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1 IntroductionIn this paper we study the poset !(P; �) of all \locally coherent strings" (de�nedbelow) associated with a projection of a convex polytope. In particular, we provea new special case of the Generalized Baues Conjecture about the homotopytype of this poset, and disprove the Conjecture by explicit counterexamples inthe general case.The investigation of the posets !(P; �) is motivated by problems that areconcerned with the global (topological) structure of a restricted set of subdivisionsof a �xed compact space. Such problems appear in very di�erent frameworks,among them� model theory of loop spaces (see Adams [1] and Baues [2]),� spaces of triangulations of manifolds (see Nabutovsky [14] for recent work),� triangulations of point con�gurations and local transformations (see Edels-brunner & Shah [9] and Joe [10, 11]),� extension spaces of oriented matroids (see Sturmfels & Ziegler [16]), and� �nite models of the �nite-dimensional Grassmannians (see MacPherson [12]and Mn�ev & Ziegler [13]).The Generalized Baues Conjecture, whose precise setting we now introduce, di-rectly applies to several of the situations we have just listed, and provides aprototypical model for the others.Let � : P ! �(P ) be a projection of polytopes. Here we assume that P is ad-polytope in Rd, �(P ) is a d0-polytope in Rd0 , and � : Rd ! Rd0 is an a�ne map.If � maps more than one vertex of P to a single point in �(P ) we call � degenerate,while � is weakly non-degenerate otherwise. If each a�ne dependence betweenprojections of vertices �(v1); �(v2); : : : ; �(vk) is induced by an a�ne dependencebetween the vertices v1; : : : ; vk in P , then we call � (strongly) non-degenerate.The main objects of study in this paper are the following.De�nition 1.1 A locally �-coherent string | or a locally coherent string forshort | is a collection F of nontrivial faces of P (that is, faces di�erent from Pand from ;), such that� f �(F ) j F 2 F g is a polytopal subdivision of �(P ) without repetitions,that is, the sets �(F ) are distinct polytopes which form a polytopal complexwith union �(P ), and� �(F ) � �(F 0) implies F = F 0 \ ��1(�(F )), for F;F 0 2 F .2



The �nite set of all locally �-coherent strings is partially ordered byF � F 0 :() [F �[F 0:The resulting partially ordered set (poset) of locally �-coherent strings is denotedby !(P; �). A string F 2 !(P; �) is called� tight if dim(�(F )) = dim(F ) for all F 2 F ,� globally �-coherent| or coherent for short | if there exists a  2 (Rd)�nf0gsuch that � can be factorized into� : P (�; )�! f (�(x);  (x)) j x 2 P g pr1�! �(P );such that (�;  )(F) is locally pr1-coherent. The subposet of all coherentstrings is denoted by !coh(P; �) � !(P; �). 2De�nition 1.1 is equivalent to the de�nition of the set of all �-induced sub-divisions of �(P ), denoted \S(P; �(P ))," in the paper of Billera, Kapranov &Sturmfels [4]. Since in general there may be many di�erent locally �-coherentstrings that determine the same polytopal subdivision of �(P ), we emphasize byour notation that one is dealing with objects in P rather than with subdivisionsof �(P ).Billera & Sturmfels [5] [17, Thm. 9.6] showed that the subposet !coh(P; �)is isomorphic to the poset of proper faces of the �ber polytope �(P; �) of theprojection �, a convex polytope of dimension d � d0. Thus the order complex(simplicial complex of chains, see Bj�orner [7]) of !coh(P; �) is homeomorphic to asphere of dimension d�d0�1. In general, the poset !(P; �) is strictly larger than!coh(P; �), and not homeomorphic to a sphere. (See e.g. [17, p. 297].) However,in 1980 Baues conjectured in his work on a model theorem for loop spaces [2](in somewhat di�erent language) that for d0 = 1 the poset !(P; �) of all locallycoherent strings is homotopy equivalent to the sphere Sd�2. In 1991, Billera,Kapranov & Sturmfels extended this to the following conjecture.Conjecture 1.2 (\Generalized Baues Conjecture") [4] [15, Sect. 5]For every projection � : P ! �(P ) of a d-polytope P � Rd to a d0-polytope�(P ) � Rd0, the poset !(P; �) of all locally �-coherent strings is homotopy equiv-alent to the (d � d0 � 1)-sphere.Even stronger, !coh(P; �) is a retract of !(P; �): the inclusion map!coh(P; �) ,! !(P; �)is a homotopy equivalence. 3



Even for projections of reasonably small and simple polytopes, the poset ofall locally coherent strings can be large and complicated. Up to now the mainpositive result, motivating the Generalized Baues Conjecture, was the followingtheorem, which settled the original conjecture by Baues [2].Theorem 1.3 (Billera, Kapranov & Sturmfels [4])The Generalized Baues Conjecture holds for d0 � 1.Actually, in [4] this is formulated only for the case where the projection isnon-degenerate. However, the proof can be extended to the general case withoutgreater di�culty. We refer to Bj�orner [6], Billera & Sturmfels [5], Sturmfels [15],Sturmfels & Ziegler [16], and Mn�ev & Ziegler [13] for related discussions andother partial results. Our main positive result is the following special case.Theorem 1.4The Generalized Baues Conjecture holds for d � d0 � 2.After preliminary work on the structure of locally coherent strings (includinga characterization theorem in terms of functions on the chamber complex of theprojection) in Section 2, we will prove Theorem 1.4 in Section 3.Theorem 1.5The Generalized Baues Conjecture is false in general for d0 � 2 and d � d0 � 3.In Section 4 we present a construction method for polytope projections thathave isolated elements in their posets of all locally coherent strings, thus prov-ing Theorem 1.5. In order to provide more geometric/combinatorial intuition for\what goes wrong here," we present explicit coordinates for two counterexam-ples in Section 5, together with simple, independent proofs that these polytopeprojections violate the Generalized Baues Conjecture. These proofs depend on\hands-on" knowledge of the face lattices of the polytopes, as can be obtainedfrom Fourier-Motzkin elimination (or any similar convex hull algorithm).The �rst example is one special instance of the construction method of Sec-tion 4. It is an extremely degenerate projection �deg : P deg ! �(P deg) =: Qdeg,where P deg is a 5-polytope with 10 vertices and 36 facets and Qdeg is a triangle.Each vertex of P deg is projected by �deg either to a vertex or to the center of thetriangle Qdeg. In this case !(P deg; �deg) has an isolated element.The second example | obtained by perturbation of the vertices of the �rst| is a strongly non-degenerate projection � : P ! �(P ) =: Q, where P isa 2-neighborly, simplicial 5-polytope with 10 vertices and 42(!) facets, and Qis a hexagon. Here !(P; �) is disconnected: the locally coherent strings of oneconnected component all have three special 2-faces of P in common.By Theorems 1.3 and 1.4 these counterexamples have both minimal dimensionand codimension. They easily imply that the Generalized Baues Conjecture alsofails in any higher dimension and codimension.4



2 Functions on the chamber complexIn this section we point out two crucial facts. The �rst one describes a basicproperty of the chamber complex of a polytope projection, the second one isa \local coherence condition" in terms of the normal fans of the �bers of theprojection.Given any linear or a�ne function  on a space that contains the polytope P ,we use P  to denote the set of all points in P on which  is maximal. This setP  is a face of P , and all nonempty faces of P have this form ( = 0 correspondsto P itself). We use L(P ) to denote the face lattice of P : the set of all faces ofP � Rd, partially ordered by inclusion. This includes the trivial faces ; and P .For a polytope projection � : P ! �(P ) =: Q as above, the chamber complex �is the set of intersections of all images of faces of P that contain a given pointin Q, that is, � := f �(q) j q 2 Q g ;where �(q) := \ f �(F ) j q 2 �(F ); F 2 L(P ) gis the chamber of q 2 Q. (It can be shown that � is a polytopal complex subdi-viding Q. The chamber complex � is the common re�nement of all �-coherentsubdivisions of Q, and therefore shellable.)There is no loss of generality if we assume from now on that the projectionmap � : Rd ! Rd0 is the restriction to the last d0 coordinates. For any q 2 Q the�ber of q is the polytopePq := n x 2 Rd�d0 j (x; q) 2 P o :Thus we consider the �bers as full-dimensional polytopes Pq in the (�xed) vectorspace Rd�d0 . Whenever we need to interpret a �ber as a subset of Rd we writeiq(Pq), where iq(x) := (x; q) 2 Rd. The (surjective) map i�q : (Rd)� ! (Rd�d0)� isas usual de�ned by i�q(�)(x) := �(iq(x)) = �(x; q).The nonempty faces of the �bers Pq can be represented in the form P  q , where is a linear functional  2 (Rd�d0)�. Now if P  q is any nonempty face of a�ber Pq, then we use [ ] to denote the (closed, polyhedral) cone in (Rd�d0)� ofall linear functions that are maximal on the face P  q of Pq. This set [ ] is thenormal cone of the face P  q . If q0 is another point that lies in the relative interiorof the same chamber of the chamber complex as p, then the normal cones of theface P  q of Pq and P  q0 of Pq0 coincide (That is, the �bers Pq and Pq0 are normallyequivalent, see e. g. Billera & Sturmfels [5].) Thus we can use the notation [ ]�for the normal cone of the face that  de�nes in the �ber, called the normal coneover � induced by  . Moreover, let N(�) denote the fan consisting of all normalcones over �, the normal fan over � (that is, the normal fan of the �ber over apoint in the relative interior of �). 5



 P  qPqRd�d0
CP (Fq; )Fq; iq(P  q ) iq(Pq)�q

RdPQ Rd0Figure 1: The face Fq; induced by  2 (Rd�d0)�.For each face P  q of a �ber Pq there is a unique minimal face of P that containsP  q (the intersection of all faces that contain P  q ). We use Fq; to denote this faceof P corresponding to the face P  q of Pq. For its normal cone in (Rd)� we use thenotation CP (Fq; ). Figure 1 depicts the situation for d = 2 and d0 = 1.The following Lemma collects the elementary basic facts.Lemma 2.1 (Basic facts) The faces of the polytope P , of the �bers Pq, and thechambers � 2 �, are related as follows.(i) The chamber of q 2 Q is given by�(q) = \ 2 (Rd�d0)� �(Fq; ):(ii) For all q 2 Q and  ; 0 2 (Rd�d0)�P  q < P  0q () Fq; < Fq; 0(iii) For all q; q0 2 Q and  2 (Rd�d0)�q0 2 relint�(Fq; ) =) Fq0; = Fq; ;q0 2 @�(Fq; ) =) Fq0; � Fq; ;�(Fq0; ) � �(Fq; ) () Fq0; � Fq; ;�(Fq1; \ : : : \ Fqk; ) = �(Fq1; ) \ : : : \ �(Fqk; ):6



(a) (b)Figure 2: The normal fan relation.(iv) Let q0 2 �(q); q 2 Q, x 2 P  q ; x0 2 P  q0 and � 2 CP (Fq; ). Theni�q0(�)(x0) = i�q(�)(x):(v) The normal cone CP (Fq; ) of Fq; in (Rd)� is mapped by i�q onto the normalcone of P  q in (Rd�d0)�.(vi) For each face F of P there exist q 2 Q and  2 (Rd�d0)� such thatF = Fq; :As a corollary of (iii) we get that if  is �xed, then the face Fq; does notchange if q moves in the relative interior of the chamber �(q). Hence with eachchamber � and each functional  we can associate a well-de�ned face of P , viaF�; := Fq; ; q 2 relint(�):The following \normal fan relation" of the chamber was used in the specialcase d0 = 1 by Billera, Kapranov & Sturmfels [4] in their proof of the BauesConjecture. Here we state its general validity.Lemma 2.2 If � is a face of � in the chamber complex �, then for each  2(Rd�d0)� the normal cone over � de�ned by  is contained in the correspondingnormal cone over �: � < � 2 � =) [ ]� � [ ]�:Hence, the normal fan over � is a re�nement of the normal fan over � :N(�) � N(� ):7



Proof: Let � = i�q(�) be a linear functional on (Rd)� in [ ]� with q 2 relint(�)and some � in the normal cone CP (F�; ) of F�; in P by Lemma 2.1(v). Then� = i�q(�) 2 i�q(CP (F�; )):But this is contained in i�q0(CP (F�; )) for each q0 2 � (Lemma 2.1(iv)), especiallyfor q0 2 � .We know from Lemma 2.1(iii) that if � is a face of � then F�; is a (not neces-sarily proper) face of F�; for all  2 (Rd�d0)�. Hence, again from Lemma 2.1(v)we derive i�q0(CP (F�; )) � i�q0(CP (F�; )) = [ ]�;which completes the proof. 2Remark 2.3 In general we cannot expect a strict re�nement (see Figure 2), be-cause the map i�q0 does not preserve strict inclusions if the projection is degenerate.But if we restrict ourselves to non-degenerate projections then the cone inclusionhas to be proper for at least one  2 (Rd�d0)�, and therefore the fan re�nementis strict. 2The following proposition describes the relations between the �bers over ad-jacent chambers even metrically.Proposition 2.4 Let � 2 � be a chamber with vertices v1; : : : ; vk andq = kXi=1 �iviwith �i � 0 and Pki=1 �i = 1.Then Pq is the Minkowski sum of the �bers over the vertices of �, scaled asin the representation of q in �, Pq = kXi=1 �iPvi :Proof: Consider the polytope projection�� : P� := ��1(�)! �:in this very special case the �ber each vertex vi of � is the convex hull of ver-tices vi;1; : : : ; vi;l(i) of P� and these are the only vertices of P�. This yields theclaim after a straightforward computation. 2Corollary 2.5 The normal fan over the relative interior of a chamber � 2 � isexactly the common re�nement of the normal fans over the faces of �. 28



Any locally coherent string can be interpreted as a function which associatesa face of Pq to every point q 2 Q in some \locally coherent" way. This selectionmust be constant (in the sense that the same face F�; is chosen) in the relativeinterior of every chamber. No locally coherent string can contain a whole d0-dimensional �ber Pq for some q 2 Q, because this would imply that P itself is aswell contained in that string. Complete �bers Pq of dimension smaller than d0 |e. g., for q in the boundary of Q | can always be expressed by non-zero normalvectors. (For example, if a �ber consists only of one vertex any non-zero vectorwill do the job.) Hence, we will interpret the selection functions as functionsfrom � to Sd�d0�1, where  � 2 Sd�d0�1 induces a proper face of a �ber over � andtherefore a proper face of P .The following criterion (see Billera, Kapranov & Sturmfels [4] for the cased0 = 1) describes the admissible selection functions in terms of normal cones.Proposition 2.6 A function : ( � ! Sd�d0�1� 7!  �de�nes a locally �-coherent string of Q viaF( ) := f F�; � j � 2 � gif and only if for all �; � 2 � with � < � one hasrelint[ �]� � relint[ � ]� :Furthermore, every locally coherent string arises from a selection function  inthis way. Two functions  and  0 de�ne the same string, F( ) = F( 0), if andonly if [ �]� = [ 0�]� holds for all � 2 �. 2The proof is a careful check of de�nitions, where Lemma 2.1 yields the nec-essary details.De�nition 2.7 A function  as in Proposition 2.6 is called locally coherent. Twofunctions  ; 0 are equivalent if they de�ne the same locally coherent string. Inthis case we write [ ] = [ 0]for their equivalence class. 2Because of Lemma 2.4 the crucial function values are just those over thechambers of maximal dimension. 9
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Figure 3: The pairwise cone condition. For example, a choice of 1 over �2 and 4over �3 is locally coherent and would imply the choice of 3 over �23. If 2 is chosenover �2 then 4 is not a consistent choice over �3. However, in this case 5 or 6 are\good choices" over �3 | with respect to the pairwise cone condition | whichboth determine C over �23. 10



Proposition 2.8 The cone condition in Proposition 2.6 is equivalent to the fol-lowing \pairwise cone condition:"[ �1]�1\�2 = [ �2]�1\�2for all d0-dimensional chambers �1; �2 2 � such that �1 \ �2 6= ;. Any functionthat respects the pairwise cone condition for the chambers of dimension d0 can becompleted to a locally coherent function. 2Figure 3 illustrates Propositions 2.6 and 2.8 for the situation d = 3 andd0 = 1.3 Validity in low codimensionIn this section we prove Theorem 1.4, by presenting an explicit retraction of thefollowing models of the order complexes of !(P; �) and !coh(P; �), namely
 = n  2 (S1)� j [ �]� = [ �]� for all � � � 2 � o ;and 
coh = n  2 (S1)� j  � =  � for all �; � 2 � o :The topology of the order complexes coincides with the topology induced by thecanonical metric on 
;
coh � (S1)�, induced from (S1)� viewed as a product ofcopies of the metric space S1.Let � 2 �. From now on we call two values  1 and  2 in S1 locally coherentwith respect to �, if [ 1]� = [ 2]�: (1)A function  : �! S1de�nes a locally coherent string if and only if all function values of intersectingchambers are pairwise locally coherent with respect to the intersection of theirpreimages. (This is the pairwise cone condition of Proposition 2.8.)The crucial observation is that in codimension 2 this local coherence propertyreduces to a distance property for function values in the universal cover of S1: ifwe replace two locally coherent function values by values in the closed intervalthey span, then they stay locally coherent. In higher codimension this fails ingeneral.Proof: (of Theorem 1.4 in seven steps)Step 1: From now on we write q� for the barycenter of the chamber � 2 �. Fora function  : ( � ! S1� 7!  �11



that de�nes a locally coherent string letb : Q! S1be the unique piecewise linear function on the barycentric subdivision sd(�) of �with b (q�) =  �for all chambers � 2 �. Here \piecewise linear" means that whenever q is inthe simplex spanned by the barycenters of the chambers �i, i = 1; : : : ; k, withbarycentric coordinates �1; : : : ; �k � 0 andPki=1 �i = 1, its function value is givenby b (q) = Pki=1 �i b (q�i)jjPki=1 �i b (q�i)jj :This yields a well-de�ned continuous function: the function  de�nes a locallycoherent string and thus the function values on pairwise adjacent chambers lieinside some open hemisphere in S1.Step 2: For the rest of the proof let �0 be a �xed chamber of �,  : � ! S1 alocally coherent function, and  0 :=  �0 its value for �0. For � 2 S1 let�� : ( f z 2 C j jjzjj = 1 g ! S11 7! �be an isometry that coordinatizes S1. Letw : [0; 1]! Qbe a path in Q that starts at q�0. Thenb �(w) : ( [0; 1] ! S1t 7! ( b � w)(t)is a path in S1 that starts at  0.Step 3: Let p : ( R ! f z 2 C j jjzjj = 1 gt 7! exp(2�it)be the universal covering of f z 2 C j jjzjj = 1 g and letp� : ( R ! S1t 7! (�� � p)(t)be the universal covering of S1 where the parameter � describes di�erent coordi-nate systems on S1. For a path u : [0; 1]! S112



�0 q�0 �q�� w 0
 �b �(w) S1 Rp 0 twist (�0)twist (�)L 0( b �)(w)0

1

Figure 4: The twist of �with u(0) = 1 let L�(u) := Lp�(u; 0) : [0; 1]! Rits lifting with L�(u)(0) = 0. We know from the theory of coverings that liftingsof paths that are homotopic relative @[0; 1] have the same endpoint.Step 4: We will now lift the \distance" between the considered function valuesto R in order to get maximum and minimum values.De�nition 3.1 We de�ne the twist of  to be the following function:twist : ( � ! R� 7! L 0( b �)(w)(1); (2)where w : [0; 1]! Q is a path from q�0 to q�. 2In other words: coordinatize S1 properly, take a path from the barycenterof �0 to the barycenter of �, consider the corresponding path induced by the13



piecewise linear extension b of  , and take the endpoint of its lifting to R. Thisis well-de�ned by step 3 because all paths inQ are homotopic. From the de�nitionwe get that twist (�0) = 0. Figure 4 shows the twist of the chamber �.A locally coherent string is globally coherent if and only if it can be describedby a function  with twist (�) = f0g. In addition we have p 0 � twist =  ,which makes it possible to recover the function  from its twist or to de�ne anew function  0 by simply changing the twist of  (with twist of �0 unchanged)and projecting it via p 0 .Step 5: The following lemma shows that local coherence in this special case ispreserved under \pushing together" lifted function values | this is the crucialpoint that cannot be generalized to higher codimension. The proof is just checkingde�nitions by using suitable paths for computing twists.Lemma 3.2 Let  �1 and  �2 be locally coherent with respect to �1 \ �2 and let,without loss of generality, twist (�1) < twist (�2). Then for each � 2 S1 eachpair of values  1;  2 contained in the arcp�([twist (�1); twist (�2)]) � S1is locally coherent with respect to �1 \ �2 as well. 2If a twist is extremal, then there is only one direction in R with other twistvalues. That means we can \retwist" all chambers that yield this extremal valueuntil their twist meets the next occuring di�erent twist. So at the next step wewill introduce a \twist cuto�" homotopy.Step 6: LetM( ) be the maximum of all absolute values of  -twists taken overall chambers � 2 �. De�netwist (�; t) : ( �� [0; 1] ! R(�; t) 7! maxfminftwist (�); tM( )g;�tM( )g:Step 7: Now we are in position to de�ne the �nal \retwist"-homotopy. Let t : ( � � [0; 1] ! S1(�; t) 7! p 0(twist (�; t)):Then  1(�) =  � and  0(�) =  0 for all � 2 �. Hence,  1 =  2 
 and 0 2 
coh. This yields the desired retractionH : ( 
 � [0; 1] ! S1( ; t) 7!  twith H(
; 1) = id
 and H(
; 0) = 
coh:14



This retraction is continuous in t by de�nition. It is continuous in  because itcontracts distances between functions according to the maximum metric. 2This proof and the proof of Billera, Kapranov & Sturmfels [4] suggest a dualitybetween the geometric situations in the case dim(Q) = 1 and the case dim(P )�dim(Q) = 2, as one would expect from an oriented matroid perspective (see alsoBillera, Gel'fand & Sturmfels [3]): in the case of dimension 1 the polytope Q islinearly ordered and therefore has a \maximum chamber" with local coherencecondition only in one direction. The retraction can start at this chamber movingits function value to that of the next adjacent chamber, no matter what thedimension of the image sphere is. In the case of codimension 2 the chambers canyield a very complicated structure of local coherence conditions between theirfunction values, but in this case the lifting of the image of this structure can beretracted in R easily starting from its boundary, i. e., from the extremal values.Analysis of the key points in the proof of Theorem 1.4 also led us to the crucialstructures for the counterexamples in Sections 4 and 5.4 How to construct a counterexampleIn this section we introduce the main idea for the construction of a counterex-ample in dimension dim(Q) = 2 and codimension dim(P ) � dim(Q) = 3. Westart with a con�guration of three two-dimensional chambers �1; �2; �3 that forma subdivision � of Q (see Figure 5(a)). The corresponding edges in the boundaryof Q are �1, �2, and �3. We denote �i \ �j by �ij, and thus the inner vertex�1 \ �2 \ �3 by �123. Analogously, we set �i \ �j =: �ij .We want to construct functions  : �! S2 that satisfy the \local coherencecondition" (Proposition 2.6) with respect to the �ber structure of some polytopeprojection. First we assign to each �i a �xed value  �i in S2 such that the conespanned by the  �i in (R3)� is full-dimensional. Since  ought to be locallycoherent this leads to several restrictions on the possible structures of the normalfans over the chambers.There is a consistent choice for  �12 only if  �1 and  �2 lie in the same opencone of the normal fan over relint(�12). In general, this open cone (which describesthe correct selections for  �12) does not contain  �3. These cones are the crucialones because for local coherence at the inner vertex �123, we just have to choosea vector in the open cone of the normal fan over �123 that contains the restof the con�guration, which is always possible (see Lemma 2.2). The generictopological picture of the situation in the sphere S2 is as in Figure 5(b), which isa superposition of cones from the normal fans over �ij and �123.If the vectors  �i are in general position with respect to some �ber structure,then the locally �-coherent string F0 they determine in a polytope projectionthat induces this �ber structure is tight. In the following we describe what \has15



 �1 �3 �2 [ �1]�123[ �1]�12[ �1]�13[ �2]�23�1 �2 �3
(a) (b)Figure 5: A really simple chamber complex (a) and a sketch for a possible \locallycoherent" choice of function values on this complex (b).to go wrong" to get a �ber structure in which this tight string is not dominatedby a non-tight one F > F0. (In this case the tight string is stuck).To get from F0 to F , we have to move at least one of the vectors  �i to morespecial position, that is, to to the boundary of the normal cone it lies in. Onecan now see that for every movement of a function value of a maximal chamber| say  �1 | to a face of the normal cone associated with an edge, say  �12,requires a movement of the other normal vector | here  �2 | contained in thatcone to the same face in order to stay locally coherent.The idea is now to produce a con�guration of normal cones of the �bers suchthat for each cone corresponding to the starting values of the function  no faceis reachable by both the function values of the maximal chambers in a way suchthat the intermediate functions stay locally coherent.Consider the \basket ball" with three segments in Figure 6(a): the normalfan of a triangle in R3. We take three perturbed copies of this con�guration suchthat the superposition locally looks as in Figure 6(b). The function values chosenas in the picture are pairwise locally coherent because  �1 and  �2 lie in the samecone [ �1]�12 over �12, and so on. There is no possibility to push the functionvalues to more special position without violating the pairwise cone condition.Try, for example, to move  �1 to a face of [ �1]�12 before you reach a faceof [ �1]�13 , as drawn in the picture. Then  �2 has to move to the same face |but then it has to pass over a face of [ �2]�23 in the meantime, so  �3 has topass over that same face. But then  �1 should have passed a face of [ �1]�13before having reached any face of [ �1]�12: a contradiction. In the same manner16
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 �3[ �1]�13[ �3]�23[ �2]�12[ �1]�123
(a) (b)Figure 6: The \basket ball obstruction."all possibilities of moving function values over the 2-chambers fail. Hence thisprovides an obstruction for homotopies on the starting function  which we callthe \basket ball obstruction."The con�guration of Figure 6 is realized by the following innocent-lookingconstruction which is illustrated in Figure 7.� Let � : R5 ! R2 be the projection to the last two coordinates.� Put three triangles into R5 in the following way: each triangle projectsdown to one vertex of the triangle Q, such that the superposition of theirnormal fans in R3 (basket balls!) locally looks like the con�guration inside[ 1]�123 in Figure 6(b) | the local basket ball obstruction.� Let gP deg be their convex hull in R5. At this point the normal fan over �123is the common re�nement of the three basket balls (Corollary 2.5).� Position a single vertex into R5 such that it projects to the 0-cell �123 inthe center of �. The resulting �ber over �123 will just be the convex hullof the old �ber over �123 and the new vertex. Choose the new vertex v insuch a way that its normal cone in the �ber realizes the cone [ 1]�123 ofFigure 6(b). (From the primal point of view we put the vertex \beyond"those faces of the �ber that have normal cones in the local basket ballobstruction. Hence, in the new normal fan over �123 the local basket ball17



(d)(c)(b)(a)Figure 7: A part of the normal fan over the vertex �12 of Q (a), over �123 (b),over the corresponding edge �12 (c), and over the adjacent 2-dimensional cham-ber �1 (d). If  �1 is chosen in the interior of the shaded cone, and if  �2 and �3 are chosen analogously with respect to the rotational symmetry we get thebasket ball obstruction of Figure 6.obstruction is replaced by the normal cone of the new vertex.) The resultingpolytope P deg = conv(gP deg; v) has 10 vertices.� Because of Proposition 2.2 the normal fans over the edges �ij of � are thecommon re�nement of the normal fan over �123 and the normal fan overthe corresponding vertex of Q. Over a vertex of Q there is one basket balland over �123 there is a fan that contains a cone that \locks" the basketball obstruction into one cone.� De�ne the function values on �i as in Figure 6(b) and the function valueson �ij somewhere inside the corresponding cones [ �i]�ij = [ �j ]�ij .� Complete this function on the boundary of Q (Proposition 2.8). This yieldsa tight locally coherent string that is not dominated by a coarser one, i. e.,an isolated element in !(P; �) (see above). 2In Section 5 we will present a version of P deg with explicit coordinates in R5.Moreover, we will slightly perturb the vertices of P deg to get a simplicial, non-degenerate counterexample P . For each of them we will provide another, simpleway to see that it violates the Generalized Baues Conjecture.5 An explicit counterexampleThroughout this section we use homogeneous coordinates in order to get a nicethreefold rotational symmetry for Qdeg and Q without square roots. We useprojections that delete the �rst three coordinates. The following list contains asrows the (homogeneous) coordinates for ten points in R5 in convex position.18



DIM = 6CONE_SECTION( 1) 1 0 0 1 0 0( 2) 0 3/2 1 1 0 0( 3) 0 1 3/2 1 0 0( 4) 0 1 0 0 1 0( 5) 1 0 3/2 0 1 0( 6) 3/2 0 1 0 1 0( 7) 0 0 1 0 0 1( 8) 3/2 1 0 0 0 1( 9) 1 3/2 0 0 0 1( 10) 2 2 2 1/3 1/3 1/3ENDThe �rst nine rows correspond to the three triangles of the abstract construc-tion in Section 4, the tenth one represents the additional vertex. The chambercomplex of the projection to the last three coordinates is as in Figure 5(a). Thenormal fans of the three triangles in R3 form the basket ball obstruction. Theadditional vertex yields the midpoint of the chamber complex and bounds theobstruction over the edges of the chamber complex. Figure 8 is an attempt tovisualize the construction.The above listing is in correct input format for the PORTA program byChristof [8]. This program easily produces a complete list of all 36 facets of P ,and the vertex-facet incidence matrix in Figure 10.The following tight locally coherent string | where the faces F deg1 ; F deg2 ; F deg3are given by their vertices labelled as in the listing above | will correspond tothe three given function values in Figure 6.Fdeg0 := f(1; 4; 10); (4; 7; 10); (7; 1; 10)gwhere the actual string contains all the nonempty faces of the three triangles thatare listed.Once we have this, it is very easy to see independently from Section 4 thatthis is a counterexample to the Generalized Baues Conjecture. To form a strictlycoarser string we must replace at least one of the faces F deg1 ; F deg2 ; F deg3 in Fdeg0by a face F̂ degi of P deg that contains F degi . This can be described by adding oneor more vertices to F degi such that we get a face. From the de�nition of a locallycoherent string it follows that a new vertex v has to be added (combinatorially)to all faces of Fdeg0 whose projection contains �(v).From the vertex-facet incidence matrix we can compute for each face F inFdeg0 all sets V of vertices in P degnF such that vert(F ) [ V are the vertices of19
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Figure 8: A sketch of �deg : P deg ! Qdeg: Over each vertex of Qdeg one perturbedbasket ball is positioned. Adding the tenth vertex in the middle provides abounding cone around the basket ball obstruction. (The grey vertices and thedotted lines are drawn to indicate the positions of the fans with respect to eachother.) The 5-polytope P deg is the convex hull of the three dark triangles | eachof them in an R3 over one vertex of Qdeg | and the additional vertex (10) in themiddle. 20
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Figure 9: The medium-dark triangles correspond to the isolated locally coherentstring f(1; 4; 10); (4; 7; 10); (7; 1; 10)g that is de�ned by the function values  �1, �2, and  �3 for the chambers �1, �2, and �3.21



strong validity table :\ P | | |\ O | | |I \ I | | |N \ N | 1 6 | # |E \ T | | |Q \ S | | |S \ | | | ||\ | | | \/--------------------------- |1 | .***. .*..* : 5 | 19 | ..*** .*..* : 52 | *...* **..* : 5 | 20 | .*.*. .*.** : 53 | *..*. ..*** : 5 | 21 | *.*.* .*..* : 54 | ....* .**** : 5 | 22 | **.*. ...** : 55 | ..*.. .**** : 5 | 23 | *.... ***.* : 56 | ...** *..** : 5 | 24 | *..*. *.*.* : 57 | .*.** *...* : 5 | 25 | .**.. .*.** : 58 | ***.. ..*.* : 5 | 26 | .**** ....* : 59 | ***.. *...* : 5 | 27 | ....* ***.* : 510 | ...** ****. : 6 | 28 | *.*.* *...* : 511 | ***.. .***. : 6 | 29 | ...*. *.*** : 512 | ***** *.... : 6 | 30 | **... ..*** : 513 | *.*** .*... : 5 | 31 | ****. .*... : 514 | **.*. .*.*. : 5 | 32 | *..** **... : 515 | *..*. ***.. : 5 | 33 | *..*. .***. : 516 | ...** .*.** : 5 | 34 | ....* *.*** : 517 | *.*.. .**.* : 5 | 35 | .**.. ..*** : 518 | **.*. *...* : 5 | 36 | .**.* *...* : 5| .................|| | # | 21121 12112\/ | | 06606 60667Figure 10: The vertex-facet incidence matrix of P deg.22



a face in P deg. They correspond exactly to the faces in the link of F in P degdenoted by lk(F ) := lkPdeg(F ). It turns out that all links are 4-gons, namelylk(1; 4; 10) = (2� 9� 8 � 6� 2);lk(4; 7; 10) = (5� 3� 2 � 9� 5);lk(7; 1; 10) = (8� 6� 5 � 3� 8):Because of the rotational symmetry it su�ces to test the vertices in lk(1; 4; 10).For example adding vertex 2 to the face (1; 4; 10) requires adding vertex 2 to theface (7; 1; 10) because �(7; 1; 10) contains �(2) | but vertex 2 is not containedin the link of (7; 1; 10). Analogous contradictions occur in all other cases. Thisproves that Fdeg0 is in fact an isolated element in !(P deg; �). This example cor-responds exactly to the construction at the end of Section 4. 2The coordinates of P deg can be slightly perturbed in order to make the projec-tion non-degenerate. We claim that the following listing contains the coordinatesof a simplicial, non-degenerate counterexample P .DIM = 6CONE_SECTION( 1) 1 0 0 1 0 0( 2) 0 3/2 1 1 -1/11 -1/21( 3) 0 1 3/2 1 -1/20 -1/10( 4) 0 1 0 0 1 0( 5) 1 0 3/2 -1/21 1 -1/11( 6) 3/2 0 1 -1/10 1 -1/20( 7) 0 0 1 0 0 1( 8) 3/2 1 0 -1/11 -1/21 1( 9) 1 3/2 0 -1/20 -1/10 1( 10) 2 2 2 1/3 1/3 1/3ENDAll the vertices of P project to pairwise di�erent points in the plane. We againinspect the vertex-facet incidence matrix, see Figure 12. Each facet has exactly�ve vertices, so P is a simplicial polytope. Consider the chamber complex of theprojection in Figure 11 | an exact computer-generated drawing which also showsthat P is 2-neighborly. The projections of the three faces (1; 4; 10), (4; 7; 10), and(7; 1; 10) do not cover Q. However, for chambers that are not covered we �nd,for example, the following tight completion:F0 := f(1; 4; 10); (1; 2; 4); (2; 3; 4); (3; 4; 5);(4; 7; 10); (4; 5; 7); (5; 6; 7); (6; 7; 8);(7; 1; 10); (7; 8; 9); (8; 9; 1); (9; 1; 2)g:23
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Figure 11: The chamber complex of �.
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strong validity table :\ P | | |\ O | | |I \ I | | |N \ N | 1 6 | # |E \ T | | |Q \ S | | |S \ | | | ||\ | | | \/--------------------------- |1 | .**** *.... : 5 | 22 | *...* **..* : 52 | *.*** *.... : 5 | 23 | *.*.* .*..* : 53 | ****. *.... : 5 | 24 | ..*** .*..* : 54 | *..** **... : 5 | 25 | .***. .*..* : 55 | *.*** .*... : 5 | 26 | *.... ***.* : 56 | ****. .*... : 5 | 27 | *..*. *.*.* : 57 | *..*. ***.. : 5 | 28 | ...** *..** : 58 | ...** **.*. : 5 | 29 | ...** .*.** : 59 | **.*. .*.*. : 5 | 30 | **.*. ...** : 510 | ***.. .*.*. : 5 | 31 | .*.*. .*.** : 511 | ***.. ..**. : 5 | 32 | .**.. .*.** : 512 | ...*. ****. : 5 | 33 | ***.. ..*.* : 513 | *..*. .***. : 5 | 34 | .**.. ..*** : 514 | ....* ****. : 5 | 35 | **... ..*** : 515 | *.*.. .***. : 5 | 36 | ...*. *.*** : 516 | .**** ....* : 5 | 37 | *..*. ..*** : 517 | .*.** *...* : 5 | 38 | ....* ***.* : 518 | .**.* *...* : 5 | 39 | ....* *.*** : 519 | *.*.* *...* : 5 | 40 | ....* .**** : 520 | ***.. *...* : 5 | 41 | *.*.. .**.* : 521 | **.*. *...* : 5 | 42 | ..*.. .**** : 5| .................|| | # | 21221 22122\/ | | 38038 03807Figure 12: The vertex-facet incidence matrix of P .25



This is not an isolated element in !(P; �), because there are local changes pos-sible on the new faces. For example, the faces (1; 2; 4) and (2; 3; 4) are dominatedby (1; 2; 3; 4), etc. However, a local change of (1; 4; 7), (4; 7; 10), or (7; 1; 10), isnot possible. To see this, we �rst check that no facet of P contains more thanone of these three faces. Consider again Figure 11. If, without loss of generality,we take any face F in P that contains (1; 4; 10) we observe that some new edgeof F projects into the interior of �(4; 7; 10) or �(7; 1; 10). (The link of (1; 4; 7) isagain (2� 9� 8� 6� 2), etc.) For example, if we replace (1; 4; 10) by (1; 2; 4; 10)| a simplex | the projection of the new edge (2; 10) cuts through the interior of�(7; 1; 10). But then we have produced overlapping projections, a contradictionto the fact that every locally coherent string de�nes a polyhedral subdivisionafter projection.We see that any locally coherent string in the connected component of F0must contain the three faces (1; 4; 10), (4; 7; 10), and (7; 1; 10). But obviouslythere is the following locally coherent string where the face (1; 4; 7) replaces thethree \rigid" faces:F1 := f(1; 4; 7); (1; 2; 4); (2; 3; 4); (3; 4; 5);(4; 5; 7); (5; 6; 7); (6; 7; 8);(7; 8; 9); (8; 9; 1); (9; 1; 2)g:Thus we conclude that there are at least two connected components in !(P; �),in contradiction to the Generalized Baues Conjecture. 2AcknowledgementsWe would like to thank J�urgen Richter-Gebert and Nikolai Mn�ev for helpfuldiscussions.References[1] J. Frank Adams. On the cobar construction. Proceedings of the NationalAcademy of Science, 42:409{412, 1956.[2] Hans Joachim Baues. Geometry of loop spaces and the cobar construction.Memoirs of the American Mathematical Society, 25(230), 1980.[3] Louis J. Billera, Israel M. Gel'fand, and Bernd Sturmfels. Duality and minorsof secondary polyhedra. Journal of Combinatorial Theory, Ser. B, 57:258{268, 1993.[4] Louis J. Billera, Mikhail M. Kapranov, and Bernd Sturmfels. Cellular stringson polytopes. Proceedings of the American Mathematical Society, 122:549{555, 1994. 26



[5] Louis J. Billera and Bernd Sturmfels. Fiber polytopes. Annals of Mathe-matics, 135:527{549, 1992.[6] Anders Bj�orner. Essential chains and homotopy types of posets. Proceedingsof the American Mathematical Society, 402:1179{1181, 1992.[7] Anders Bj�orner. Topological methods. In R. Graham, M. Gr�otschel, andL. Lov�asz, editors, Handbook of Combinatorics. North Holland, Amsterdam,1995.[8] Thomas Christof. Porta | a polyhedron representation transformationalgorithm v. 1.2.1. Available from the ZIB electronic library eLib viaelib@zib-berlin.de or by anonymous ftp from elib.zib-berlin.de, di-rectory /pub/mathprog.[9] Herbert Edelsbrunner and Nimish R. Shah. Incremental topological 
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