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1 From Lé numbers to matroid identities

In July 1994 the CIRM hosted a conference on hyperplane arrangements in Luminy,
France. At that conference the first author gave a talk in which he described an application
to hyperplane arrangements of the more general theory of Lé cycles and Lé numbers of
an arbitrary complex analytic hypersurface singularity (see Massey [4, 5]).

The Lé numbers of a hypersurface singularity are important because they provide a
nice generalization of the Milnor number of an isolated hypersurface singularity: the Leé
numbers are effectively calculable, the Milnor fibre has a handle decomposition in which
the number of handles of each index is specified by the appropriate Lé number, and the
constancy of the Lé numbers in a family implies both that Thom’s a; holds and that the
Milnor fibrations are constant in the family.

In the case of hyperplane arrangements, the so-called Lé-Iomdine formulas lead to a
recursive way to compute the Lé numbers.

Namely, let A denote a central essential complex hyperplane arrangement in C". We
use h to denote hyperplanes in A, and the letters v and w to denote flats of arbitrary
dimension, that is, intersections of one or more hyperplanes in A. Let e(v) be the number
of hyperplanes of A which contain the flat v. Then the Lé numbers A% are obtained by
summing 7(y) over all flats y of dimension &, where the function 7 is defined inductively
on the flats by the following rule. For all h € A, n(h) = 0, and for all proper flats w,

> (e(w) =DM () = (e(w)—1)"

wCvCCn

Now let L denote the lattice of all flats of A, ordered by reverse inclusion (as is customary).
This includes the flat C™, which arises as the intersection of the empty set of flats. If we
set n(C™) := —1, then we obtain a sum

> (e(w) =)™ pv) = 0. (1)

wCv

A first curiosity is that the function 7 is everywhere positive except on C". From its
recursive definition it is surprising that this should be the case, but it is a consequence of
the geometrical counting interpretation described above.

At this point, we made two observations. The first one was that the Lé numbers
seemed to be closely related to the Mébius function 4 on the lattice of flats. The unusual
appearance of the resulting formula, see (2) in the next section, initiated our investigations.
In fact, in view of the recursion formula (1), the identity (2) is just the statement that
the np-function on a hyperplane arrangement is given by

nw) = (e(v) = 1)|p(C" v)l.

It was this observation which led to this paper.

Noting that the lattice of flats of a hyperplane arrangement is geometric we now extend
to general geometric lattices and matroids.

The purpose of this paper therefore is to try to understand the combinatorics underly-
ing these curious formulae, which started off as results in geometry. Chapter 5 of Massey
[5] contains a full account of the geometrical background and arguments.
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In particular, we see that the main result, Theorem 5.6 of [5], about central hyperplane
arrangements in C”, is a particular case of a more general result about geometric lattices.
This in turn is a special case of a more general result about the Tutte polynomial of a
matroid which we describe in §5.

2 Matroid identities

Let M be a matroid of rank r > 1 without loops on a finite ground set E, and let L = L(M)
be its geometric lattice of flats. For any subset A C E, we denote its closure by A € L,
and its rank by r(A4) = r(A). In particular, we have r(E) = r and r(F,G) = r(G) — r(F)
is the rank of the interval [F,G] in L. As will be apparent from the context, inclusions
A C B refer to subsets of F, while inequalitites A < B refer to the order relation in L
for flats A, B. The minimum and maximum elements of L are 0 = () and 1 = E, and it
will be convenient to use the notation Ay = {a € L : r(a) =1,a < U}, for U € L. The
cardinality |U| pertains to subsets of E. Thus, for a flat U, |Ay| < |U| with equality when
U contains no parallel elements. We will use the Mébius function on L, denoted u(F, F'),
which for flats F < F” in L satisfies (—1)") =) (F, F') > 0. The Mobius function of
the matroid M is denoted by p(M) := u(0, E). (See [7, Chap. 15] or [6, Ch. 3] for more
about the basic concepts.)
Our first main result consists of the following, apparently new, identities.

Theorem 2.1 For a matroid M without loops, with lattice L of flats, the following two
identities are true for every flat G # ():

. LZF ; (1G] - 1)r(G)—r(F) (|F|—1) |u(®, F)] = 0, 2)
and
> (161 =)@ ([ = 1) (- = o, 3)

Note that the two formulas in Theorem 2.1 are equivalent via the well-known “boolean

expansion formula”
n@,F)= > (-)H, (4)
A:A=F
using the fact that |u(0, F)| = (=1)"") u(0, F).
To generalize these identities, one can associate a variable x, with every element e € F,
and identify sets of elements A C FE, flats in particular, with the corresponding sums of
variables, X, 1= > c4 z.

Theorem 2.2 Let F < G be flats of the matroid M, and let x([F,G]; \) be the charac-
teristic polynomial of the interval [F, G| in L = L(M), that is,

X([F,G;\) = Z p1(F, Y))‘T(Y’G)a

Y:F<Y<G



where A is an indeterminate. Then the following polynomial identities hold (in a polyno-
mial ring R[\, t|[z.: e € E| over an arbitrary ring R, for ezample R =7Z):

> NOD Xy 1) u(FY) _X([f’_gl;i) AXp+1) = (Xe+8)]  (5)
and
S N@Or@ (Xg 4t (- = w MXp+1) = (Xg+1)]. (6)

Independent proofs of formula (2) of Theorem 2.1 and of formula (5) of Theorem 2.2
are given in the next section.

As in the case of Theorem 2.1, the two identities (5) and (6) are equivalent. This time,
the left hand sides are equal via the application of

pEY)= ¥ ()N

The identities in Theorem 2.2 lend themselves to a variety of specializations of the
ze's, A, F' and G, which produce particular identities. For example, by setting A = 2,
F=0<G and t = X in (5) we obtain the identity

Z 2T(Y’G)(XY + Xg),u(ﬁ, Y) =0.
o<y<a

When we put A = (X¢g + t)/t in (5) we obtain

x([F, G]; att)
Xa

S I Xg + )Y (Xy + 1) p(FY) = 9

Y:F<Y<G

Xp(Xg +1).

Since the characteristic polynomial (for any nontrivial finite graded poset) has A = 1 as a
root, A — 1 is a factor of x([F,G]; A) if F < G. Hence, the right hand side is divisible by
Xr (as well as by X + ¢, but this is obvious since every term on the left has a factor of
X¢g +1t). In particular, when F = 0 < G, the factor of Xp = 0 annihilates the right hand
side and we obtain

> (X + 60D (Xy +Hu(0,Y) = 0.
Y:0<Y<@

Setting all variables x. to 0 when F' < G, we recover two familiar facts:

Z ,U(Fv Y) =0, (7)

YE[F,G)

the recursion of the Mobius function, and ¥ pc4cq(—1)14 = 0.
Setting x. = 1 for all e € F and t = —1, we recover Theorem 2.1 from Theorem 2.2.



Setting 2z, = 1 foralle, t = 1, A = |E|+ 1, F = 0 and G = 1, one obtains from
formula (5) the identity

S (B[ +1) O (Y[ +1) u(0,Y) = o

YelL

There are many other interesting evaluations. Not even the binomial identities that one
gets for the special case L = B, are entirely trivial. Their g-analogues are obtained by
setting L = PG(n, q).

It may also be worthwhile to point out at this point that Theorem 2.2 can be deduced
from Theorem 2.1. Namely, if M is a simple matroid (without loops or parallel elements)
and if w, is a positive integer for each e € F, then we can construct from M a new matroid
M (w), by replacing every element e of M by w, parallel elements. Now Theorem 2.1,
applied to M (w), yields that Theorem 2.2 is valid whenever the variables z, have positive
integer values. However, polynomial identities that hold for positive integers must be
valid in any commutative ring with identity.

We end this section with one specialization of Theorem 2.2. Namely, putting ¢t = 0,
every £, = 1, F = 0 and G = 1 in the identity (6) gives an expression for the characteristic
polynomial x(A; \) which seems new.

Corollary 2.3 For any loop free matroid M on E, the characteristic polynomial x 1s
given by
X)) = BT (=) Y (~LHIA e,

ACE

3 Proofs

In this section we give (independent) proofs of Theorems 2.1 and 2.2.

The first proof, verifying formula (2) of Theorem 2.1, is by induction over the rank.
To simplify things, we first note that it suffices to deal with the case G = F, since in the
general case we can replace M by the restriction M|G. Then we note that every summand
has Xg + ¢ as a factor, so we can divide this out, still retaining a polynomial identity.
Furthermore, it is sufficient to verify the formula for ¢ = 1, since the general case arises
from this by homogenization (that is, by substituting z./t for z., and then multiplying
by tr+1)'

Thus we only need to prove the identity

o Xp+ 1) "I (Xp+1) u®, F) = 0, (8)

FelL

for a matroid M of rank r > 1 without loops on the ground set F, with lattice of flats L.

We may also assume that there are no parallel elements in the matroid: only the sums
of parallel classes appear in the formula, and each of them can be replaced by a single
variable for the corresponding atom of L.

The case r = 1 is trivial to verify.

Now assume r > 2. Let H denote the set of coatoms of L. By L' we denote the
geometric lattice of rank r — 1 obtained by (upper) truncation of L. Correspondingly, let
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1! denote the Mobius function on the lattice L'. Note that L and L' have the same set of
atoms. By comparing the recursion (7) for the Mobius function for the lattice L and the
truncation L', we get that the Mdbius function of the top flat of the truncation is

pO0.E) = p0.E) + > pn(0H). (9)

HeH

A further ingredient we need is Weisner’s formula [7, p. 259] [6, p. 125]: for every atom
e of L one has

p,E) + > w0, H)=0.

H:e¢gH

Summing this identity over all atoms e, weighted by the corresponding variable x., we get

Xp p®,E) + > (Xp—Xg)p® H) = 0. (10)

Now we get

Y Xp+ 1) IO Xp 4+ 1) p(0,F) =

ZFGL(XE+1)’"—’"<F>—1(XF+1) p@,F) + > (14 Xp) pu0,H) + p0,E) =
e —(Xg+1) W(0,E) + HS{ 1+ Xg) pd, H) + p0,E) =
~(Xg+1)(n(0,B)+ Y u(@,H) + Hgl 1+ Xy) p(0,H) + p0,E) =

o —Xg M(gaeg) + (XH—XE)HEE;{M(@,H)) = 0,

where the first equality is just a split according to rank, the second one uses the identity (8)
for L' (which is true by induction, with r(L') = r — 1 > 1), the third one substitutes the
Mébius function of L' given by (9), the fourth equality is a simple rearrangement of terms,
and the last one is the Weisner sum (10). [

We now give a proof of Theorem 2.2, specifically of the identity (5), through an
order-theoretic approach. The proof is a calculation which uses a theorem of Stanley
([1], p- 177): if P is a finite geometric lattice and « is a modular element (that is,
r(aAB)+r(aVp)=r(a)+r(f) for every 3 € P), then

X(PiA) = x([0,a5;0) - S0 p(0, 2) AT D@
z:z/\a:f)

Since Xy +t = Xp+1t+ Xy — Xp, we may write

> N (Xy + (Y, F)

Y:F<Y<G

= (Xp+Ox(F,GEN) + X > N CIp(Y,F)

Y:F<Y<G acAy\Ar



where, for an atom a € L, 2/, = 3 . with e ranging over the parallel elements whose class
is a. Thus, for U € L we have Xy = 3 ,c 4, T,- Now, the double sum can be rewritten as

>owl X Ny F) - Y NODuy R

w€AG\Ar  Y:F<Y<G Y:YA(FVa)=F

Since the interval [F, G] is itself a geometric lattice and atoms are modular elements, the
last sum can be simplified using Stanley’s theorem. We obtain

X+ OMFGEN + Y af(mapy — 2XUECE
a€Ac\Ar A1
— 7X([§’_G]1; ) (A=) (Xp+1t) — (Xg — XF)]
which completes the proof. [l

4 A bijective proof

Note that the formula (2) has only one negative term. It can be rewritten as

> (Bl =1 (F[ = 1) [u@ F)] = (B]-1)". (11)

F:r(F)>0

In this form the identity has nonnegative integer terms on both sides, and asks for a
bijective proof. In this section we present a bijective proof of the identity (11) for the
lattice of flats of a matroid without loops.

First we establish some helpful terminology and notation. If e € E is an element in
the parallel class of the atom a and u € L, we will write, abusing notation in the interest
of simplicity, u V e for uV a = uU {e}. We will write u <v if v covers u, that is, if there
exists some element e € E \ u with u V e = v. Similarly, we write u <wv if either v covers
u or u = v, that is, if there exists some element e € F with uV e = v.

Now replace the Hasse diagram of the geometric lattice L by its Cayley-Hasse diagram,
that is, if u < v in L and e € F is such that v = u Ve, then put a (directed) edge labeled
e from u to v, including loops when v = v and e < u. Thus, paths in the Cayley-Hasse
diagram correspond to labeled saturated multichains in L. Paths starting at 0 correspond
to finite sequences of elements from the ground set of the matroid.

Fix a linear ordering <p of E such that if e; <g e, €}||e; and €}||ex then €] <g €.
Let p be the first (smallest) element with respect to <g. For A C E we write m4 for
the smallest element in A with respect to <z. Thus, p = mpg. A saturated chain is
decreasing if the labels along its coverings (starting from the minimum of the chain) form
a decreasing sequence of elements with respect to the chosen linear ordering <g. A chain
U=2)<T<...<Ty = v is a minimally labeled u-v-chain if the label of each covering
T; <x;;1 is the least element e such that e V x; = x;,,. Since L is geometric, hence
semimodular, the number of decreasing minimally labeled u-v-chains is equal to |u(u, v)]
(e.g., [3]). It is an easy observation that the top covering of a decreasing minimally labeled




0-v-chain is labeled by m,. Given an element e, a (multi)chain is called e-free if none of
its labels is e.

The left hand side of (11) can be interpreted as the cardinality of the set T of triples
(D, e, C), where D is a decreasing minimally labeled 0-F-chain, e € F \ {mp}, and C' is
a p-free saturated multichain of length r — r(F) starting at F'.

The right hand side of (11) has a completely transparent interpretation: it is the
cardinality of the set M of p-free saturated multichains 0 = yo <y; <...<y, in the
Cayley-Hasse diagram of the geometric lattice. Due to the labeling, the same underly-
ing saturated multichain in the lattice may occur on the right hand side of (11) with
multiplicity.

Observe that M € M cannot be a decreasing minimally labeled chain. Otherwise,
since its length is r, we would have y, = 1 forcing the top covering to be labeled p, and
contradicting the p-freeness of M. Let ey, es,...,e. be the labels along M and let n,
n > 0, be the largest index for which 0 = yo<y; <...<y, is a decreasing minimally
labeled chain. There are three possible reasons why vy, <y, .1 fails to extend this chain to
a longer decreasing minimally labeled chain: either (i) y, <yn41 and epq1 # my, ., <g €y,
or (ii) yn <Ynt1 and my, ., > €y, or (iil) yn = Yni1.

We now describe a bijection ¢: T — M. Consider (D,e,C) € T. Let D be 0 =
Tog<T1<...<Tp<Tpy = F and f; be the label of the covering z; | <x; for each i =
1,2,...,n+1. We have n > 0 since F > 0, and f,.1 = mp.

If e is independent of x, (equivalently, e¢x,), then we set ¢((D,e,C)) = M, where
M is the saturated multichain (starting at 0) obtained from the sequence of labels
fi, fay ..., fn, e concatenated with the sequence of labels on C'. It is obvious that M € M.
Moreover, M falls under case (i): its longest initial subchain with decreasing minimal la-
bels could be extended by modifying the label on the (n + 1)st covering.

Figure 1. The bijection ¢, first restriction.

Suppose now that e is dependent on x,, and that p is not in F' = x,, ;. Let k be the
smallest index such that e is dependent on . Since the matroid does not contain loops,
we have n > k > 0. Let

__{m FO<i<hk—1,
vi U=tV fre1 V...V fip itk <i<n.

We put ¢((D,e,C)) = M where M is the multichain (starting at 0) determined by the
sequence of labels fi, fo, ..., fx_1, fka1s-- - fu, fni1, €, followed by the labels along C.
Obviously, M € M, and we claim that M falls in case (ii). To justify the claim we need
to verify three conditions. First, 0 = yo <y; <...<y, must be a decreasing minimally
labeled chain (it is obviously decreasing, and the fact that it is minimally labeled follows
from the following lemma.



Lemma 4.1 Let x denote a decreasing minimally labeled chain in a geometric lattice,
0=xp<m1<...<Tp <Tpy1, and f;, for 1 < i < n+1, be the element which labels the
covering x; 1 <x;. Choose k € {1,2,...,n+ 1} and let

_{x f0<i<k—1,
vi Y-tV fre1 V.oV fipn ifk<i<n.

Then the chain 0 = yo <y, <...<y, is minimally labeled by the sequence fi, fa,. ..,

Tr—1s frog1s- ooy fngr-

Proof. If kK = n+1 then the conclusion follows trivially. Assume & < n and suppose that
there exists j such that 0 = yo <y, <... <yj_1 is a decreasing minimally labeled chain,
but 0 = yo <y <...<yj_1 <y; is not. Necessarily, ¥ < 7 < n + 1. Let j be smallest
with this property. Then there must exist & € E such that y;_; Vo = y;_1 V fj41 and
a <g fjy1. This implies fi Vy;—1 Va = fi Vy;—1 V fj+1, and hence « is dependent on
JeVyj1V fiz1 = xjq1. If Lis the smallest index such that o € 2y, then { < j 41 and so
fi+1 <g fi as labels on the original chain z. Since, in turn, o <g fj;1 we get o <g fi.

But this contradicts the fact that f; is the minimal label of the covering x; | < ;. O
Second, e must be independent of fi, fo, ..., fk—1, fkt1s- - fn, fns1 (this is immediate
from an elementary exchange argument, since fi, fa, ..., fu, fni1 are independent). Third,

we must have my, ve > fni1 (this is obvious since y, V e = x4 = F).

Figure 2. The bijection ¢, second restriction.

Finally, if e is dependent on z,, and pisin F' = z,,1, then f,,; = p. Put ¢((D,e,C)) =
M where M is the multichain determined by the sequence of labels fi, fa, ..., fu, e followed
by the labels along C. Clearly, M falls under case (iii).

Figure 3. The bijection ¢, third restriction.

It is clear that ¢ is surjective. We omit the proof of its invertibility. Using arguments
similar to those used in the construction of ¢, one can show that each of the three
restrictions of ¢ is invertible. a



5 The Tutte polynomial

Now recall [7] [2] that for a matroid M on ground set E the Tutte polynomial T(M;x,y)

is defined by
TOLa,y) = % (o= 170 (= A,

ACE

In the setting of Tutte polynomials,
T(M|F;1,0) = (=1)"®) u(, F)

for any flat F' € L, where M|F denotes the restriction of the matroid M to the flat F.
The identity (3) is equivalent to the formula:

T(M:|Bl,0) = > [A] (JB] 1)@ (=~ A=, (12)

ACE

It turns out that this is just a special case of the following much more general identity.
Theorem 5.1 If M is a loop free matroid on E, then

Bl T(M;z,y) = Y {2[A] + y(1—2)[A\A[} (@ — 1) (y — 1)1,
ACE
Theorem 5.1 implies Theorem 2.1, since the substitution z = |E|, y = 0 yields (3).
Proof. Let M be a loop free matroid of rank » > 1 on E. For each A C E, we define the
polynomial ¢(A) by
t(A) = (z— 1)T(E)—T(A) (y — 1)\A|—T(A).

It would be more precise and complete to denote these polynomials by t(A; M;z,y).
However, for simplicity we will drop the (M;x,y) from the notation, not only here, but
also in the polynomials T%, T etc. that will appear below. Nevertheless it is useful to
keep in mind that all these quantities are 2-variable polynomials.

With this notation, we will now prove Theorem 5.1, by verifying the formula

\E| T(M;z,y) + y(l—z) > |AtA) = (z+y—=ay) > [A] t(A). (13)

ACE ACE
Define f : 2¥ x E — {0,1}? such that f(4,e) = (a,b), where

a=1 if and only if e € A, and
b=0 if and only if r(AA{e}) =r(A).

For (a,b) € {0,1}?, e € E, and A C E, let

E” = {(Ae): f(Ae) = (a,b)}
B = {A:f(4e) = (a,0)}
EY = {e:f(Ae)=(a,b)}.

10



Clearly, for any A C E, the sets EQ, E9!, EI?, EY partition E. We note

A = EYUFEY, and

A = AUEY.
Now, for (a,b) € {0,1}? and e € E, let
T = Y t4) and T = Y T® (14)
AeEab e€E

Then we have

T = > A = 3 B[ H(A). (15)

ecE (A,e)eBad ACE
For ACFande€ E, withe ¢ A, if r(AUe) = r(A), then

t(AUe) = (y— 1) t(A).
If r(AUe) =r(A) + 1, then
(x —1) t(AUe) =t(A).

(Similarly we can compare r(A) and r(A\e) when e € A.)
Summing over the appropriate sets A gives

oA = I 6
= (-1 I
For a € {0, 1}, let
T =T + 7 (17)
and let
Ta* — Z Tg*'
eclE
Then
T = 3 (X)) = X AL
c€E  ACE ACE
ecA
and similarly
TO* — |E|T— Tl*,
so that
™ +T* = |E|T. (18)
Also, for any e € E
T =T +TH. (19)

Using (16), (17) and (19) it is now possible to express each T% as a linear combination
of T2* and T'*. This leads to the following identities, with ¢ := (x — 1)(y — 1):

1—q) )" = T) = (y—1) 1.7,
1—q)T)° = —qT) +(y—1) T,
(1-1¢q) TSO = —(xz—-1) Tel*—{—Tf*.

11



Summing over e € E and using (19) and (18) gives

(1-qT" = —(y-DIEIT+yT"
1-q)T° = (y-VIET—2(y-1)T" (20)
(1—q)T" = |E|T—aT™.
But |A] is given by B
Al = [EX |+ |EX+ B

By (14) and (15),
ST A tA) = T+ T+ T

ACE
Substituting from (20) this gives the identity
(1—q) Y A t(4) = |E|T + y(1—1x) > |A]t(A),
ACE ACE
which completes the proof of (13), and thus of Theorem 5.1. [l

A weighted version of (13) is obtained as follows. Given a variable z, for each e € F
and for each A C F letting
XA - Z Te,

ecA
then the following identity holds — it contains all the previous ones as special cases.

Theorem 5.2 If M is a loop free matroid on E, then

[ Xp|T(M;2,y) +y(1—2) 3 [Xalt(4) = (z+y —2y) Y [Xalt(4).

ACE ACE

Proof. The proof follows exactly the proof of (13), replacing each term Y_..p f(e) by
> ecr Zef(€) and each |B| by Xp. For example we would now define

T% =" 2,1

eck

Moreover, using (20) we can define any linear combination of T, T T T% ag a linear
combination of T" and T*. O
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O: Tpp1 = F 0 Yntl = Tpp1 = F
Sny1 =mp e
® I ) Yn = Tn
fn In
T Tp—1 Yn—1 — Tp-1

lIQ lyzzl“z

2 f
® i ® Yy =1
N1 h
05130:0 .yozxozﬁ
(D,e,C), e & xy s M, case (i)

Figure 1. The bijection ¢, first restriction.



Q Tpy1 = F . Ynt1 = Tpg1 = F
fos1=mp #p 6
@ Ty -.--yn:yk—lvfk+1v~~~vfnvfn+l
fn fnt1
T Tp—1 Yn—1 = Y1V k1 V...V [
l ZTk+1 Ykt1 = Yk1 V frr1 V Jes2
Jrev1 Tr+2
@ Tk Yk = Ye1 V i1
fr Jer1
® i1 Ye—1 = Tk
Je—1

Tp—2 Yp—2 = Tk—2

) l Yo = X9
f2 f2
® I ® Y11=
fi fi
® 1=0 Cyo:%:o
(D,e,C), e €z, pg F 2y M, case (ii)

Figure 2. The bijection ¢, second restriction.



® Tni1 = F
o1 =mp =p
e
® Iy - Yn = Tp
Jn fn
T Tn—1 Yn—1 = Tpn-1

lIQ lyzzl“z

2 2
® I Q@ V=1
N fi
® =0 ® yo=1=0
(D,e,C),ecap,pe F 2y M, case (iii)

Figure 3. The bijection ¢, third restriction.



