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Abstract

We prove a natural bijection between the polytopal tilings of a zonotope Z by
zonotopes, and the one-element-liftings of the oriented matroid M(Z) associated
with Z. This yields a simple proof and a strengthening of the Bohne-Dress Theorem
on zonotopal tilings.
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�� Introduction�

At the 1989 Stockholm “Symposium on Combinatorics and Geometry”, Andreas Dress
announced the following surprising theorem: The tilings of a zonotope Z by zonotopes are
in bijection with the single-element liftings of the associated oriented matroid L(Z) [5]. A
proof was provided in the 1992 doctoral dissertation of Jochen Bohne [3]. (A zonotope is,
to give three equivalent characterizations, a projection of a cube, a Minkowski sum of line
segments, and a polytope all of whose faces are centrally symmetric [4] [14] [2, Sect. 2.2].)

This result is remarkable, because it yields a perfectly straight, euclidean represen-
tation also for the non-realizable oriented matroids (pseudo-arrangements) that have a
realizable one-element contraction. For example, for d = 2 it provides a canonical bi-
jection between the (affine) arrangements with n parallel classes of pseudolines and the
zonotopal tilings of regular 2n-gons.
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Both directions of the Bohne-Dress Theorem are decidedly non-trivial. However, we
will show how major parts can be reduced to basic combinatorial and geometric results in
the theory of oriented matroids. With this, the present note provides easy and reasonably
short proofs. Nevertheless, our version also contains various parts and ideas from the
original proofs in [3]. Our main new ideas resp. technical improvements are the following:

• in the part “from oriented matroids to tilings” (Section 2) we use a volume argument,
which replaces the harder part of the proof that we get a tiling,
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• in the part “from tilings to oriented matroids” (Section 4) we formulate and use
a handy criterion (Theorem 4.1) to see from a “deletion & contraction argument”
that a geometric situation represents an oriented matroid.

At the same time, we also extend the Bohne-Dress result. Bohne’s definition of a
zonotopal tiling in [3, Def. 1.3] (“zonotopale Pflasterung”: this is what we call a strong
zonotopal tiling) depends on global data, whereas we show that also the weak zonotopal
tilings considered below are equivalent.

• To proceed from the local data of a weak zonotopal tiling to the global data of
a strong zonotopal tiling (Section 3), we utilize a simple geometric construction
(Section Lemma 3.2), which also provides most of the geometric information needed
for the passage to oriented matroids. (Related constructions appear in [3, Sect. 2.1].)

�� De�nitions and Theorems�

For the following, we need some oriented matroid terminology (as in [2]), as follows.
The three elements of the set {+1,−1, 0}, abbreviated by {+,−, 0}, are referred to as

signs, while sign vectors are elements of {+,−, 0}[n] for some n ≥ 0 and [n] := {1, . . . , n}.
For sign vectors we denote components by Xi, while X

+, X− and X0 denote the positive,
negative and zero parts of X, with X+ = {i : Xi = +}, etc. The support of a sign vector
is X+ ∪X− = [n]\X0. The zero vector is denoted 0. There is a partial order on the set
of signs defined by “0 < +” and “0 < −”, while the non-zero signs are incomparable.
This partial order is extended to the component-wise partial order of the sign vectors
in {+,−, 0}[n]. We also need the separation set S(X, Y ) = {i : Xi = −Yi �= 0}, and
the product X◦Y of sign vectors, given by (X◦Y )i = Yi if Xi < Yi, and (X◦Y )i = Xi

otherwise.
For the following let V = (v1, . . . , vn) ∈ IRd·n be a fixed vector configuration in IRd.

We assume that the vectors are non-zero, but they need not be distinct, so V is in fact a
multiset of vectors. The configuration is simple if any two vectors are linearly independent
from each other, that is, there are no parallel or antiparallel vectors in V . There are two
objects defined in terms of V which are closely related: its “zonotope” and its “oriented
matroid”.

Definition 1.1. The zonotope Z(V ) of V is the Minkowski sum of line segments

Z(V ) :=
n∑

i=1

[−vi,+vi] =

{
n∑

i=1

λivi : −1 ≤ λi ≤ +1

}
⊆ IRd.

The oriented matroid of V is given by its collection of covectors:

L(V ) := {(sign(c·v1), sign(c·v2), . . . , sign(c·vn)) : c ∈ (IRd)∗} ⊆ {+,−, 0}[n]

While the zonotope Z(V ) is a polytope in IRd, the oriented matroid is a collection
of sign vectors. Since we explicitly use the covector axioms for oriented matroids [6] [2,
Sects. 3.7 and 4.1] (they abstract the main combinatorial facts about the structure of
zonotopes), we repeat them here.
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Definition 1.2. [6] [2, 4.1.1] A set L ⊆ {+,−, 0}E is the set of covectors of an oriented
matroid if and only if it satisfies:

(L0) 0 ∈ L,
(L1) X ∈ L implies −X ∈ L,
(L2) X, Y ∈ L implies X◦Y ∈ L,
(L3) if X, Y ∈ L and e ∈ S(X, Y ), then there exists Z ∈ L such that

Ze = 0, and
Zf = (X◦Y )f = (Y ◦X)f for all f /∈ S(X, Y ).

All the oriented matroids that we deal with are presented in terms of their covectors.
Thus, for the following an oriented matroid is a set of sign vectors which satisfies the
axioms of Definition 1.2.

For most oriented matroids occurring in the following, the ground set E will be either
identified with [n] := {1, 2, . . . , n}, or with [n]∪ g := {1, 2, . . . , n, g} in the case where we
want to distinguish a special element ‘g’.

The cocircuits of an oriented matroid L are the non-zero covectors with maximal zero-
set X0, that is, with minimal non-empty support X+ ∪ X−. We denote the set of all
cocircuits of L by C∗ = C∗(L).

We need some constructions to deal with oriented matroids L ⊆ {+,−, 0}[n]. The
deletion L\n and the contraction L/n of the last element n are defined by

L\n :=
{
X ∈ {+,−, 0}[n−1] : (X, σ) ∈ L for some σ ∈ {+,−, 0}

}
and

L/n :=
{
X ∈ {+,−, 0}[n−1] : (X, 0) ∈ L

}
.

The element n is a loop if L = {(X, 0) : X ∈ L/n}, and it is a coloop if L = {(X, σ) :
X ∈ L/n, σ ∈ {+,−, 0}}. If n is a loop or coloop, then we have L/n = L\n, otherwise
we have a proper inclusion L/n ⊂ L\n. A pair (L, g), where L is an oriented matroid,
and g is a distinguished element which is not a loop, is referred to as an affine oriented
matroid [2, Sects. 4.5 and 10.1].

Two elements of an oriented matroid are parallel (resp. antiparallel) if they appear
with the same sign (resp. with opposite signs) in all the cocircuits. An oriented matroid
is simple if it has no loop, and no parallel or antiparallel elements. So, a realizable oriented
matroid L(V ) is simple if and only if the vectors in V are non-zero and pairwise linearly
independent from each other.

The partial order (L,≤) is graded, with a unique minimal element 0. Its rank is
defined to be the rank of the oriented matroid L.

An oriented matroid is realizable if it arises from a vector configuration V ∈ IRd·n via
the construction of Definition 1.1. This is the motivating example for oriented matroids,
but there are many other constructions that yield oriented matroids — realizable ones
and non-realizable ones.
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Given a vector configuration V ∈ IRd·n which generates Z := Z(V ), we associate a
zonotope ZX ⊆ Z(V ) with every sign vector X ∈ {+,−, 0}[n], by

ZX :=
∑
i∈X0

[−vi,+vi] +
∑
i∈X+

vi −
∑

i∈X−
vi.

The assignment X 
→ ZX defines an order reversing bijection between the set of covectors
of the realizable oriented matroid L(V ) and the set of all non-empty faces of the zonotope
Z(V ). Thus there is an anti-isomorphism between the face-lattice of Z(V ) and the lattice
of covectors L(V ) ∪ 1̂ [2, Prop. 2.2.2]. In fact, the maximal elements of L correspond to
the vertices of Z(V ), while the cocircuits in L correspond to the facets of Z(V ). (The
zero vector 0 ∈ L corresponds to the zonotope itself, and the additional maximal element
1̂ corresponds to the empty face.)

The Bohne-Dress Theorem states that the one-element liftings of L(V ) are in one-to-
one correspondence to the zonotopal tilings of Z(V ). To make this precise, we now define
tilings (in two versions) and liftings.

Definition 1.3 [3, Def. 1.3]. Let V = (v1, . . . , vn) ∈ IRd·n be a vector configuration.
A strong zonotopal tiling (SZT) of Z(V ) is a collection of sign vectors O ⊆ {0,+,−}[n]
such that

(i)
⋃

X∈O ZX = Z(V )

(ii) If X ∈ O, and Y ≥ X describes a face ZY of ZX , then Y ∈ O.

(iii) If X, Y ∈ O, then ZX ∩ ZY is a face of both ZX and ZY .

The strong zonotopal tiling is simple if there are no zero or parallel vectors in V , that is,
if {vi, vj} is linearly independent for i �= j.

The zonotopes ZX of maximal dimension (i.e., of dimension d) in a SZT are exactly
those for which the support of X is minimal, and thus X 0 is maximal, with respect to set
inclusion.

Definition 1.4. Let Z be a zonotope. A weak zonotopal tiling (WZT) of Z is a collection
of zonotopes Z := {Z1, Z2, . . . , ZM}, such that

(i)
⋃M

i=1 Zi = Z

(ii) If U is a face of Zi ∈ Z, then U ∈ Z
(iii) If Zi, Zj ∈ Z, then the intersection Zi ∩ Zj is a face of both Zi and Zj .

The weak zonotopal tiling is simple if every edge of Z is in Z.

Clearly every strong zonotopal tiling determines a weak zonotopal tiling. Furthermore,
conditions (ii) and (iii) for a WZT just state that Z is a polytopal complex.
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Definition 1.5. Let L ⊆ {+,−, 0}[n] be an oriented matroid.
A (one-element) lifting of L is an oriented matroid L̂ ⊆ {+,−, 0}[n]∪g, such that

L̂/g = L, and such that g is not a loop in L̂. We define

O(L̂) := {X ∈ {0,+,−}[n] : (X,+) ∈ L̂}.

Our main result appears below as Theorem 1.7. Theorem 1.8 isolates an important
special case. To formulate these results, we use the following method to (re)construct the
zones in a weak zonotopal tiling, and a basic property observed in Lemma 1.6.

In a weak zonotopal tiling Z, define two edges (1-dimensional faces of the tiling) to be
related if they are opposite in a 2-face of Z. Denote by E1, . . . , En the equivalence classes
generated by this relation. Equivalent edges (i.e., edges in the same equivalence class) are
always translates of each other, but the converse is false — see the sketch below, where
the vertical edges fall into two equivalence classes, the bold ones and the regular ones.
We will denote by Z1, . . . ,Zn the zones of the WZT, where Zi is the set of all faces of Z
which have an edge in Ei.

The following sketch shows (bold) the edges in one class Ei and the corresponding
zone, which consists of the bold edges together with the shaded 2-faces.

Lemma 1.6. Let Z be a weak zonotopal tiling of Z ⊆ IRd, let E1, . . . , En be the equiv-
alence classes of edges in Z, and let V = {v1, . . . , vn} ∈ IRd·n be a vector configuration
such that the edges in Ei are translates of [−vi, vi], for 1 ≤ i ≤ n.

Then the zonotope Z is generated by the vectors in V , that is, Z = Z(V ).

The vector configuration described by the previous lemma will be denoted by V =
V (Z). This vector configuration associated with Z is unique up to taking negatives of
the vectors. Note that V (Z) is a multiset: there may be repeated vectors, parallel and
antiparallel ones.

The associated vector configuration is simple if and only if the WZT is simple. In
this case (for example, if Z is just the face complex of Z) the associated configuration
is the simple vector configuration that defines Z. From it, we get all the non-simple
configurations that generate the zonotope Z by replacing each vi by a sequence of vectors
α1vi, . . . , αk(i)vi with αi ∈ IR\0 and

∑k(i)
j=1 |αj| = 1. Together with our main theorem this

yields a description of all the weak zonotopal tiling of a given zonotope Z.

Theorem 1.7. Let V ∈ IRd·n be a vector configuration, let Z := Z(V ) be its zonotope
and L := L(V ) its oriented matroid. Then there are canonical bijections between

• the weak zonotopal tilings Z of Z with associated vector configuration V ,
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• the strong zonotopal tilings O ⊆ {+,−, 0}[n] of Z(V ), and

• the oriented matroid liftings L̂ ⊆ {+,−, 0}[n]∪g of L/g = L.

Theorem 1.8. Let Z ⊆ IRd be a zonotope with n zones, let V = V (Z) ∈ IRd·n be
its (essentially unique) simple vector configuration, and let L = L(V ) be the associated
simple oriented matroid. Then there are canonical bijections between

• the simple weak zonotopal tilings Z = {Z1, Z2, . . .} of Z,

• the simple strong zonotopal tilings O ⊆ {+,−, 0}[n] of Z(V ), and

• the single element liftings L̂ of the oriented matroid L(V ).

A complete proof of Theorem 1.7 appears in the following three sections. The spe-
cialization to the ‘simple’ case is immediate at each step, so Theorem 1.8 follows as a
by-product. The proof for Lemma 1.6 will be a part of Section 3.

The Bohne-Dress theorem, in the version of [3, Thms. 4.1 and 4.2], is the equivalence
of strong zonotopal tilings with oriented matroid liftings. Our notion of strong zonotopal
tilings is easily seen to be equivalent with the “zonotopale Pflasterungen” of [3, Def. 1.3].
The purely polytopal formulation of weak zonotopal tilings is not considered in [3].

�� From Liftings to Tilings�

In this section we prove the following part of Theorem 1.7.

Theorem 2.1 [3, Thm. 4.2]. Let V ∈ IRd·n be a vector configuration of rank d, and
let L̂ ⊆ {+,−, 0}[n]∪g be a lifting of the oriented matroid L(V ).

Then O(L̂) is a strong zonotopal tiling of Z(V ).

Before presenting the proof of Theorem 2.1 we first prove some lemmas.

Lemma 2.2. For any vector configuration V we have

vol(Z(V )) =
∑

(X,+)∈C∗
vol(ZX),

where C∗ = C∗(L̂) is the set of cocircuits of a one-element lifting of the oriented matroid
L(V ).

Proof. For a linearly ordered set E, we define

Λ(E, d) := {(λ1, . . . , λd) ∈ Ed : λ1 < . . . < λd}.

By a result of McMullen, see [16] [2, Prop. 2.2.12], the volume of a d-dimensional zonotope
Z(v1, . . . , vn) is given by

vol(Z(v1, . . . , vn)) = 2d · ∑
λ∈Λ(E,d)

| det(vλ1, . . . , vλd
)|.
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Notice that by this formula for a zonotope ZX , X ∈ {+,−, 0}d, we obtain

vol(ZX) = 2d · ∑
λ∈Λ(X0,d)

| det(vλ1, . . . , vλd
)|

and thus ∑
(X,+)∈C∗

vol(ZX) =
∑

(X,+)∈C∗
(2d · ∑

λ∈Λ(X0,d)

| det(vλ1, . . . , vλd
)|)

=
∑

(X,+)∈C∗
(2d · ∑

λ∈Λ(X0,d)

λ independent in L̂/g

| det(vλ1, . . . , vλd
)|)

= 2d · ∑
λ∈Λ(E,d)

λ independent in L̂/g

| det(vλ1, . . . , vλd
)|

= 2d · ∑
λ∈Λ(E,d)

| det(vλ1, . . . , vλd
)|

= vol(Z(V )).

The second and the fourth equality hold since only independent sets of vectors have
non-zero determinants. The third equation holds since every maximal independent set
(every basis) of L̂/g is contained in the zero set of a unique cocircuit (X,+) of L̂.

The core of this proof was the volume formula for zonotopes, which says that if we
take any zonotopal tiling and refine it to a tiling by parallelotopes, then the set of tiles is
unique (up to translation of the tiles): we get exactly one full-dimensional tile for every
independent set of zones of the zonotope (i.e., for every basis of the oriented matroid
L(V )) — see [16, Sect. 5].

Thus the total volume of the set of zonotopal tiles ZX , X ∈ O(L̂) , equals the volume
of Z(V ). Our next lemma shows that the intersection of any two such tiles has zero
volume, so the union of the tiles covers Z(V ).

Lemma 2.3. Let X, Y ∈ O(L̂) be two sign vectors.

(i) S(X, Y ) �= ∅ =⇒ ZX ∩ ZY = ∅,
(ii) S(X, Y ) = ∅ =⇒ ZX ∩ ZY = ZX◦Y = ZY ◦X.

Proof. By definition (X,+) and (Y,+) are covectors of L̂. We abbreviate Aij = Xi ∩Y j

for i, j ∈ {+,−, 0}. Without loss of generality we may (up to reorientation of the vectors
vi) assume that A−0 = A0+ = A−− = A−+ = ∅. With this conventions we can write

ZX =
∑

i∈A00�A0−
[−vi, vi] +

∑
i∈A+0�A+−

vi +
∑

i∈A++

vi,

ZY =
∑

i∈A00�A+0

[−vi, vi] − ∑
i∈A0−�A+−

vi +
∑

i∈A++

vi.

The components of A++ generate an identical translational component for all three ZX ,
ZY and ZX◦Y . Thus, if we are interested in the intersection of ZX and ZY we may also
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without loss of generality assume that A++ = ∅. We define X̂ = (X,+) ◦ (−Y,−) ∈ L̂
and Ŷ = (−Y,−) ◦ (X,+) ∈ L̂. Observe that

X̂+ = A+0 �A+− �A0− � {g}, X̂− = ∅, X̂0 = A00

and
Ŷ + = A+0 �A+− �A0−, Ŷ − = {g}, Ŷ 0 = A00.

The separation set of X̂ and Ŷ is S(X̂, Ŷ ) = {g}. Applying the elimination axiom for
covectors (Definition 1.2(L3)) to the covectors X̂ and Ŷ we obtain that there exists a
covector W ∈ L̂ with

W 0 = A00 � {g}, W+ = A+0 �A+− �A0−, W− = ∅.

This implies the existence of covector W ′ ∈ L̂/g with

W ′0 = A00, W ′+ = A+0 � A+− � A0−, W ′− = ∅.

Therefore there must be a vector a ∈ (IRd)∗ with

sign(a·vi) =
{
0 if i ∈ A00,
+ if i ∈ A+0 � A+− �A0−.

Now consider the linear functional Ha(x) = a · (x−∑
i∈A+0 vi+

∑
i∈A0− vi). We will prove

that the hyperplane H := {x ∈ IRd : Ha(x) = 0} separates the two zonotopes ZX and
ZY . In fact,

Ha(ZX) =

= a ·
( ∑
i∈A00

[−vi,+vi] +
∑

i∈A0−
[−vi,+vi] +

∑
i∈A+−

vi +
∑

i∈A+0

vi −
∑

i∈A+0

vi +
∑

i∈A0−
vi

)
= (a · ∑

i∈A00

[−vi,+vi]) + (a · ∑
i∈A0−

[0,+2vi]) + (a · ∑
i∈A+−

vi)

= [0, 2 · ∑
i∈A0−

(a · vi)] +
∑

i∈A+−
(a·vi).

The first of the two remaining summands is an interval [0, bX ] with bX > 0 whenever
A0− �= ∅ and bX = 0 otherwise. The second summand is a scalar c with c > 0 whenever
A+− �= ∅ and c = 0 otherwise. A completely similar calculation shows that Ha(ZY ) is of
the form

Ha(ZY ) = [−bY , 0]− c

with bY > 0 whenever A+0 �= ∅ and bX = 0 otherwise.
If we consider the case S(X, Y ) = A+− �= ∅ we see that Ha(ZX) and Ha(ZY ) are

non-overlapping intervals. Therefore ZX ∩ ZY = ∅, which proves part (i) of the lemma.
In the case S(X, Y ) = A+− = ∅ we see that

H ∩ ZX =
∑

i∈A00

[−vi,+vi] +
∑

i∈A+0

vi −
∑

i∈A0−
vi = H ∩ ZY .
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On the other hand the relative interiors of ZX and ZY are separated by H. Therefore

ZX ∩ ZY =
∑

i∈A00

[−vi,+vi] +
∑

i∈A+0

vi −
∑

i∈A0−
vi = ZX◦Y = ZY ◦X .

This proves part (ii) of the lemma.

The following picture illustrates the situation for a tiling on 4 zones and sign vectors
X = (+0+0) and Y = (0−0−). The left figure shows how the hyperplane Ha separates
the zonotopes ZX and ZY . The right figure shows the relative position of the translated
hyperplane H ′

a
:= {x ∈ IRd : a · x = 0} with respect to v1, . . . , v4. Notice that, since in

this case A+− is empty, the two zones have a face in common.

(+0+0)

(0−0−)
Ha H ′

a

1

2
3

4

Before proving the main theorem we provide a lemma which states that the set of
zonotopes associated to O(L̂) is closed under the operation of taking faces of zonotopes.

Lemma 2.4. Let ZX be a zonotope with X ∈ O(L̂) and let ZY be a face of ZX , with
Y ≥ X. Then Y ∈ O(L̂).
Proof. For every covector (X,+) ∈ L̂ there is also a cocircuit (X̂,+) ∈ L̂ with (X̂,+) ≤
(X,+). Therefore every zonotope ZX with (X,+) ∈ L̂ is contained as a face in a zonotope
Z
X̂

of maximal dimension and it suffices to prove the lemma for the case where (X,+) is
a cocircuit.

Let ZY be a face of the zonotope ZX where (X,+) is a cocircuit. We may assume that
X0 = {1, 2, . . . , k} for some k ≤ n. Notice that the face lattice of

ZX =
∑
i∈X0

[−vi,+vi] +
∑
i∈X+

vi − ∑
i∈X−

vi

is isomorphic to the face lattice of the translated zonotope:

Z ′ = Z(v1, v2, . . . , vk) =
∑
i∈X0

[−vi,+vi]

Assume that ZY with Y ≥ X is a face of ZX then ZY ′ with Y ′ := (Y1, Y2, . . . , Yk) is a face
of Z ′. By Theorem 1.3 the faces of Z ′ have the form ZW where W are the covectors of

L̂′ := (L̂/g)\{k + 1, . . . , n}.
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Hence Y ′ is a covector of L̂′. Therefore there exist signs σk+1, σk+2, . . . , σn such that

Y ′′ := (Y ′
1 , Y

′
2 , . . . , Y

′
k , σk+1, σk+2, . . . , σn, 0)

is a covector of L̂. Hence Y = X ◦ Y ′′ is a also covector of L̂.
Now we have collected all the pieces to prove Theorem 2.1.

Proof of Theorem 2.1. We have to prove that the collection of sign vectors

O(L̂) := {X ∈ {0,+,−}[n] : (X,+) ∈ L̂}

is a strong zonotopal tiling of Z(V ), i.e., it satisfies the three conditions of Definition 1.3.
Condition (ii) is exactly the statement of Lemma 2.4. Lemma 2.3 states that the inter-
section of ZX and ZY is either empty or of the form ZX◦Y . This proves condition (iii) of
Definition 1.4, since (X,+), (Y,+) ∈ L̂ implies (X ◦ Y,+) ∈ L̂.
To prove condition (i), ⋃

X∈O(L̂)
ZX = Z(V ),

observe that by Lemma 2.2 the total volume of all ZX , where (X,+) is a cocircuit of L̂,
equals the volume of Z(V ). On the other hand, by Lemma 1.8 the volume of ZX ∩ ZY

is zero for any two distinct cocircuits (X,+) and (Y,+). Therefore the union of all ZX

must cover Z(V ), since we have ZX ⊆ Z(V ) for all X ∈ O.

�� From Weak Tilings to Strong Tilings�

It is a classical fact that a polytope all of whose faces are centrally symmetric is a zonotope.
We need the following criterion. (See also [2, Prop. 2.2.14].)

Lemma 3.1. A polytope P is a zonotope if and only if every face of P is a Minkowski
summand of P .

The following crucial lemma states that the zones in a WZT have the geometric
structure that ‘one would expect’ from the drawings: they form one thick sheet which
projects down “without folding” if we project in the direction of the edges in the zone.

Lemma 3.2 (‘Section Lemma’). Let Z be a WZT of Z :=
⋃Z ⊆ IRd, let Ei be an

equivalence class of edges in Z, all of them translates of [−vi, vi] ⊆ IRd, and let Zi ⊆ Z
denote the corresponding zone.
Denote by πi(Z) the projection of Z in direction vi, that is,

πi(Z) := {x ∈ IRd : 〈x, vi〉 = 0, ∃t ∈ IR : x+ tvi ∈ Z}.

Then the function fi : πi(Z) −→ IR

x 
−→ min{t ∈ IR : x+ tvi ∈
⋃Zi}

is well-defined, continuous and piecewise linear.
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Proof. The function fi is clearly well-defined on the set πi(
⋃Zi) ⊆ πi(Z), which is non-

empty and closed by construction. Furthermore, if x0 ∈ πi(
⋃Zi), then

Fi(x0) := x0 + (fi(x0) + 1)vi

is in the relative interior of some face U of Zi.

πi(Z)

Fi(x0)

x0

Fi

vi

Hence
Z ∩ (Fi(x0) + εBd) ⊆ ⋃Zi

for small enough ε > 0, since with U the zone Zi also contains the star of U : all the
polytopes of Z that have U as a face. From this we see that π(

⋃Zi) is open in πi(Z).
Since it is also closed, we conclude πi(

⋃Zi) = πi(Z), and thus fi is well-defined on πi(Z).
To see that fi (and thus Fi) is continuous, observe that in a small neighborhood of x0

the function fi is the “hight” of the “lower faces” in the star of U .

U

star of U

lower envelope of
the star of U

x0

The lower faces determine a piecewise linear and continuous “lower hight” function on
π(W ), for every face W in the zone. Since the “lower hight” functions agree on inter-
sections of faces, we get that “the lower hight of the faces that contain U” defines a
continuous (and piecewise linear) function on π(star(U)), and thus in a neighborhood of
x0.
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Now the lower hight function of the star of U agrees with fi in a neighborhood of x0:
in fact, fi could only be lower if there was a different polyhedron G in Zi whose lower
hight was smaller. However, since fi is not smaller than the lower hight of the star of U
at x0, the lower hight function agrees with fi also in a neighborhood of x0.

The following statement provides the implication “every weak zonotopal tiling corre-
sponds to a strong zonotopal tiling” of the Main Theorem 1.7. It also includes Lemma 1.6.

Theorem 3.3. Let Z be a weak zonotopal tiling of a zonotope Z with center 0. Let
E1, . . . , En be the equivalence classes of edges, where the edges in Ei are translates of
[−vi, vi], and let the corresponding zones be Z1, . . . ,Zn.

Then there is an assignment of signs

σ : Z −→ {+,−, 0}
such that

• σ(U)i = 0 if and only if U ∈ Zi, and

• σ(x′)i = − and σ(x′′)i = +, if the edge [x′,x′′] is in Ei, and
• U ⊆ U ′ if and only if σ(U) ≥ σ(U ′).

Furthermore, the zonotope Z =
⋃Z is the Minkowski sum

∑n
i=1[−vi, vi], and

O := {σ(P ) : P ∈ Z}
is a strong polytopal tiling of Z whose underlying weak zonotopal tiling is Z.

Our drawing shows the sign vectors that correspond to the maximal faces of Z, in the
WZT that we considered in Section 0. Exercise: determine (some of) the sign vectors
corresponding to the vertices in this drawing.

(−−000++)

(−−0−−+0)

(−−0−−0−)

(000−−−−)

(−0++0++)

(−0+0−+0) (0+++0+0)

(−0+−−0−)

(0++0−0−)

(++++00−)

2
3

4

5

6

7

1

1
2
3
4

576
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Proof. Consider the i-th component of such a σ-function. The first condition is that it
vanishes on the zone, and the second condition says that it has opposite values on the
two ends of an edge in Ei, “+” on the top end, and “−” on the lower end. With this, the
first and the third condition imply that σi is constant “+” above the zone, and constant
“−” below it. This is well-defined and unique by Lemma 3.2, according to which the i-th
zone separates the WZT into the zone, the faces ‘above’ it and the faces ‘below’ it.

The assignment of signs satisfying all three conditions implies that we have

U = Zσ(U ) + z0 for U ∈ Z,

where z0 is some translation vector: the same one for all the zonotopes in Z. Now
the facts that opposite vertices of Z get opposite signs under σ, and that Z is centrally
symmetric with respect to the origin 0, together imply z 0 = 0.

The strong zonotopal tilings we produce with this method of labeling have a special
property: they use the minimal number n of components; equivalently, for every edge
U ∈ Z, the sign vector σ(U) will have only one 0-component. To obtain an arbitrary SZT
for a given WZT Z, one can reverse the sign on any single component of σ, and add new
components that are multiples of given ones. In the following section, we will see that
this exactly corresponds to reorientation and to the introduction of parallel elements, and
loops, into the oriented matroid associated with the situation.

�� From Strong Tilings to Liftings�

The remaining part of the Bohne-Dress Theorem is the fact that the familyO constructed
in Theorem 3.3 actually corresponds to an oriented matroid. There are various different
ways to establish that.

1. A direct method would be to verify that O itself is an affine oriented matroid, as
studied and axiomatized by Karlander [8].

2. One could modify the functions Fi(x) of the Section Lemma 3.2 so that the graph
becomes a subcomplex of the barycentric subdivision of the WZT. Then the set of
graphs yields a topological realization of the affine oriented matroid O. (The graphs
of these functions intersect like affine pseudohyperplanes; a complete topological
realization of all of L(O) can be constructed in the boundary of the prism Z(V )×I .)
Thus, one could verify the axioms for pseudoarrangements.

3. Alternatively, one can verify a set of covector axioms for the associated full oriented
matroid, i.e., prove the Theorem 4.3 below by direct verification of axioms. This
becomes feasible (using induction on the number of elements) if one uses that every
tiling can be built up from two smaller ones, obtained by shrinking and projection
of a zone, corresponding to deletion resp. contraction of an element in the oriented
matroid. This is what Bohne did in his dissertation [3].

4. In our treatment, we also rely on deletion and contraction to proceed by induction.
The fact that these two operations work properly relies on the geometry of the
Section Lemma 3.2. However, instead of verifying the covector axioms, we apply
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a very powerful criterion (Theorem 4.1). Loosely, it states that a given structure
represents an oriented matroid if it properly combines its deletion and its contrac-
tion, and those are oriented matroids. The criterion combines ideas from Lawrence’s
original proof [7] of the “Topological Representation Theorem” with Las Vergnas’
“Single Element Extension Theorem” [9] [2, Sect. 7.1].

Theorem 4.1. Let L′,L′′ ⊆ {+,−, 0}[n−1] be two oriented matroids, of rank r respec-
tively of rank r − 1, such that L′′ ⊆ L′.

(1) There is an oriented matroid L ⊆ {+,−, 0}[n] such that L\n = L′ and L/n = L′′.

The oriented matroid L has rank r. It is unique up to reorientation of the element n.

(2) Given the oriented matroid L ⊆ {+,−, 0}[n] of rank r extending L′ with L/n = L′′,
there is a unique function

σ : C∗(L′) −→ {+,−, 0}

satisfying
(X, σ(X)) ∈ L for all X ∈ C∗(L′),

known as the localization of the extension L of L′.

In terms of L′, L′′ and the localization σ, the oriented matroid L is given by

L = {(X, 0) : X ∈ L′′}
∪ {(X,+) : X ∈ L′, and X ≥ Y for some Y ∈ C∗(L′) with σ(Y ) = +}
∪ {(X,−) : X ∈ L′, and X ≥ Y for some Y ∈ C∗(L′) with σ(Y ) = −}

(3) The localization σ of (2) is determined, uniquely up to a global sign, by the following
three properties:

(i) σ(−X) = −σ(X) for all X ∈ C∗(L′), [antisymmetry]

(ii) σ(X) = 0 if and only if X ∈ L′′, [localization]

(iii) σ(X1) = σ(X2)
if X1, X2 ∈ C∗(L′) are adjacent, and if no X ∈ C∗(L′′) satisfies X ≤ X1 ◦X2,
i.e., if X1 and X2 are connected by an edge X1 ◦X2 = X2 ◦X1 in the pseudo-
arrangement representing L′, and the subsphere L′′ does not meet this edge.

Proof.
(1) According to the Topological Representation Theorem (see [2, Chaps. 4 and 5]),

the order complex Δ(L′\0) is a PL (r−1)-sphere, and the subcomplex Δ(L′′\0) describes
an embedded (r−2)-subsphere Sr−2 ↪→ Sn ⊆ Sr−1. At this point, we choose one of the
two hemispheres in Sr−1, and call it the positive side of the embedded (r−2)-subsphere
Sn.

For every rank 2 contraction L′/A of the oriented matroid L′, the corresponding con-
traction L′′/A ⊆ L′/A has rank 1 or 2, and thus defines an extension of L′/A by a regular
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element resp. by a loop. From this, the Single Element Extension Theorem of Las Vergnas
[9] [2, Thm. 7.1.8(ii)] guarantees the existence of a unique extension L.

Uniqueness of the extension follows from the fact that the graph of an affine arrange-
ment (here: all the vertices and edges that lie on one side of the “new” pseudosphere Sn)
is connected. This means that there is only a global choice of the “positive side” for the
new pseudosphere Sn, but as soon as one vertex is chosen to be on the positive side, the
others are determined. The connectedness result is a trivial special case of the fact that
the whole complex of bounded faces (i.e., faces contained in the positive side of the new
pseudosphere) is contractible [2, Thm. 4.5.7(ii)].

(2) The existence of the localization σ for any single element extension is elementary
[2, Prop. 7.1.4(i)]. In a pseudoarrangement realization of L′, the function σ records for
every vertex whether it is supposed to be on the ‘new pseudosphere’, on its positive side,
or on its negative side.

The formula for the ‘correct’ family L realizing the extension corresponding to σ now
follows by consideration of a topological realization. (This is the covector analogue of the
— more complicated — formula for cocircuits given in [2, Prop. 7.1.4(ii)].) Topologically,
the formula asserts that a cell lies on the positive hemisphere S+

n if and only if it contains
a vertex in the positive hemisphere. This is because of the combinatorial fact that every
covector is a conformal product of cocircuits, see [2, Prop. 3.7.2].

[As a corollary we obtain that the extension can actually be constructed by embedding
Δ(L′′\0) into Δ(L′\0). See also [11, Sect. 2] for a related discussion, where this is asserted
without a proof.]

(3) Finally, this follows from the Single Element Extension Theorem [2, Thm. 7.1.8,
Fig. 7.1.6], which characterizes the ‘permissible’ localizations explicitly. Here we know
from (1) that the distribution of zeroes and non-zeroes according to (ii) is permissible;
condition (iii) shows σ is constant on the part of a pseudoline that is contained in an open
hemisphere of Sn, and (i) shows that the two hemispheres get opposite signs.

Lemma 4.2 (Projection & Shrinking). Let Z be a WZT of a zonotope Z, and let
O = {σ(U) : U ∈ Z} be the set of sign vectors that makes it into a SZT according to
Theorem 3.3.
Shrinking. The shrinking of the n-th zone,

Z\n := {U − vn : σ(U)n = +} ∪
{U + vn : σ(U)n = −} ∪
{(U + vn) ∩ (U − vn) : σ(U)n = 0}

is a weak zonotopal tiling of (Z + vn) ∩ (Z − vn), with labels O′ = {X : (X, σ) ∈
O for some σ ∈ {+,−, 0}}.
Projection. The projection of the n-th zone,

Z/n := {πn(U) : U ∈ Zn}

is a weak zonotopal tiling of πn(Z), with labels O′′ = {X : (X, 0) ∈ O}.
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Proof. In other words, the shrinking of the n-th zone is geometrically realized by moving
up all the zonotopes below the zone, and down all the zonotopes above the zone, each by
half the length of the zone.

This ‘shrinking’ of the n-th zone realizes the affine oriented matroid O(L′) corresponding
to L′.

Similarly, the ‘projection’ of the n-th zone parallel to the corresponding line segment
realizes the affine oriented matroid O(L′′) associated with L′′.

All the necessary information to verify our geometric intuition for these constructions is
contained in Section Lemma 3.2.

Theorem 4.3 [3, Thm. 4.1]. Let V ∈ IRd×n be a configuration of vectors of rank
r − 1 ≤ d, let Z(V ) be the zonotope of dimension dim(Z(V )) = r it spans, and let
O ⊆ {+,−, 0}[n] be a strong zonotopal tiling of Z(V ). Then

L(O) := {(X,+) : X ∈ O} ∪ {(−X,−) : X ∈ O}
∪ {(X, 0) : X ∈ L(V )} ⊆ {+,−, 0}[n]∪g (∗)

is an oriented matroid of rank r, which is a lifting of

L(O)/g = L(V ).

Proof. Let K := L(O) ⊆ {+,−, 0}[n]∪g be the family of sign vectors defined by (∗),
and derive from it two new families, L′ := K\n and L′′ := K/n. These two families
L′,L′′ ⊆ {+,−, 0}[n−1]∪g satisfy L′′ ⊆ L′ by construction, and they are easily verified to
arise as L′ = L(O′) resp. L′′ = L(O′′), from the shrinking and the projection of the n-th
zone, where

O′ = {X : (X, σ) ∈ O for some σ ∈ {+,−, 0}}
and

O′′ = {X : (X, 0) ∈ O}
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according to Lemma 4.2.
By induction on n we get that L′ and L′′ are oriented matroids of ranks r − 1 and

r, respectively, so we are in the situation of Theorem 4.1. (The case where L′ has rank
r − 1, and L′ = L′′, is trivial.)

Theorem 4.1(1) states the existence of an oriented matroid L ⊆ {+,−, 0}[n]∪g of rank
r whose deletion is L\n = L′, and whose contraction is L/n = L′′, and we now will verify
that L = K (up to reorientation of the element n).

Define a function σ : C∗(L′) −→ {+,−, 0} by the condition

(X, σ(X)) ∈ K for all X ∈ C∗(L′).

This function is well-defined since every facet of the SZT O′ arises from a unique facet of
O, and similarly every facet of Z\n comes from a unique facet of Z.

Geometrically, σ(X) indicates whether the corresponding full-dimensional tile ZX of
the shrinking Z\n lies “below the zone Zn” (σ(X) = −), “above the zone” (σ(X) = +)
or “in the zone” (σ(X) = 0). Similarly, it classifies the (d− 1)-dimensional facets of the
“shrunk” zonotope Z(V \n): they get positive sign if they come from facets of Z above
the zone, negative sign if they were below the zone, etc.

Now we verify that this localization function σ satisfies the characterization of Theorem
4.1(3). By construction we find that the conditions (i) and (ii) are satisfied. For (iii), we
consider two adjacent cocircuits X1, X2 of L′. Since they are adjacent, we may assume
— by (i) — that their g-components are + or 0. Thus they correspond to tiles of Z\n or
to facets of Z(V \n).

Now we reverse the shrinking, and consider the tiles or facets which correspond to X1

and to X2 in Z. They are still adjacent, unless they are separated by a face Z(X,0) in the
zone. Then in the shrunk tiling we have that the intersection of ZX1 and ZX2 is the tile
ZX with X = X1 ◦X2, such that X ∈ C∗(L′′). Our drawing represents this situation in
the case where X1

g = 0 corresponds to a facet of Z(V \n), but X2
g = + corresponds to a

tile in Z\n. Here X1 gets the sign σ(X1) = +, but σ(X2) = −.

X1

Z/n : X2 Z :

(X1,+)

(X, 0)

(X2,−)

But adjacent tiles and facets that are not in the zone Zn have the same σ-sign. This
implies (iii), and thus σ defines a single element extension L of L′ whose contraction is
L′′.

Now we use the formula for L from Theorem 4.1(2) to see that the extension L coincides
with the family of sign vectors K = L(O) proposed by Theorem 4.3.
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Finally, the fact that L is a lifting of L(O)/g = L(V ) is clear by construction. The
claim that O determines L(O) is well-known (“the affine oriented matroid determines the
oriented matroid”), see [2, p. 420].

�� Remarks�

(1) To study the combinatorics of infinite zonotopal tilings (e.g., tilings of the whole
euclidean plane IR2), one partially need different terminology and tools. We refer to
Bohne [3, Chapter 6] for a development of multiple oriented matroids to this end.

(2) It is an unsolved problem to provide any kind of representation of general oriented
matroids by a polytopal (zonotopal) complex. For example, Theorem 4.3 proves that in
the case where L/g is a realizable oriented matroid of rank d, the d-dimensional simplicial
complex Δ(L+) considered in [2, Sect. 4.5] can be represented by the barycentric subdi-
vision of a zonotopal tiling, and thus as a simplicial complex embedded into IRd. It is not
even clear that such a representation of an affine oriented matroid — by straight simplices
in IRd — exists in the general case.

(3) In conclusion, we want to show how the close conection between zonotopes and
oriented matroids, as established by the Bohne-Dress Theorem, can be used to translate
results between the two areas.

In one direction, questions about the combinatorics of an (affine) pseudoarrangement
translate to corresponding questions about the dual cell complex, which is realized by the
corresponding zonotopal tiling.

For example, a theorem of Shannon [15] [2, Thm. 2.1.5] states that for every straight
projective arrangement of n hyperplanes of rank d, every hyperplane has at least d (full-
dimensional) simplicial regions adjacent to it, and at least n − d simplicial regions not
adjacent to it. In particular there are at least n simplicial regions in total. Simplicial
regions in pseudoarrangements correspond to simple vertices in the zonotopal tiling: ver-
tices of degree d on the boundary of Z, or vertices of degree d + 1 in the interior of Z.
(For example, the tiling in Section 0, with d = 2, has 6 simple vertices on the boundary,
and 8 in the interior.) Thus we get the following.

• Every d-dimensional zonotopal tiling with n zones and realizable oriented matroid
has at least n simple vertices. Moreover, there are at least d simple vertices on the
boundary.

The analogous result is no longer true for the non-realizable case, see Richter-Gebert [12].
For example, there is an oriented matroid R(20) of rank 4 on 20 elements such that the
element 8 is not contained in a mutation, and R(20)/8 is realizable [12, Theorem 2.3].
This translates — via the Bohne-Dress Theorem — to the following.

• There is a zonotopal tiling of a 3-dimensional zonotope with 19 zones which that
does not have a simple vertex on the boundary.

Similarly, a special case of Las Vergnas’ conjecture [10] [2, Conj. 7.3.10] for oriented
matroids translates to the conjecture that every zonotopal tiling has at least one simple
vertex. This would be interesting to know even in 3-space.
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On the other hand there are results and questions about zonotopal tilings and sub-
divisions of zonotopes which can profitably be translated to an oriented matroid setting,
via the Bohne-Dress Theorem. For example, a special case of the “Generalized Baues
Conjecture” of Billera, Kapranov & Sturmfels [1] states that the space of all zonotopal
tilings of a given zonotope, and should have the homotopy type of a sphere. It was shown
by Sturmfels & Ziegler [17] that — via the Bohne-Dress Theorem — this is equivalent to
the following

• Conjecture: the simplicial realization of the poset of all single element liftings of a
realizable oriented matroid has the homotopy type of a sphere.

In the dual formulation, as the “extension space conjecture” for realizable oriented ma-
troids, this was studied in [17], using tools from oriented matroid theory. In general, for
non-realizable oriented matroids, this fails:

• lifting spaces of non-realizable oriented matroids may have non-trivial homotopy
types and can be even disconnected,

as shown by Mnëv & Richter-Gebert [13]. There is evidence, see [11], that the lifting space
is substantially better behaved in the case of all liftings of a realizable oriented matroid,
that is, in the case where the liftings can be represented by zonotopal tilings according to
the Bohne-Dress-Theorem.
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