We identify the n-torus 7™ with the image of the projection map = : R* — R" /Z™. For
all cones 0 € X the image of ¢ under this projection is a subtorus 7 (o) = 7(spang (o)) = 7,
of T. Since o is rational, this is a closed subtorus of dimension dim(¢). Thus the quotient
T" /T, is a real torus of dimension n — dim(o).

The toric variety Xy is obtained from P x T™ by taking the quotient of (5)° x7T" by
the action of 7, on T for each o € ¥. This leads to a nice (compact, Hausdorff) quotient
space since we take quotients by larger tori on do x T". In particular, we see that the
toric variety Xy has a well-defined map II : Xy — P, for which the fiber over any interior
point of & is isomorphic to T /7.

Let Ps be the poset whose elements are in bijection with the cones in ¥ and whose
order relation is defined by reversed inclusion of the cones in Y. Thus Ps is the poset
of non-empty faces of P, ordered by inclusion. In particular, Ps has a largest element 1
corresponding to the O-dimensional cone {0}. We construct a diagram Dy over the poset
Py, as follows. For o € ¥, set D, = T /T,. Topologically, D, is an (n — dim(o))-torus.
The map d,, for 7 C o is the map induced by the projection T /T, — T /7T,.

Proposition 5.3 Let ¥ be a complete and rational fan in R™. Then the toric variety Xx
1s homeomorphic to the homotopy colimit of the diagram Dy, associated with X:

hocolimDy, & X5x..

Proof. Let ¢ be the map that sends 7/7, x P<, to its image in Xy. By construction
of Dy, the map ¢ is compatlble with the equivalence relation = on |#,.p T/T X P,

Hence ¢ induces a map qﬁ hocolimDy, — Xsy. It is routine to check that d) is indeed a
homeomorphism. 0

The resolution of singularities of a toric variety also fits our homotopy colimit frame-
work. Namely, let 3/, ¥ be two complete, rational fans in R such that ¥’ is a refinement
of ¥ (i.e., for every open cone 7'° in X' there is an open cone 7° in ¥ such that 7'° C 7°).
Thus there is an induced map f : Psy — Ps. Also assume that 7' is a cone in ¥’ whose
interior is contained in the interior of the cone 7 of ¥. Then the inclusion 7" < 7 induces
a surjective map ¢, : T /Ty — T /T, Is is easily seen that ¢ induces a map of diagrams.
Hence there is an induced map &5: hocolimDsyy = Xy — hocolimDy, = Xs,. The map &5\ is
surjective since f and all ¢, are surjective.

Proposition 5.4 Let X' be complete rational fan which is the refinement of the complete
rational fan ¥. Then there is a surjective map ¢ : Xy — Xyx.

It is well known that Xy is non-singular if and only if ¥ is simplicial (i.e., all cones
are simplicial) and unimodular (i.e., all full-dimensional cones are equivalent to {z € R" :
x > 0} under unimodular transformations from GL(R",Z)). For an example that shows
that H*(Xyx;Q) is not a combinatorial invariant of ¥ in general see [26]. It is also well
known that for any complete rational fan ¥ there is a simplicial and unimodular complete
rational fan ¥’ which refines 3. In this case ¢ is a resolution of singularities.

One can also use our results to investigate the (co)homology of a toric variety. For
this we set up a spectral sequence introduced by Segal [35], which uses the filtration of
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hocolimD by the s-skeleta of the order complexes. For a simplicial complex A we denote
by Af its s-skeleton.

Assume D is a P-diagram for a poset P. Then we denote by hocolimD?® the image of
Woep Dy X A(P<,)® in hocolimD. The filtration hocolimD® C hocolimD' C - - - hocolimD

defines a spectral sequence with termination H,(hocolimD) in the E2-term and EY, =
H,_;(hocolimD? hocolimD*~!'). Following Segal’s arguments one finds that F, is given
by @ Hy(T/T,,). Now assume (¢ < -+ < g5) X cis a (s+t)-cell in hocolimD?.

T0<<as€A(P)
Then the differential of the cell complex hocolimD is given by

s—1
d(og < -+ <o5)Xe = Z(—l)i(00<---<6}<---<05)><c+
i=0

+ (1) Nopg <+ < 041) X dy,q, ,(c) + (—1)*(0g < -+ < 0,) X Oc.

Thus the differential d}, : E}, — E,_,, applied to the cell (op < --- < 0,) X ¢ equals
s—1
Y (1) (og < < Gi< <o) X et (1) (g < o+ < 041) X gy, (c), Where c
i=0
is a cycle in Hy(T/7Ts,).

From this it is easily seen that our spectral sequence is isomorphic to the deRahm-
Hodge spectral sequence applied by Danilov [8, Chap 3, §12] to compute the cohomology
of a toric variety.

5.4 Subspace Arrangements

Arrangements of affine subspaces in R" also allow an application of the homotopy col-
imit method. Let A be a finite set of affine subspaces in R". Let us denote by A the
corresponding arrangement of spheres in the one-point compactification S™ of R". Under
our assumptions intersections of spheres in A are again spheres (or the compactification
point). The following result can be deduced from the PROJECTION LEMMA 4.5, the
HomoTorPy LEMMA 4.6, and the WEDGE LEMMA 4.9.

Theorem 5.5 (Ziegler & Zivaljevi¢ [47])
Let A be a finite set of affine subspaces in R". Let ﬁ:l be the one-point compactification
of the set-theoretic union of the subspaces in A and let P be the intersection poset of A.
Then -

Us =~ \/ 8™@) AP,

peP

An equivalent result can be found in Vassiliev [41, ITI. §6, Thm. 1]. In Vassiliev’s for-
mulation the spaces A(P.,) are replaced by quotients of simplices by crosscut complexes,
the spaces K (p) in his notation. More precisely, for an arbitrary subspace V' correspond-
ing to some point p = py in the intersection lattice P of A, let Vi, ..., V, be the subspaces
in A such that V; contains V' as a subspace. Let ¥(p) be the simplex which is spanned,
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in the abstract sense, by the vertices V;,...,V;. Vassiliev calls a face 7 of X(p) marginal
if V' is not the intersection of the subspaces corresponding to the vertices of 7. Thus the
marginal faces are the simplices in the crosscut complex I'(P<,) of P<,. By the CROSS-
CUT THEOREM 4.4 the complex of marginal faces is homotopy equivalent to A(P.,). In
Vassiliev's formula the spaces SIm®) x A(P_,) are replaced by Sm®)=1 « ¥(p)/T'(P<,).
Let us analyze ¥(p)/I'(P<,). If I'(P<,) is the full simplex X(p), then X(p)/I'(P<,) and by
the CROSSCUT THEOREM also A(P.,) are contractible. In particular, S4m®) x A(P_,)
and SUmP) L4 ¥(p) /T (Pc,) are contractible. If T'(P<,) is some non-empty part of the
boundary of 3(p) then X(p )/F(P<p) is the suspension of I'(P<,). Thus again the CROSS-
cuT THEOREM shows that S4™®) x A(P_,) and S4mP)~14¥(p) /T (P<,) are homotopic. If
I'(P<,) is empty, then we have to “interpret” 3(p)/I'(P<,) as the suspension of the empty
space, which is in our definition the join with a two point space. Then the homotopy
equivalence also follows in this case.

By Alexander duality on S™ we infer from Theorem 5.5 the following formula of
Goresky & MacPherson [18].

Corollary 5.6 (Goresky & MacPherson [18])

Let A be a finite set of affine subspaces in R™. Let My be the complement S™ — l/]; and
let P be the intersection poset of A. Then

MA, @Hcodlm —i— A(1D<p) Z)

peP

where codim(p) denotes the real codimension of the subspace corresponding to p.

Analogous results for arrangements of spheres and projective spaces can be found
in Goresky & MacPherson [18] and in [47]. In the following, we describe a simpler,
more general, and more powerful approach that provides combinatorial formulas for quite
general “Grassmannian arrangements.” Let A be a central arrangement in R” (or C", H")
with intersection poset P and a dimension functiond : P — Ny. Let D = D(A) = {A, }pep
be the corresponding P-diagram of linear spaces. In case each of the linear subspaces A,,
p € P, is invariant under the action of a finite (or just closed) subgroup G C O(n,R)
(resp. U(n), Sp(n)) of the orthogonal (unitary, symplectic) group, a natural step to make
is to define the associated orbit diagram. More generally, if T is an operation (a functor)
associating a space T'(V') to a linear subspace V' C K", where K = R, C or H, then T'(A)
denotes the diagram T'(A) = {T(A,)},cp associated to the corresponding arrangement
of subspaces in T(K"). There are several examples that come up very naturally in the
mathematical practice. For example, if V' +— S(V) is the operation of associating the
unit sphere to the linear subspace V' C R”, then S(A) = {S(A4,)},cp is the associated
spherical diagram. Similarly, functors V' — RP(V), V +— CP(V) or simply P(V) in
both cases (and in the case of quaternionic spaces) lead to the corresponding projective
arrangements RP(A), CP(A) or HP(A), denoted simply by P(A). Projective diagrams are
special cases of the associated Grassmann diagrams obtained with the aid of the functor
Ve Gp(V) :={L CcV :dim(V) = k}. Lens space arrangements L,(A) are defined
similarly, where L,,(V) = L,,,(S(V)) := S(V)/Z,, is the lens space associated to the unit
sphere in a complex linear space V.
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We illustrate how the HoMmoTOPY LEMMA 4.6 can be applied to produce a combi-
natorial description of the link of the related arrangement in all the special cases above.
We obtain in particular simpler, stronger, and more natural proofs of some results from
[47, Thms. 2.11 and 2.14] about projective arrangements. The advantage of the proof
below is that it uses the HoMOTOPY LEMMA in its simplest form and allows a uniform
treatment of all the special cases above. It is clear that this method may be useful for
other applications, say for other group actions, since the argument no longer requires the
arrangement to be shifted to a more special position by a dilatation e; — €'e;, i = 1,...,n,
for some € > 0.

Our objective is to show that the homotopy type of the link has a purely combinatorial
description in terms of the poset P and the associated rank function d : P — Ny. The
link of a (spherical, affine, projective, lens, Grassmann etc.) arrangement is the union of
all spaces in the arrangement. It follows from the PROJECTION LEMMA that the link has
the same homotopy type as the homotopy colimit of the corresponding diagram.

We uniformly construct a combinatorially defined diagram which serves for comparison
with the original one. Choose a flag F' = {F;}I,, {0} = F, C F} C --- C F, = K".
Let V +— T(V) be one of the functors described above. Then T[F] = T[F](A), the flag
diagram associated with 7'(A), is defined by T'[F], := T(Fyy)) where the morphisms
T[F], — T[F)|, are the obvious inclusion maps. Every two flag diagrams T'[F| and T[F"]
are naturally isomorphic, thus the isomorphism type of T[F] depends only on P and d.

We want to compare our diagram T'(A) with the combinatorially defined diagram
T[F](A). There does not seem to exist a natural map of diagrams between T(A) and
T[F](A) because e.g. the projection map is not natural. This difficulty was overcome in
[47], in the case of projective diagrams, by shifting the diagram T[F](A) to a more special
position and by applying a more general version of the HomOoTOPY LEMMA by Vogt [42]
that allows noncommutative diagrams if they commute up to coherent homotopies. The
proof of Theorem 5.8 shows that in practical problems a very natural idea to use is the
comparison with the third, so called “ample space” diagram that contains both T(A) and
T[F](A) as subdiagrams. We need a lemma which explains what is meant by “ample” in
all the interesting cases above.

Lemma 5.7 Let T : Vect(K") — Top, V — T(V), be one of the functors defined above
which to every vector space V- C K" associates the corresponding projective space P(V),
Grassmann manifold G(V'), the lens space L, (V) (for V. C C"), or the unit sphere
S(V'). Then in each of these cases there exists a functor Ry : Vect(K") — Top which
associates with each subspace V-C K" an “ample” subspace Ry(V') C T(K") and to each
inclusion V- — W an inclusion of spaces Ry (V') — Rr(W) so that the following condition
18 satisfied.

Let V. C K", dim(V) = k. Then for any W of dimension k with dim(W NV ~) =0,
there is an inclusion T(W) C Rr(V') so that the inclusion map

iw : T(W) — Rp(V)
is a homotopy equivalence (actually, an inverse to a deformation retraction).

Proof. The space Ry (V) is defined in a very similar way for all the examples above. For
example in the case of the functor V — S(V), we put Rp(V) := S(K")\S(V~). The
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construction in the case of a projective functor V +— P(V) is analogous, one removes the
projective space P(V ™) from P(K"). The inclusion map iy : P(V) — P(K")\P(V ") is a
homotopy equivalence since P(K™")\P(V ) is the total space of a vector space bundle (a
tubular neighborhood) over P(V'). Obviously P(W) C P(K")\P(V ™) for any W with the
property W NV~ = {0}. Finally, iy : P(W) — Rp(V) is a homotopy equivalence since
there exists a linear map Oy, : K* — K" which maps V' to W and leaves V'~ invariant.
Something similar is done in the case of Grassmannians. Here, Rg, (V) is defined by
Re, (V) = {L € Gx(K") : dim(L NV~) = 0}. In this case R, (V) is also the total
space of a vector bundle over G (V') which can be seen as follows. If M (V) is the Stiefel
manifold of all 1—1 linear maps (matrices) D : KF — V then G (V') = M (V)/G(k) where
G(k) = GL(k, K) is the appropriate group of linear automorphisms. Let p : M (K") —
Gr(K") be the projection map. Note that p~'(Rg, (V)) = M(V) x L(K*, V™), where
L(K*, V) is the space of all linear maps, and that the group G (k) acts diagonally on the
product My (V) x L(K¥, V7). Now it is enough to recall that if X and Y are two G-spaces
and if the action on Y is free, then the orbit space (X x Y)/G of the diagonal action is
represented as a fiber bundle

X—>(XxY)G—-Y/G

which in our case means that Rg, (V) is fibered over Gi(V) with the fiber L(K*, V™).
Hence, iy is a homotopy equivalence. It is shown that iy, is also a homotopy equivalence
analogously to the case of projective diagrams.

Finally, in the case of the “lens space” functor, let Ry (V) := L,,(C*)\ L, (V™). The
proof that Ry, (V) is “ample” in the sense above is analogous and can rely on the fact
that the sphere S(C") is a join of spheres S(V') and S(V ), and that the action of the
cyclic group Z,, respects this decomposition. [l

Theorem 5.8 (HOMOTOPY TYPES OF ARRANGEMENTS)

Let A = {A,},cp be a linear subspace arrangement of K", where K is one of the (skew)

fields R, C or H. Let P be the intersection poset of A, with the dimension function

d: P — Ny, d(p) =dim(A,), defined above, and set Py := {p € P :d(p) > k} for k> 0.
Let T : Vect — Top, V +— T(V), be the projective, sphere, Grassmann or the lens

space functor defined above and let T(A) be the corresponding arrangement of subspaces

of T(K"). Then there is a homotopy equivalence

n

UT@) =~ TE) x A(Py).

pEP k=0

Proof. We start by choosing the flag F', F; = span{e }i_,, in sufficiently general position
with respect to the arrangement A. This requirement means that for any F; and A, € A,
if dim(F;) = dim(A,) then A, N F;- = {0}. Let us define the associated “ample” space
diagram R = R(A) by R = {R,}pep, Ry := Rr(A4p) = Ry(Fagp)), where V i Rp(V) is
the “ample” space functor associated with 7" described in Lemma 5.7. Hence, there exist
two naturally defined maps of diagrams a and /3,

a:T(A) — R(A) «— T[F|(A):
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induced by the inclusion maps o, : T(A,) = R, and 3, : T[F], — R,. By Lemma 5.7
these inclusion maps are homotopy equivalences. From here and the HomMmoTOPY LEMMA
it follows that hocolimT'(A) ~ hocolimR and hocolimT'[F|(A) ~ hocolimR, which implies

hocolimT'(A) =~ hocolimT[F](A).
Finally, we notice that the embeddings T(F}) — T(K") induce a diagram map
E: T[F](A) < F,

where F denotes the “constant” P-diagram which has F, = T'(K") for all p € P, and
identity maps f,, for p > p’. From the EMBEDDING LEMMA 4.10 we get that =

embedding R
=: hocolimT[F]|(A) < hocolimF = T(K") x A(P),

and we easily identify the image of £ with the space Ui—o T(K*) x A(Py). [

Note that for the homotopy formula for Grassmann arrangements in Theorem 6.4
only the truncated poset Py = {p € P : d(p) > k} is relevant: This corresponds
to the fact that spaces with d(p) < k do not have k-dimensional subspaces, so A and
Ay = {A, € A:d(p) > k} have the same associated k-Grassmann arrangement.

The following proposition shows that there is a general decomposition formula for the

homology of flag diagrams and, a posteriori, of the T-links of K-arrangements for K = R,
C or H.

Proposition 5.9 (HomoLoGY OF FLAG DIAGRAMS)

Let A be an arrangement of linear subspaces in K" and let T be one of the functors
described above. Let T[F](A) be the combinatorially defined flag diagram associated to the
arrangement A and the functor T. We set s = min{d(A4,)}pep and t = max{d(A,)},cp.
Assume that for the coefficient ring R and for all s <k <m <t

e the exact sequence of the pair (T(K™), T(KF)) splits in homology and
e the homology groups H.(T(K™); R) are free R-modules.
Then, H,(hocolimT[F|(A); R) =

(HAP):R) @ HATE);R) ) & @ (H(A(Py): R)  H(T(KY), T ) R) ).

Proof. For this proof we fix the coefficient ring R used for homology computations and
we write H,(-) for H,(-; R). For an arbitrary poset Q and a natural number k£ we introduce
“constant” diagrams My o over @, defined by My o : Q — Top, My o(q) := T(KF). If it
is clear from the context which poset @) is used, we write M, for the diagram M, o. Note
that our diagram T[F|(A) can be squeezed in between two constant diagrams M, p and
M, p. Clearly, hocolimM; o = A(Q) x T(K*). The Kiinneth theorem and the freeness of
R-modules H,(T(K*)) imply

H,(hocolimM; g) = H,(A(Q)) @ H.(T(K*)).
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From this observation and from the fact that the map H,(T(K*)) — H,(T(K™)) is a
monomorphism for £ < m, we conclude that the map hocolimM,; — hocolimM,,, for
k < m, induces a monomorphism of homology groups. Then the composition of homo-
morphisms

H.(hocolimM,) — H,(hocolimT[F|(A)) — H.(hocolimM,)

is a monomorphism too. Thus the first of them is also a monomorphism. It follows that
the long exact sequence of the pair (hocolimT[F](A), hocolimM,) splits and

H,(hocolimT[F|(A)) = H,(hocolimM,) & H,(hocolimT[F](A), hocolimMj).

Informally speaking, we peel from the homotopy colimit of the diagram T[F](A) the part
of its homology coming from the constant subdiagram M,. Let &y be the restriction
of the diagram T[F](A) on the poset Py;, i > 0. By excision, recalling the definition
of the homotopy colimit hocolimT[F|(A), we have H,(hocolimT[F](A), hocolimM,) =
H*(hocolimé'm , hocolim./\/ls,p[sﬂ]). By induction on 7 we may assume that for some 7 > 0

H.(hocolimT[F](A)) = (H*(A(P[s})) ® H*(T(KS))>

o @ (AR & HOE),TE™)

k=s+1
® H.(hocolim&; 1), hocolimM,; p

s+i+1])'

The long exact sequence of the triple

h0C0|imM5+i,p

( hOCOlimg[H_” , hOCOlimM5+Z’+1’P stit1] )

[s+i+1] ?

splits by the same argument as above. This means that we can peel from the homology
H,(hocolim&y), hocolimM,; Pletis] ) the part isomorphic to

[av}

H, (hocoI|m/\/lsJﬂJer[sH+1 , hocohm/\/lsﬂ,p[sﬂﬂ]) o
> H(A(Poyin) @ H (TR, T(K*H)).

The part that remains is isomorphic to the group H,( hocolim&;q, Ms+i+1,P[s+i+1])- The
last group is by excision isomorphic to H,( hocolim&; 4o, hocoIimMHHl,p{HM]). So the
Kiinneth formula, the process described above and induction on i lead to the desired

formula. g

If the arrangement A is essential (i.e., if s = 0 and t = max{d(A,)},cp = n), then both
K~ and T(K™!) are interpreted as empty spaces and the formula given in Proposition 5.9
can be rewritten as follows.

Corollary 5.10 Let A be an essential arrangement satisfying the assumptions of Propo-
sition 5.9. Then

H, (hocolimT[F @ H,( R) ® H,(T(K*), T(K*'); R).
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For example if T" = P is the functor which associates the complex projective space
P(V) to every complex linear space V', then the formula given in Corollary 5.10 has the
following form

H,(hocolimT[F)(A); R) = @ H, o (A(Py); R),

where r > 0 and H_(X; R) := 0 for all £ > 0. This formula together with its counterpart
for the real projective arrangements was formulated and proved in [47]. Unfortunately,
as it was kindly pointed to us by Anders Bjorner and Karanbir Sarkaria, the formulation
there suffers from some misprints.

The following example, which we also owe to A. Bjorner and K. Sarkaria, shows how a
formula of the type above arises in connection with the Stanley-Reisner ring of a simplicial
complex A.

Corollary 5.11 Let A be a simplicial complex on the verter set {1,...,n}. Let A be
the arrangement of complex linear subspaces in C" defined by Ax = {As}sen, where
Ay = spanc{e;j}jco, € the ith unit coordinate vector in C". Let P(Aa) = {P(A4s)}sen
be the associated projective arrangement. Then the homology of the union |J, ., P(As) of
the arrangement P(A) is given by

H(| P(4,):2) = @ H, a(A(Ap): 2),

ocEA

where Ay = {o € A :dim(o) > k} is a subposet of (A, C) and A(Ayy) its order complex.

Note that the union of the arrangement P(AA) is a projective variety whose homoge-
neous coordinate ring is the Stanley-Reisner ring of A.

Note that Proposition 5.9 deals with the case when H,(T(K')) — H,(T(K'*)) is
injective in contrast to the Goresky-MacPherson formula (Corollary 5.6). We already
mentioned that the Goresky-MacPherson formula for the cohomology of the complement
of an arrangement A of (affine) subspaces can be proved by Alexander duality from the
homology of an associated arrangement S(A) of spheres. In the case when T" = S the map
H,(T(K')) — H,(T(K"*")) is trivial. Although it does not completely fit in the setting of
this section one may regard toric varieties — seen from the point of view of Section 5.3
— as an interesting third case, when the map in homology induced by the diagram maps
are surjective.

5.5 Subgroup Complexes

The order complex of the poset S,(G) = {P < G : |P| = p' # 1} of non-trivial p-
subgroups of a finite group G has received considerable interest over that past few years
(see for example [1]). It was already observed by Quillen [32] that S,(G) is homotopy
equivalent to the poset A,(G) of non-trivial elementary abelian p-subgroups of G. In [29]
the authors consider the covering of A(A,(G)) by the subcomplexes A(A,(NA)) for a
fixed solvable normal p’-subgroup N and maximal elementary abelian p-subgroups A of
G. Then they use the following facts :
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(a) Intersections of the spaces of type A(A,(NA)) are again of the type A(A,(ND))
for some elementary abelian p-subgroup D of G.

(b) For a solvable normal p'-group N and an elementary abelian p-subgroup A the
complex A(A,(NA)) is homotopy equivalent to a wedge of spheres of dimension
rank(D) — 1.

Observation (a) follows by basic group theoretical argumentation. Assertion (b) is
much less obvious. It was established by Quillen [32, Theorem 11.2], but also follows by
applications of the homotopy colimit methods (see [29, Theorem (A)]). Using facts (a)
and (b), the PROJECTION, the HOMOTOPY and the WEDGE LEMMA the following wedge
decomposition of A(A4,(G)) for finite solvable groups G' with non-trivial normal p’-group
is proved in [29].

Theorem 5.12 (Pulkus & Welker [29, Theorem (B)])

Let G be a finite group and let p be a prime. Let N be a solvable normal p'-subgroup. Let
CN/N be the intersection of all mazimal elementary abelian p-subgroups of G/N. For
AN/N € A,(G/N) let can/n be an arbitrary but fized point in A(A,(G/N)san/n). Then
A(S,(G)) is homotopy equivalent to

\/ A(A,(NA)) * A(Ap(G/N)san/n)-

AN/N€Ap(G/N)scon/NU{CN/N}
where the wedge is formed by identifying, for AN/N > N/N,

the point  can/n € A(Ap(G/N)san/n) * Ap(NA)
with the point ~ AN/N € A(A,(G/N)) x A(A,(N1)).

In particular, if A is a mazimal elementary abelian group of rank r in G, then

A(A,(NA)) * A(Ap(G/N)san/n) is homotopic to a wedge of (r — 1)-spheres.
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