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Abstract

Associated with every projection 7 : P — 7w(P) of a polytope P one
has a partially ordered set of all “locally coherent strings”: the families
of proper faces of P that project to valid subdivisions of 7(P), partially
ordered by the natural inclusion relation.

The “Generalized Baues Conjecture” posed by Billera, Kapranov &
Sturmfels [4] asked whether this partially ordered set always has the ho-
motopy type of a sphere of dimension dim(F) — dim(7(P)) — 1. We show
that this is true in the cases when dim(w(P)) = 1 (see [4]) and when
dim(P) — dim(7(P)) < 2, but fails otherwise.

For an explicit counterexample we produce a non-degenerate projection
of a b-dimensional, simplicial, 2-neighborly polytope P with 10 vertices and
42 facets to a hexagon 7 (P) C IR?. The construction of the counterexample
is motivated by a geometric analysis of the relation between the fibers in
an arbitrary projection of polytopes.
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Forschungsgemeinschaft (DFG), grant We 1265/2-1
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1 Introduction

In this paper we study the poset w(P, ) of all “locally coherent strings” (defined
below) associated with a projection of a convex polytope. In particular, we prove
a new special case of the Generalized Baues Conjecture about the homotopy
type of this poset, and disprove the Conjecture by explicit counterexamples in
the general case.

The investigation of the posets w(P, ) is motivated by problems that are
concerned with the global (topological) structure of a restricted set of subdivisions
of a fixed compact space. Such problems appear in very different frameworks,
among them

e model theory of loop spaces (see Adams [1] and Baues [2]),
e spaces of triangulations of manifolds (see Nabutovsky [14] for recent work),

e triangulations of point configurations and local transformations (see Edels-

brunner & Shah [9] and Joe [10, 11]),
e extension spaces of oriented matroids (see Sturmfels & Ziegler [16]), and

e finite models of the finite-dimensional Grassmannians (see MacPherson [12]

and Mnév & Ziegler [13]).

The Generalized Baues Conjecture, whose precise setting we now introduce, di-
rectly applies to several of the situations we have just listed, and provides a
prototypical model for the others.

Let 7 : P — w(P) be a projection of polytopes. Here we assume that P is a
d-polytope in IR%, 7(P) is a d-polytope in IRd/, and 7 : IR? = IR” is an affine map.
If 7 maps more than one vertex of P to a single point in 7(P) we call 7w degenerate,
while 7 1s weakly non-degenerate otherwise. If each affine dependence between
projections of vertices m(vy), m(vs),...,m(vg) is induced by an affine dependence
between the vertices vy,...,v; in P, then we call m (strongly) non-degenerate.
The main objects of study in this paper are the following.

Definition 1.1 A locally m-coherent string — or a locally coherent string for
short — is a collection F of nontrivial faces of P (that is, faces different from P
and from @), such that

o {7(F) | Fe€F}isa polytopal subdivision of m(P) without repetitions,
that is, the sets 7(F') are distinct polytopes which form a polytopal complex
with union 7(P), and

o n(F)C n(F') implies F = F'Nx~Y(x(F)), for F,F' € F.



The finite set of all locally m-coherent strings is partially ordered by
F<F = |UUFclUF.

The resulting partially ordered set (poset) of locally m-coherent strings is denoted
by w(P, 7). A string F € w(P, ) is called

o tight if dim(7(F')) = dim(F') for all F' € F,

o globally w-coherent — or coherent for short — if there exists a v» € (IR?)*\ {0}
such that m can be factorized into

o P TR (n(2),(2)) |2 € P} 5 m(P),

such that (m,¢)(F) is locally pri-coherent. The subposet of all coherent
strings is denoted by weon( P, m) C w(P, ). O

Definition 1.1 is equivalent to the definition of the set of all m-induced sub-
divisions of m(P), denoted “S(P,n(P)),” in the paper of Billera, Kapranov &
Sturmfels [4]. Since in general there may be many different locally w-coherent
strings that determine the same polytopal subdivision of w(P), we emphasize by
our notation that one is dealing with objects in P rather than with subdivisions
of m(P).

Billera & Sturmfels [5] [17, Thm. 9.6] showed that the subposet weon(P, )
is isomorphic to the poset of proper faces of the fiber polytope L(P,m) of the
projection 7, a convex polytope of dimension d — d’. Thus the order complex
(simplicial complex of chains, see Bjorner [7]) of weon( P, 7) is homeomorphic to a
sphere of dimension d —d’' — 1. In general, the poset w(P, 1) is strictly larger than
Weoh( P, ), and not homeomorphic to a sphere. (See e.g. [17, p. 297].) However,
in 1980 Baues conjectured in his work on a model theorem for loop spaces [2]
(in somewhat different language) that for d' = 1 the poset w(P, 7) of all locally
coherent strings is homotopy equivalent to the sphere S%2. In 1991, Billera,
Kapranov & Sturmfels extended this to the following conjecture.

Conjecture 1.2 (“Generalized Baues Conjecture”) [4] [15, Sect. 5]
For every projection w : P — w(P) of a d-polytope P C IR to a d'-polytope
m(P) C IR, the poset w(P,m) of all locally m-coherent strings is homotopy equiv-
alent to the (d —d' — 1)-sphere.

Fven stronger, weon(P,m) is a retract of w(P,m): the inclusion map

Weoh( Py ) — w( P, )

is a homotopy equivalence.



Even for projections of reasonably small and simple polytopes, the poset of
all locally coherent strings can be large and complicated. Up to now the main
positive result, motivating the Generalized Baues Conjecture, was the following
theorem, which settled the original conjecture by Baues [2].

Theorem 1.3 (Billera, Kapranov & Sturmfels [4])
The Generalized Baues Conjecture holds for d' < 1.

Actually, in [4] this is formulated only for the case where the projection is
non-degenerate. However, the proof can be extended to the general case without
greater difficulty. We refer to Bjorner [6], Billera & Sturmfels [5], Sturmfels [15],
Sturmfels & Ziegler [16], and Mnév & Ziegler [13] for related discussions and

other partial results. Our main positive result is the following special case.

Theorem 1.4
The Generalized Baues Conjecture holds for d — d" < 2.

After preliminary work on the structure of locally coherent strings (including
a characterization theorem in terms of functions on the chamber complex of the
projection) in Section 2, we will prove Theorem 1.4 in Section 3.

Theorem 1.5
The Generalized Baues Conjecture is false in general for d > 2 and d — d' > 3.

In Section 4 we present a construction method for polytope projections that
have isolated elements in their posets of all locally coherent strings, thus prov-
ing Theorem 1.5. In order to provide more geometric/combinatorial intuition for
“what goes wrong here,” we present explicit coordinates for two counterexam-
ples in Section 5, together with simple, independent proofs that these polytope
projections violate the Generalized Baues Conjecture. These proofs depend on
“hands-on” knowledge of the face lattices of the polytopes, as can be obtained
from Fourier-Motzkin elimination (or any similar convex hull algorithm).

The first example is one special instance of the construction method of Sec-
tion 4. Tt is an extremely degenerate projection 79 : Pdee —y 7(pPdes) = Qdeg,
where P98 is a 5-polytope with 10 vertices and 36 facets and Q9 is a triangle.
Fach vertex of P9°8 is projected by w9 either to a vertex or to the center of the
triangle Q9°¢. In this case w( P4 79%) has an isolated element.

The second example — obtained by perturbation of the vertices of the first
— is a strongly non-degenerate projection m : P — w(P) =: @), where P is
a 2-neighborly, simplicial 5-polytope with 10 vertices and 42(!) facets, and @
is a hexagon. Here w(P, ) is disconnected: the locally coherent strings of one
connected component all have three special 2-faces of P in common.

By Theorems 1.3 and 1.4 these counterexamples have both minimal dimension
and codimension. They easily imply that the Generalized Baues Conjecture also
fails in any higher dimension and codimension.
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2 Functions on the chamber complex

In this section we point out two crucial facts. The first one describes a basic
property of the chamber complex of a polytope projection, the second one is
a “local coherence condition” in terms of the normal fans of the fibers of the
projection.

Given any linear or affine function ¥ on a space that contains the polytope P,
we use P¥ to denote the set of all points in P on which 1 is maximal. This set
P¥is a face of P, and all nonempty faces of P have this form (¢» = 0 corresponds
to P itself). We use L(P) to denote the face lattice of P: the set of all faces of
P C IR?, partially ordered by inclusion. This includes the trivial faces () and P.

For a polytope projection 7w : P — m(P) =: ) as above, the chamber complex T’
is the set of intersections of all images of faces of P that contain a given point
in (), that is,

[ = {olg) lqe@ },

where
olq):=({n(F) |gen(F),FeLP)}

is the chamber of ¢ € ). (It can be shown that I' is a polytopal complex subdi-
viding (). The chamber complex I' is the common refinement of all w-coherent
subdivisions of @), and therefore shellable.)

There is no loss of generality if we assume from now on that the projection
map 7 : IR? — IR? is the restriction to the last @’ coordinates. For any g € () the
fiber of ¢ is the polytope

P, :z{xEle_d/ | (z,q) € P }

Thus we consider the fibers as full-dimensional polytopes P, in the (fixed) vector
space IR™=%. Whenever we need to interpret a fiber as a subset of IR? we write
i,(P,), where i (z) := (z,q) € R%. The (surjective) map iy (IR — (le_d/)* is
as usual defined by i} (a)(2) := a(i,(2)) = a(z, q).

The nonempty faces of the fibers P, can be represented in the form qu, where

Y 1s a linear functional ¢ € (IRd_d/)*. Now if P;/” is any nonempty face of a

fiber P,, then we use [¢)] to denote the (closed, polyhedral) cone in (le_d/)* of
all linear functions that are maximal on the face P;/” of P,. This set [¢] is the
normal cone of the face P;/’. If ¢’ is another point that lies in the relative interior
of the same chamber of the chamber complex as p, then the normal cones of the
face P;/” of P, and P;/f of P, coincide (That is, the fibers P, and P, are normally
equivalent, see e. g. Billera & Sturmfels [5].) Thus we can use the notation [¢],
for the normal cone of the face that ¢ defines in the fiber, called the normal cone
over o induced by 1. Moreover, let N(o) denote the fan consisting of all normal
cones over o, the normal fan over o (that is, the normal fan of the fiber over a
point in the relative interior of o).
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Figure 1: The face F} , induced by ¢ € (IRd_d/)*.

For each face P;/” of a fiber P, there is a unique minimal face of P that contains
P;/” (the intersection of all faces that contain qu) We use I, to denote this face

of P corresponding to the face P;/” of P,. For its normal cone in (IR?)* we use the
notation Cp(F, ). Figure 1 depicts the situation for d = 2 and d' = 1.
The following Lemma collects the elementary basic facts.

Lemma 2.1 (Basic facts) The faces of the polytope P, of the fibers P,, and the
chambers o € ', are related as follows.

(i) The chamber of ¢ € Q is given by

U(Q) = ﬂ W(Fqﬂb)-
i € (IR~

(i) For all ¢ € Q and ¢,« € (IR¥=")*

P(;p < P(;p qu"p < Fqﬂb'

(iii) For all q,¢' € Q and ¢ € (le_d/)*

q €relintn(F,,) = Fuyu=F,,,

¢ €0n(Fyy) = FyyCFuy,

m(Fypy) Cm(byy) = Fpu C Fy,
(Fqllbm N Fop) = T(Fgp) 0 N (Eyy )
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Figure 2: The normal fan relation.

(iv) Let ¢ € 0(q),q€ Q, v € PV 2’ € que and o € Cp(F, ). Then

(v) The normal cone Cp(F,y) of F,, in (R?)* is mapped by iy onto the normal
cone of P;/” in (IRd_d/)*.
(vi) For each face F' of P there exist ¢ € QQ and i) € (|Rd_d/)* such that
F=F,.
As a corollary of (iii) we get that if ¢ is fixed, then the face F,, does not

change if ¢ moves in the relative interior of the chamber o(g). Hence with each
chamber o and each functional ¢ we can associate a well-defined face of P, via

Foy:=F,y, ¢ € relint(o).

The following “normal fan relation” of the chamber was used in the special
case d = 1 by Billera, Kapranov & Sturmfels [4] in their proof of the Baues
Conjecture. Here we state its general validity.

Lemma 2.2 If 7 is a face of o in the chamber complex ', then for each ¢ €
(IRd_d )* the normal cone over T defined by 1 is contained in the corresponding
normal cone over o:

T<oel = [J], C[¢]-
Hence, the normal fan over o is a refinement of the normal fan over 7:

N(o) = N(7).



Proof: Let ¢ = i%(a) be a linear functional on (IRY)* in [¢], with ¢ € relint(o)
and some « in the normal cone Cp(F, ) of F,, in P by Lemma 2.1(v). Then

¢ = iyla) € i (Cp(Foy))

But this is contained in i}, (Cp(F5,y)) for each ¢’ € o (Lemma 2.1(iv)), especially
for ¢ € 7.

We know from Lemma 2.1(iii) that if 7 is a face of o then F. , is a (not neces-
sarily proper) face of F, , for all ¢ € (IRd_d/)*. Hence, again from Lemma 2.1(v)
we derive

i (Cp(Foy)) S ig(Cr(Fry)) = [¢]-
which completes the proof. a

Remark 2.3 In general we cannot expect a strict refinement (see Figure 2), be-
cause the map 1, does not preserve strict inclusions if the projection is degenerate.
But if we restrict ourselves to non-degenerate projections then the cone inclusion
has to be proper for at least one ¢ € (IRd_d/)*, and therefore the fan refinement
s strict. O

The following proposition describes the relations between the fibers over ad-
jacent chambers even metrically.

Proposition 2.4 Let 0 € I' be a chamber with vertices vy, ...,v; and

k
q= Z Ajv;
=1

with \; > 0 and Y8 N = 1.
Then P, is the Minkowski sum of the fibers over the vertices of o, scaled as
in the representation of q in o,

k
P, => MNP,
=1
Proof: Consider the polytope projection

T, P i=717 (o) = 0.

in this very special case the fiber each vertex v; of ¢ is the convex hull of ver-
tices vi1,..., v of P, and these are the only vertices of F,. This yields the
claim after a straightforward computation. O

Corollary 2.5 The normal fan over the relative interior of a chamber o € T is
exactly the common refinement of the normal fans over the faces of o. a



Any locally coherent string can be interpreted as a function which associates
a face of P, to every point ¢ € () in some “locally coherent” way. This selection
must be constant (in the sense that the same face F),, is chosen) in the relative
interior of every chamber. No locally coherent string can contain a whole d’-
dimensional fiber P, for some ¢ € (), because this would imply that P itself is as
well contained in that string. Complete fibers P, of dimension smaller than d’ —
e. g., for ¢ in the boundary of () — can always be expressed by non-zero normal
vectors. (For example, if a fiber consists only of one vertex any non-zero vector
will do the job.) Hence, we will interpret the selection functions as functions
from T' to S~ where b, € S %=1 induces a proper face of a fiber over ¢ and
therefore a proper face of P.

The following criterion (see Billera, Kapranov & Sturmfels [4] for the case
d" = 1) describes the admissible selection functions in terms of normal cones.

Proposition 2.6 A function

[ — Gi-d'-1
9 {

o — Y,

defines a locally m-coherent string of Q) via
F(p)={1toy, |c€l'}
if and only if for all 0,7 € T with 7 < o one has
relint[th,], C relint[t),],.

Furthermore, every locally coherent string arises from a selection function ¢ in
this way. Two functions ¥ and ¥ define the same string, F(1) = F(1'), if and
only if [Vs]s = [¥]], holds for all o € 1. 0

The proof is a careful check of definitions, where Lemma 2.1 yields the nec-
essary details.

Definition 2.7 A function ¥ as in Proposition 2.6 is called locally coherent. Two
functions v, %’ are equivalent if they define the same locally coherent string. In
this case we write

[] =[]
for their equivalence class. a

Because of Lemma 2.4 the crucial function values are just those over the
chambers of maximal dimension.



Figure 3: The pairwise cone condition. For example, a choice of 1 over oy and 4
over o3 is locally coherent and would imply the choice of 3 over g93. If 2 is chosen
over o then 4 is not a consistent choice over o3. However, in this case 5 or 6 are
“good choices” over o3 — with respect to the pairwise cone condition — which
both determine C' over oys.
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Proposition 2.8 The cone condition in Proposition 2.6 is equivalent to the fol-
lowing “pairwise cone condition:”

W)Ul]glﬁ@ = [¢02]01002

for all d'-dimensional chambers oy,09 € T' such that oy Nay # 0. Any function
that respects the pairwise cone condition for the chambers of dimension d' can be
completed to a locally coherent function. a

Figure 3 illustrates Propositions 2.6 and 2.8 for the situation d = 3 and
d=1.

3 Validity in low codimension

In this section we prove Theorem 1.4, by presenting an explicit retraction of the
following models of the order complexes of w(P, ) and we. (P, ), namely

Q={ge (S |[). =[] forallr<oel },

and
Qcoh:{'(,bE(Sl)F | v, =, forallT,o0 €l }

The topology of the order complexes coincides with the topology induced by the
canonical metric on €, Qeon € (SHY, induced from (S')' viewed as a product of
copies of the metric space S*.

Let o € I'. From now on we call two values 11 and 1, in St locally coherent
with respect to o, if

W)l]a = W)Z]U- (1)

A function

P — 5

defines a locally coherent string if and only if all function values of intersecting
chambers are pairwise locally coherent with respect to the intersection of their
preimages. (This is the pairwise cone condition of Proposition 2.8.)

The crucial observation is that in codimension 2 this local coherence property
reduces to a distance property for function values in the universal cover of S!: if
we replace two locally coherent function values by values in the closed interval
they span, then they stay locally coherent. In higher codimension this fails in
general.

Proof: (of Theorem 1.4 in seven steps)
Step 1: From now on we write ¢, for the barycenter of the chamber o € I'. For

a function .
r —- S
v { o o= Y,

11



that defines a locally coherent string let
P:Q— S

be the unique piecewise linear function on the barycentric subdivision sd(I') of I
with R
Y(4:) = s
for all chambers o € I'. Here “piecewise linear” means that whenever ¢ is in
the simplex spanned by the barycenters of the chambers o;, 1 = 1,...,k, with
barycentric coordinates Ay, ..., A > 0and Y25, A; = 1, its function value is given
by R
{b(q) _ Zf:l )‘ﬂé(qgi)

| Zf:l A (g0, )|
This yields a well-defined continuous function: the function v defines a locally
coherent string and thus the function values on pairwise adjacent chambers lie
inside some open hemisphere in S!.
Step 2: For the rest of the proof let oy be a fixed chamber of I', ¢ : ' — S' a
locally coherent function, and g := ¢, its value for og. For A € S! let

o J LzeCllzl=1} » &
A 1 = A

be an isometry that coordinatizes S!. Let
w:[0,1] = Q

be a path in @ that starts at ¢,,. Then

~ o1 = 8§
¢*(w>'{ t o (Pow)(t)

—_

is a path in S! that starts at 1.

Step 3: Let
JR = {zel||z]|=1}
' t — exp(2mit)

be the universal covering of { z € € | ||z]| =1 } and let

_{IR — St
Pt e (@ 0p)(t)

be the universal covering of S' where the parameter A describes different coordi-
nate systems on S!. For a path

u:[0,1] — S*

12



Figure 4: The twist of o

with «(0) =1 let
Ly(u):= Ly, (u,0):[0,1] = IR

its lifting with Ly(u)(0) = 0. We know from the theory of coverings that liftings
of paths that are homotopic relative 9]0, 1] have the same endpoint.

Step 4: We will now lift the “distance” between the considered function values
to IR in order to get maximum and minimum values.

Definition 3.1 We define the twist of ¥ to be the following function:

. Jr - R R
th3t¢.{ o s Ly (@) (w)(1), (2)

where w : [0, 1] — @ is a path from ¢,, to ¢,. O

In other words: coordinatize S' properly, take a path from the barycenter
of oy to the barycenter of o, consider the corresponding path induced by the

13



piecewise linear extension {b of ¢, and take the endpoint of its lifting to IR. This
is well-defined by step 3 because all paths in () are homotopic. From the definition
we get that twi5t¢(ao) = 0. Figure 4 shows the twist of the chamber o.

A locally coherent string is globally coherent if and only if it can be described
by a function v with twi3t¢(F) = {0}. In addition we have py, o twi3t¢ = 1,
which makes it possible to recover the function ¥ from its twist or to define a
new function )’ by simply changing the twist of @ (with twist of o9 unchanged)
and projecting it via py, .
Step 5: The following lemma shows that local coherence in this special case is
preserved under “pushing together” lifted function values — this is the crucial
point that cannot be generalized to higher codimension. The proof is just checking
definitions by using suitable paths for computing twists.

Lemma 3.2 Let 1p,, and p,, be locally coherent with respect to oy N oy and let,
without loss of generality, twi5t¢(01) < twi3t¢(02). Then for each X € S* each

pair of values 1,1y contained in the arc
pA([twistlb(al),twi3t¢(02)]) c st
is locally coherent with respect to o1 N oy as well. O

If a twist is extremal, then there is only one direction in IR with other twist
values. That means we can “retwist” all chambers that yield this extremal value
until their twist meets the next occuring different twist. So at the next step we
will introduce a “twist cutoff” homotopy.

Step 6: Let M (1) be the maximum of all absolute values of ¢-twists taken over
all chambers o € I'. Define

fwist . I'x[0,1] — IR
wistyy (0, >-{ (01) > max{min{rwisty(o), (M (%)}, ~(M(8)}.

Step 7: Now we are in position to define the final “retwist”-homotopy. Let

[ I'x[0,1] — S
%-{ (0.8) '+ puy(twisty(o.1)).

Then v,(0) = ¢, and Yy(o) = b for all o € T'. Hence, ¥; = ¢ € Q and
Py € Qeon. This yields the desired retraction

1
H:{Qx[o,i] — S

with
H(Q, 1) == ldQ and H(Q, 0) == Qcoh-



This retraction is continuous in ¢ by definition. It is continuous in ¥ because it
contracts distances between functions according to the maximum metric. O

This proof and the proof of Billera, Kapranov & Sturmfels [4] suggest a duality
between the geometric situations in the case dim(Q)) = 1 and the case dim(P) —
dim(Q) = 2, as one would expect from an oriented matroid perspective (see also
Billera, Gel’fand & Sturmfels [3]): in the case of dimension 1 the polytope @ is
linearly ordered and therefore has a “maximum chamber” with local coherence
condition only in one direction. The retraction can start at this chamber moving
its function value to that of the next adjacent chamber, no matter what the
dimension of the image sphere is. In the case of codimension 2 the chambers can
yield a very complicated structure of local coherence conditions between their
function values, but in this case the lifting of the image of this structure can be
retracted in IR easily starting from its boundary, i. e., from the extremal values.

Analysis of the key points in the proof of Theorem 1.4 also led us to the crucial
structures for the counterexamples in Sections 4 and 5.

4 How to construct a counterexample

In this section we introduce the main idea for the construction of a counterex-
ample in dimension dim(@)) = 2 and codimension dim(P) — dim(Q) = 3. We
start with a configuration of three two-dimensional chambers o4, o9, 03 that form
a subdivision I' of ) (see Figure 5(a)). The corresponding edges in the boundary
of ) are 7y, 73, and 3. We denote o; N o; by o;;, and thus the inner vertex
o1 N oy N o3 by 0123. Analogously, we set 7, N 7; =: 7;.

We want to construct functions 4 : I' — S? that satisfy the “local coherence
condition” (Proposition 2.6) with respect to the fiber structure of some polytope
projection. First we assign to each o; a fixed value 1,, in S? such that the cone
spanned by the ¢,, in (IR?)* is full-dimensional. Since 1 ought to be locally
coherent this leads to several restrictions on the possible structures of the normal
fans over the chambers.

There is a consistent choice for v,,, only if ¢¥,, and ,, lie in the same open
cone of the normal fan over relint(oyz2). In general, this open cone (which describes
the correct selections for ,,,) does not contain t,,. These cones are the crucial
ones because for local coherence at the inner vertex o3, we just have to choose
a vector in the open cone of the normal fan over 23 that contains the rest
of the configuration, which is always possible (see Lemma 2.2). The generic
topological picture of the situation in the sphere S? is as in Figure 5(b), which is
a superposition of cones from the normal fans over o;; and 3.

If the vectors 1, are in general position with respect to some fiber structure,
then the locally m-coherent string Fy they determine in a polytope projection
that induces this fiber structure is tight. In the following we describe what “has

15



1]0'123

C7'1]0'12

C7'1]0'13

01 03

[77Z)02]U23

(@ (b)

Figure 5: A really simple chamber complex (a) and a sketch for a possible “locally
coherent” choice of function values on this complex (b).

to go wrong” to get a fiber structure in which this tight string is not dominated
by a non-tight one F > Fy. (In this case the tight string is stuck).

To get from Fy to F, we have to move at least one of the vectors ¢, to more
special position, that is, to to the boundary of the normal cone it lies in. One
can now see that for every movement of a function value of a maximal chamber
— say ¢, — to a face of the normal cone associated with an edge, say t,,,,
requires a movement of the other normal vector — here ¢,, — contained in that
cone to the same face in order to stay locally coherent.

The idea is now to produce a configuration of normal cones of the fibers such
that for each cone corresponding to the starting values of the function ¥ no face
is reachable by both the function values of the maximal chambers in a way such
that the intermediate functions stay locally coherent.

Consider the “basket ball” with three segments in Figure 6(a): the normal
fan of a triangle in IR®. We take three perturbed copies of this configuration such
that the superposition locally looks as in Figure 6(b). The function values chosen
as in the picture are pairwise locally coherent because 1,, and 1,, lie in the same
cone [¥,,]sy, Over oqz, and so on. There is no possibility to push the function
values to more special position without violating the pairwise cone condition.

Try, for example, to move ¥,, to a face of [¢,,],,, before you reach a face
of [¥s,]61s, as drawn in the picture. Then ¢,, has to move to the same face —
but then it has to pass over a face of [¢,,],,, in the meantime, so ¢,, has to
pass over that same face. But then 1,, should have passed a face of [¢,,]
before having reached any face of [¢,,]

713

o1,: @ contradiction. In the same manner
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Figure 6: The “basket ball obstruction.”

all possibilities of moving function values over the 2-chambers fail. Hence this
provides an obstruction for homotopies on the starting function ¥ which we call
the “basket ball obstruction.”

The configuration of Figure 6 is realized by the following innocent-looking
construction which is illustrated in Figure 7.

o Let 7 : IR = IR? be the projection to the last two coordinates.

o Put three triangles into IR® in the following way: each triangle projects
down to one vertex of the triangle (), such that the superposition of their
normal fans in IR? (basket balls!) locally looks like the configuration inside
[t)1]510, in Figure 6(b) — the local basket ball obstruction.

o Let Pdee be their convex hull in IR®. At this point the normal fan over oy23
is the common refinement of the three basket balls (Corollary 2.5).

e Position a single vertex into IR® such that it projects to the O-cell oq,3 in
the center of I'. The resulting fiber over oy33 will just be the convex hull
of the old fiber over oy33 and the new vertex. Choose the new vertex v in
such a way that its normal cone in the fiber realizes the cone [¢4],,,, of
Figure 6(b). (From the primal point of view we put the vertex “beyond”
those faces of the fiber that have normal cones in the local basket ball
obstruction. Hence, in the new normal fan over oq,35 the local basket ball

17



@ (b) © o

Figure 7: A part of the normal fan over the vertex 72 of @) (a), over o3 (b),
over the corresponding edge 012 (¢), and over the adjacent 2-dimensional cham-
ber oy (d). If ¢,, is chosen in the interior of the shaded cone, and if ¢,, and
Y., are chosen analogously with respect to the rotational symmetry we get the
basket ball obstruction of Figure 6.

obstruction is replaced by the normal cone of the new vertex.) The resulting

polytope P4 = conv(Pd& v) has 10 vertices.

e Because of Proposition 2.2 the normal fans over the edges o;; of I' are the
common refinement of the normal fan over o935 and the normal fan over
the corresponding vertex of (). Over a vertex of () there is one basket ball
and over o953 there is a fan that contains a cone that “locks” the basket
ball obstruction into one cone.

e Define the function values on o; as in Figure 6(b) and the function values
on ;; somewhere inside the corresponding cones [V5.]5,, = [t0,]o,,-

e Complete this function on the boundary of ¢ (Proposition 2.8). This yields
a tight locally coherent string that is not dominated by a coarser one, i. e.,
an isolated element in w( P, 7) (see above). O

In Section 5 we will present a version of P9 with explicit coordinates in IR.
Moreover, we will slightly perturb the vertices of P48 to get a simplicial, non-
degenerate counterexample P. For each of them we will provide another, simple
way to see that it violates the Generalized Baues Conjecture.

5 An explicit counterexample

Throughout this section we use homogeneous coordinates in order to get a nice
threefold rotational symmetry for Q9 and () without square roots. We use
projections that delete the first three coordinates. The following list contains as
rows the (homogeneous) coordinates for ten points in IR” in convex position.

18



DIM = 6
CONE_SECTION

¢ 1 1 0 0 1 0 0
( 2) o 3/2 1 1 0 0
( 3) o© 1 3/2 1 0 0
( 4 o 1 0 0 1 0
( B) 1 0 3/2 0 0
( 6) 3/2 0 1 0 1 0
(7 o 0 1 0 0

( 8) 3/2 1 0 0

¢ 9 1 3/2 0 0 0

(10) 2 2 2 1/3 1/3 1/3
END

The first nine rows correspond to the three triangles of the abstract construc-
tion in Section 4, the tenth one represents the additional vertex. The chamber
complex of the projection to the last three coordinates is as in Figure 5(a). The
normal fans of the three triangles in IR® form the basket ball obstruction. The
additional vertex yields the midpoint of the chamber complex and bounds the
obstruction over the edges of the chamber complex. Figure 8 is an attempt to
visualize the construction.

The above listing is in correct input format for the PORTA program by
Christof [8]. This program easily produces a complete list of all 36 facets of P,
and the vertex-facet incidence matrix in Figure 10.

The following tight locally coherent string — where the faces F 8, [5°8, fles
are given by their vertices labelled as in the listing above — will correspond to
the three given function values in Figure 6.

Foe& = {(1,4,10), (4,7,10),(7,1,10)}

where the actual string contains all the nonempty faces of the three triangles that
are listed.

Once we have this, it is very easy to see independently from Section 4 that
this is a counterexample to the Generalized Baues Conjecture. To form a strictly
coarser string we must replace at least one of the faces FO°8, [5°8 il iy Files
by a face Fideg of P4°¢ that contains Fideg. This can be described by adding one
or more vertices to Fideg such that we get a face. From the definition of a locally
coherent string it follows that a new vertex v has to be added (combinatorially)
to all faces of Fi® whose projection contains m(v).

From the vertex-facet incidence matrix we can compute for each face F' in

Fo& all sets V of vertices in P98\ F' such that vert(F)U V are the vertices of
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N(1/3,1/3,1/3)

TN

0,0,1)

0,1,0)

Figure 8: A sketch of 798 : pdes — ()dee: OQver each vertex of ()9°8 one perturbed
basket ball is positioned. Adding the tenth vertex in the middle provides a
bounding cone around the basket ball obstruction. (The grey vertices and the
dotted lines are drawn to indicate the positions of the fans with respect to each
other.) The 5-polytope P9 is the convex hull of the three dark triangles — each
of them in an IR® over one vertex of Q4% — and the additional vertex (10) in the

middle.
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Figure 9: The medium-dark triangles correspond to the isolated locally coherent
string {(1,4,10),(4,7,10),(7,1,10)} that is defined by the function values v,,,

Ys,, and t,, for the chambers oy, 03, and os.
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strong validity table :

\P I I I
\ O I I I
I\NI | I I
N\N |1 6 | # I
ENT | I I
Q\s | I I
S\ | I I Il
\ I I \/
___________________________ |
1 | okkk. ok, Lk 5 | 19 | Lookkk ok, Lk
2 | x kk, Lk 5 | 20 | oxok, ok kk
3 | * SRk 5 | 21 | ®x.% % %,k
4 | *  kkkok 5 | 22 | kk %k, L k%
5 | * L kokokok 5 | 23 | *okk |k
6 | SRk ok okok 5 | 24 | X, ok ok %
7 | .x. %% % 5 | 25 [ e
8 | *%x. . | % % 5 | 26 L
9 | *%x. . *, . % 5 | 27 | Dk okkok ok
10 | .. k% kkkx, 6 | 28 | *.%.% %, %
11 | skk, L kkk, 6 | 29 | ¥, ok, kkok
12 | kxxxx %, 6 | 30 | *%.. Lok
13 | *.xxx %, 5 | 31 | k%%, %
14 | *%x.%x. % %, 5 | 32 | *. . k% xx,
15 | *..%., xxx_ 5 | 33 I
16 | Jkk ok kK 5 | 34 | * ok dokk
17 | *.%.. %% % 5 | 35 I
18 | *%x.%, %, % 5 | 36 (L
I
Il I # | 21121 12112
I

\/

Figure 10: The vertex-facet incidence matrix of Pdce,
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a face in P38, They correspond exactly to the faces in the link of F in P38
denoted by lk(F') := lkpaeg(F'). It turns out that all links are 4-gons, namely

[k(1,4,10) = (2—9—-8—6—2),
[k(4,7,10) = (5—-3—-2-9—5),
[k(7,1,10) = (8—6—5—3—28).

Because of the rotational symmetry it suffices to test the vertices in lk(1,4,10).
For example adding vertex 2 to the face (1,4, 10) requires adding vertex 2 to the
face (7,1,10) because 7(7,1,10) contains 7(2) — but vertex 2 is not contained
in the link of 57, 1,10). Analogous contradictions occur in all other cases. This
proves that Fo® is in fact an isolated element in w(P4°¢ 7). This example cor-
responds exactly to the construction at the end of Section 4. O

The coordinates of P9 can be slightly perturbed in order to make the projec-
tion non-degenerate. We claim that the following listing contains the coordinates
of a simplicial, non-degenerate counterexample P.

DIM = 6
CONE_SECTION

¢ 1 1 0 0 1 0 0
( 2) o 3/2 1 1 -1/11  -1/21
( 3) o© 1 3/2 1 -1/20 -1/10
( 4 o 1 0 0 1 0
( B) 1 0 3/2  -1/21 1 -1/11
( 8) 3/2 0 1 -1/10 1 -1/20
(7 o 0 1 0 0 1
( 8) 3/2 1 0 -1/11 -1/21 1
¢ 9 1 3/2 0 -1/20 -1/10 1
(10) 2 2 2 1/3 1/3 1/3
END

All the vertices of P project to pairwise different points in the plane. We again
inspect the vertex-facet incidence matrix, see Figure 12. Each facet has exactly
five vertices, so P is a simplicial polytope. Consider the chamber complex of the
projection in Figure 11 — an exact computer-generated drawing which also shows
that P is 2-neighborly. The projections of the three faces (1,4,10), (4,7,10), and
(7,1,10) do not cover (). However, for chambers that are not covered we find,
for example, the following tight completion:

Fo = {(1,4,10),(1,2,4),(2,3,4),(3,4,5),
(4,7,10),(4,5,7),(5,6,7),(6,7,8),
(7.1,10),(7,8,9),(8,9,1), (9,1,2)}.

?
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strong validity table :

\ P
\ O
I\I
N\N
ENT
Q\s
S\

© 00 N O U b W N =

= o
= O

NN = = 222
= O W 00 ~N O O WiN

ETTT
T
TR
* .k k
ETT I
xk ok

I
\/

*k, L,

ETT I

x5k ok

Kk

Kk

KK

X T

EITH

X T

EITH

* ¥ ¥ X ¥ .

I I R

o010 o1 oo oo oo oo o o1 oo oo ol oo

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

I
\/

.00k kk
* 0k ok Lk,

I

KKK ok
KKKk,

*

T T
SRk ok Lk
T
TS

xk ok, ., kX

kkk ., o, %k, %k
SRk, L L kekk
%k, .., ., k*kXk

I
I
I
I
I
I
I
I
I
| o*.*,
| N O T
I
I
I
I
I
I
I
I
I
I

Figure 12: The vertex-facet incidence matrix of P.
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This is not an isolated element in w( P, ), because there are local changes pos-
sible on the new faces. For example, the faces (1,2,4) and (2,3, 4) are dominated
by (1,2,3,4), etc. However, a local change of (1,4,7), (4,7,10), or (7,1,10), is
not possible. To see this, we first check that no facet of P contains more than
one of these three faces. Consider again Figure 11. If; without loss of generality,
we take any face F' in P that contains (1,4,10) we observe that some new edge
of F projects into the interior of m(4,7,10) or n(7,1,10). (The link of (1,4,7) is
again (2—9 —8—6 —2), etc.) For example, if we replace (1,4, 10) by (1,2,4, 10)
— a simplex — the projection of the new edge (2, 10) cuts through the interior of
7(7,1,10). But then we have produced overlapping projections, a contradiction
to the fact that every locally coherent string defines a polyhedral subdivision
after projection.

We see that any locally coherent string in the connected component of Fy
must contain the three faces (1,4,10), (4,7,10), and (7,1,10). But obviously
there is the following locally coherent string where the face (1,4, 7) replaces the
three “rigid” faces:

fl = 1 477) (1,2,4), 2 374)7(37475)7

(1,4,7), (2,
4,5,7),(5,6,7),(6,7,8
7.8,9),(8,9,1),(9,1,2

( );
(77 77)

}

Thus we conclude that there are at least two connected components in w(P, ),
in contradiction to the Generalized Baues Conjecture. O

)
)
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