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Abstract. Following an ‘Ansatz’ of Björner & Ziegler [BZ], we give an axiomatic

development of finite sign vector systems that we call complex matroids. This includes, as

special cases, the sign vector systems that encode complex arrangements according to [BZ],

and the complexified oriented matroids, whose complements were considered by Gel’fand

& Rybnikov [GeR].

Our framework makes it possible to study complex hyperplane arrangements as en-

tirely combinatorial objects. By comparing with the structure of 2-matroids, which model

the more general 2-arrangements introduced by Goresky & MacPherson [GoM], one can

isolate the essential combinatorial meaning of a “complex structure”.

Our development features a topological representation theorem for 2-matroids and

complex matroids, and the computation of the cohomology of the complement of a 2-

arrangement, including its multiplicative structure in the complex case. Duality is estab-

lished in the cases of complexified oriented matroids, and for realizable complex matroids.

Complexified oriented matroids are shown to be matroids with coefficients in the sense of

Dress & Wenzel [Dr1], but this fails in general.
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0. Introduction.

For z ∈ C define a complex sign s(1)(z) ∈ {i, j,+,−, 0} according to whether z imaginary

part is positive or negative, or z is real and positive, negative or zero:

s(1)(z) :=





i if ℑ(z) > 0,
j if ℑ(z) < 0,
+ if ℑ(z) = 0 and z > 0,
− if ℑ(z) = 0 and z < 0,
0 if z = 0.

If B = {H1, . . . ,Hn} is an arrangement of linear complex hyperplanes in Cd given by

Ha = ker(ℓa), then we can associate a sign vector

s(1)

B
(z) :=

(
s(1)(ℓ1(z)), . . . , s

(1)(ℓn(z))
)

∈ {i, j,+,−, 0}n

with every z ∈ Cd. Using this simple procedure described in [BZ, Sect. 1], one can encode

every complex hyperplane arrangement B in Cd by a system

K = K(B) :=
{
s(1)

B
(z) : z ∈ Cd

}
⊆ {i, j,+,−, 0}n

of “complex sign vectors”. This sign vector system encodes the topological structure of B

up to homeomorphism. It satisfies properties that are quite analogous to the (covector)

axioms for oriented matroids.

More generally, let B′ be a 2-arrangement in the sense of Goresky & MacPherson

[GoM]: an arrangement of codimension-2 subspaces in IR2d such that all intersections have

even codimension. After a choice of defining equations a very similar procedure [BZ,

Sect. 8] associates a sign vector system K(B′) ⊆ {i, j,+,−, 0}n with every 2-arrangement.

In the following, we will identify the main structural properties of the sign vector

systems of complex arrangements and of 2-arrangements, and use them to develop axiom

systems for 2-matroids and complex matroids. This proposes an answer to the question

in the title, which arises naturally from our work in [BZ], and was also posed to us by

R. D. MacPherson.

The two axiom systems are shown to be complete in the following sense: every 2-

matroid can be represented by a pseudo 2-arrangement, that is, by an arrangement of

codimension-2 subspheres in some S2d−1 (with an “oriented matroid frame”). This tech-

nical result allows us to reduce the theory of 2-matroids to the well-studied [BLSWZ]

theory of oriented matroids. Every complex matroid satisfies an extra axiom, which is

strong enough to guarantee a topological structure that resembles a complex arrangement

at least up to its cohomological invariants.

The motivation for all this work is at least fourfold:

— The axiomatic framework allows us to test the quality of the combinatorial model. A

successful development of the theory indicates that one has identified all the relevant
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combinatorial properties. Here “successful” means that the combinatorial model can

be shown to capture the main geometric and topological properties of the situation.

In our case, the main tests are

(i) topological representation,

(ii) duality theory, and

(iii) cohomological structure.

— The combinatorial framework can help in the study of complex arrangements, by

explaining and exploiting the analogy to real arrangements and their description in

terms of oriented matroids.

— The question about how well the geometric situation can be approximated by combina-

torial methods is quite fundamental. Striking recent instances of this question are the

problem of the “MacPhersonian” which appears in the work of Gel’fand & MacPher-

son on Pontrjagin classes [MPh] [GeM], and the “Generalized Baues Problem” that

occurred in Billera, Kapranov & Sturmfels’ [BKS] work on polyhedral subdivisions.

— Finally, the question “What is a complex structure?” is a fundamental one. In the

axiomatic approach to 2-matroids this gets a precise framework: we can develop the

combinatorial model for “even subspace arrangements” à la Goresky & MacPherson

[GoM], and then isolate the combinatorial conditions that distinguish the arrange-

ments with a complex structure from general ones.

For the development of this theory, we have three different options.

1. We could do a plain axiomatic development, starting from a basic axiom system. This

could be done very much in parallel to the theory of oriented matroids, as exposited

in [BLSWZ].

2. Starting from the axioms of a 2-matroid, we can construct an oriented matroid of dou-

ble rank that “subdivides” it. Then the well-developed theory of oriented matroids can

be used to derive the fundamental structural properties of 2-matroids. This amounts

to a development of the theory of 2-matroids on top of oriented matroid theory.

This will be done in the following.

3. One could design a theory of “matroids with cellular coefficients” that covers the the-

ory of oriented matroids as well as the theory of complex matroids (in various strati-

fications) and other relevant cases (e.g. the matroids with quaternionic coefficients).

This development in generality would probably be the most powerful alternative.

One step in this direction is the theory of “matroids with coefficients” of Dress &

Wenzel [Dr1] [DW1,2,3], which is very much in the spirit of what is needed. However,

it is (in our opinion) too closely modeled after the paradigm of rings modulo a sub-

group of units, and does not cover the case of 2-matroids, see Section 6. We will not

attempt to carry out this program here.
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1. An Axiom System.

Most of the following conventions, definitions and terminology are derived from oriented

matroid conventions [BLSWZ, Chap. 4], as used before in [BZ, see Def. 4.1]. We repeat

them here in order to make this discussion reasonably self-contained. Also, we adapt the

notation of elimination sets from [Kar], which turns out to be quite useful.

Definition 1.1. The set of complex signs is Σ2 := {i, j,+,−, 0}. Its partial order is given

by i, j > +,− > 0, that is:

s s

s s

s

A
AA�

��
�

��@
@@+

i

−

j

0

Let E denote a finite ground set. A (complex) sign vector is an element of {i, j,+,−, 0}E .

Sign vectors are partially ordered component-wise.

Definition 1.2. Let Z,W ∈ {i, j,+,−, 0}E be complex sign vectors.

(i) The real set of Z is

Re(Z) := {a ∈ E : Za ∈ {+,−, 0}} ,

the zero set of Z is

Ze(Z) := {a ∈ E : Za = 0} .

Hence, Ze(Z) ⊆ Re(Z) ⊆ E.

We use the notation Z := {e ∈ E : Ze 6= 0} = E\Ze(Z) for the non-zero support.

(ii) A sign vector X will be called real if it lies in {+,−, 0}E , that is, if Re(X) = E.

A sign vector Z is imaginary if it lies in {i, j, 0}E , that is, if Re(Z) = Ze(Z). In this

case we can write it as Z = iY , for a real sign vector Y .

(iii) The composition of Z and W is the sign vector Z◦W ∈ {i, j,+,−, 0}E defined

component-wise by

(Z◦W )a := Za◦Wa =

{
Wa if Wa > Za,
Za otherwise.

(iv) The separation set of Z and W is

S(Z,W ) := {a ∈ E : Za = −Wa 6= 0}

= {a ∈ E : (Z◦W )a 6= (W◦Z)a} .

(v) Every Z ∈ {i, j,+,−, 0}E can be written as Z = X◦iY for real vectors X,Y ∈

{+,−, 0}E . In this case Y and Y ◦X are uniquely determined.
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In this situation, we write ℑ(Z) := Y for the imaginary part of Z, and E(Z) := i(Y ◦X)

for the epsilon scaling of Z.

Note that all of these operations on vectors are performed component-wise, which

makes them easy to handle. They should all be interpreted with respect to the s(1)-sign

function

s(1) : C −→ {i, j,+,−, 0}, x+iy 7−→





i if y > 0,
j if y < 0,
+ if y = 0, x > 0,
− if y = 0, x < 0,
+ if y = x = 0.

This is also applied to vectors component-wise, so that if z ∈ Cd, then Z := s(1)(z) records

the complex signs of the components of z. The ratio behind part (v) of Definition 1.2 is

that E(Z) = s(1)(eiǫz) for small enough ǫ > 0. In particular, E(Z) is always imaginary,

E(E(Z)) = E(Z), and Ze(E(Z)) = Ze(Z).

Definition 1.3. (see [BZ, §9.4]) Let E be a finite ground set. A 2-matroid is a set

K ⊆ {i, j,+,−, 0}E of complex sign vectors that satisfies the following set of axioms.

(K0) (00 . . . 0) ∈ K, [Zero]

(K1) Z ∈ K implies −Z ∈ K, [Symmetry]

(K2) for all Z,Z ′ ∈ K we have Z◦Z ′ ∈ K, [Composition]

(K3) for all Z ′, Z ′′ ∈ K and f ∈ S(Z ′, Z ′′), there is a Z ∈ K with

Zf < Z ′
f ,

Zg = (Z ′◦Z ′′)g for g /∈ S(Z ′, Z ′′), and

Zg ≤ Z ′
g or Zg ≤ Z ′′

g for g ∈ S(Z ′, Z ′′), [Elimination]

(K4) for Z ∈ K, Zg 6= 0 and σ ∈ {+,−, i, j}, there is a Z ′ ∈ K with Ze(Z ′) = Ze(Z)

and Z ′
g = σ. [Rotation]

These axioms are analogs of the covector axioms for oriented matroids [EdM] [BLSWZ,

4.1.1]. In fact, L ⊆ {+,−, 0}n is an oriented matroid if and only if it satisfies (K0)

– (K3). In this case, iL ⊆ {0, i, j}n and L ⊎ {(ii . . . i), (jj . . . j)} also satisfy the ax-

ioms (K0) to (K3), but they are not 2-matroids. (For example, this includes the system

{(00), (+0), (−0), (ii), (jj)}.) The only ‘new ingredient’ is the rotation axiom (K4).

We note that (K0) is a simple consequence of (K1) and (K3).

The third condition in (K3), for the case g ∈ S(Z ′, Z ′′), was not included in [BZ,

Thm. 4.3(3), 9.4(3)]. Note that it is vacuous in the oriented matroid case. We do not

know whether it is implied by the other axioms. It enters the proofs for Lemmas 1.5 and

2.3, which are crucial steps of our development.
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Let K ⊆ {i, j,+,−, 0}E be a sign vector system, and let Z ′, Z ′′ ∈ K be two sign vectors

and f ∈ S(Z ′, Z ′′). We say that Z ∈ K eliminates f between Z ′ and Z ′′ if





Zg < Z ′
g for g = f ,

Zg = (Z ′◦Z ′′)g for g /∈ S(Z ′, Z ′′),

Zg ≤ Z ′
g or Zg ≤ Z ′′

g for g ∈ S(Z ′, Z ′′)\f .

We define the elimination set If (Z ′, Z ′′) to be the set of all sign vectors that eliminate f

between Z ′ and Z ′′.

With this, we can restate the 2-matroid axioms in more “shorthand” notation:

(K0) 0 ∈ K, [Zero]

(K1) K = −K [Symmetry]

(K2) K◦K ⊆ K [Composition]

(K3) f ∈ S(Z ′, Z ′′) implies If (Z ′, Z ′′) 6= ∅, [Elimination]

(K4) Ze{Z ∈ K : Zg ∈ {0, σ}} = Ze(K) for σ 6= 0, g ∈ E. [Rotation]

In the next section, we will give a precise topological representation of all 2-matroids.

The following should suffice as examples, for the moment. See also Example 4.3, which

contains a classification of all 2-matroids on 2 elements.

Proposition 1.4.

(1) For every complex arrangement, the sign vector system K := s(1)
B

(Cd), as described in

the introduction, forms a 2-matroid.

(2) The sign vector system derived from any 2-arrangement B = {H1, . . . ,Hn} in IR2d by

choosing defining equations (as in [BZ, Ex. 8.5] [Z, Thm. 4.1]) is a 2-matroid. For

this let Ha = {z ∈ IR2d : la(z) = l′a(z) = 0}, where rank{la, l′a : a ∈ A} is even for all

A ⊆ {1, . . . , n}, and set

K :=
{
s(1)

B
(z) :=

(
s(1)(l1(z)+il′1(z)), . . . , s

(1)(ln(z)+il′n(z))
)

: z ∈ IR2d
}
.

(3) The sign vector system K := L◦iL of a complexified oriented matroid is a 2-matroid,

where L ⊆ {+,−, 0}n is the covector span of an oriented matroid [GeR] [BZ, Ex. 8.6].

(4) The system K := L′◦iL for L,L′ ⊆ {+,−, 0}n is a 2-matroid if and only if L′,L are

oriented matroids, and the underlying matroids of L′ and L coincide (i.e., Ze(L) =

Ze(L)). In this case we refer to K := L′◦iL as a quasi-complexified 2-matroid.

Proof. Note that (1) is a special case of (2), and (3) is a special case of (4). The verification

is easy in each of these cases: see also the the proof given for part (1) in [BZ, Thm. 4.3].

For (2), we can find z ∈ IR2d with s(1)
B

(z) = Z for every Z ∈ K. Then we have

s(1)
B

(0) = 0 for (K0), s(1)
B

(−z) = −s(1)
B

(z) for (K1), and s(1)
B

(z + ǫz′) = s(1)
B

(z)◦s(1)
B

(z′) for
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small enough ǫ > 0. For (K3) we consider s(1)
B

(λz+(1−λ)z′) and adjust λ (with 0 < λ < 1)

to satisfy s(1)((lf + il′f )(λz + (1−λ)z′)) < s(1)((lf + il′f )(z)). Finally, for (K4) we consider

±s(1)( 1
zg

z) and ±s(1)( i
zg

z).

In the situation of (4) it is easy to see that L,L′ have to be oriented matroids, see

parts (ii) and (iii) of Lemma 1.5 below. For the converse, (K0), (K1) and (K2) are

satisfied by construction. For (K3), consider X ′◦iX, Y ′◦iY ∈ L′◦iL. If e ∈ S(X,Y ),

then we take U ∈ Ie(X,Y ), to find that (X ′◦Y ′)◦iU ∈ Ie(X
′◦iX, Y ′◦iY ) eliminates cor-

rectly. For e ∈ S(X ′, Y ′) with Xe = Ye = 0, we take U ′ ∈ Ie(X
′, Y ′), and check that

U ′◦i(X◦Y ) ∈ Ie(X
′◦iX, Y ′◦iY ) eliminates as required. Finally, (K4) requires that for ev-

ery non-zero covector X ∈ L we find a non-zero covector X ′ ∈ L′ with the same support,

and conversely. Considering minimal non-zero covectors (cocircuits), this means that the

underlying matroids of L and L′ coincide.

In the following lemma we construct a matroid and two oriented matroids associated

with a 2-matroid, generalizing the discussion of [BZ, Sect. 4].

Lemma 1.5. Let K ⊆ {i, j,+,−, 0}E be a 2-matroid.

(i) L := {Ze(Z) : Z ∈ K}, ordered by inclusion, is a geometric lattice.

The corresponding matroid is denoted by M = M(K). The rank of K is defined to be

r = r(K) := r(M(K)) = r(L).

(ii) L := {ℑ(Z) : Z ∈ K} ⊆ {+,−, 0}E is the set of covectors of an oriented matroid

Mir = Mir(L), whose rank is denoted by rir := r(Mir).

(iii) L′ := K ∩ {+,−, 0}E is the set of covectors of an oriented matroid M′ = M′(L),

whose rank is denoted by r′ := r(M′).

(iv) There are strong maps of matroids M ir := Mir −→ M −→ M′ =: M ′. In particular,

r′ ≤ r ≤ rir.

Proof. (i) We consider L := Ze(K) ⊆ 2E as a collection of subsets (‘flats’) of E. It

contains E by (K0) and is closed under intersection by (K2).

For every flat A′ ∈ L we have to show that the minimal flats that properly contain A′

partition E\A′. Let e /∈ A′ and let A′ ∪ e be the smallest flat that contains A′ ∪ e. If it is

not minimal, then we find A′ ⊂ A′′ ⊂ A′ ∪ e and f ∈ A′′\A′ with e /∈ A′′.

Now by (K4) we can find Z ′, Z ′′ ∈ K with Ze(Z ′) = A′, Ze(Z ′′) = A′′, and Z ′
e =

−Z ′′
e = +. By (K3) there is some Z ∈ K with Ze = 0, Zf 6= 0 and f ∈ Z ⊆ (Z ′ ∪ Z ′′)\e =

Z ′\e. Hence for A := Ze(Z) we get e ∈ A with A′ ⊂ A, f /∈ A, contradicting the definition

of A′ ∪ e.

(ii) The axioms (K0) — (K3) for 2-matroids reduce to the covector axioms for oriented

matroids [EdM] [BLSWZ, 4.1.1] under the map Z 7−→ ℑ(Z).

(iii) Similarly, the axioms (K0) — (K3) for the 2-matroid K restrict to the oriented

matroid axioms for L′.
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(iv) Let A = Ze(Z) ∈ L for some Z ∈ K. By reorientation (K4) we get for every

e ∈ E\A a covector Z(e) ∈ L with Ze(Z(e)) = Ze(Z) and Z
(e)
e = i. Composing all these

covectors Z(e) for e ∈ E\A we get by (K2) a covector Z ′ ∈ L with Ze(Z ′) = Ze(Z) and

Z ′ ∈ {i, j, 0}E . For this Z ′ we find A = Ze(Z) = Ze(Z ′) = Ze(ℑ(Z ′)) ∈ Ze(L) = L(Mir).

Finally, for X ∈ L′ we also have X ∈ K, so every flat of M ′ is a flat of M .

The following theorem characterizes quasi-complexified 2-matroids and complexified

oriented matroids. Its second part extends [BZ, Prop. 5.8], whose proof is not applicable

here.

Theorem 1.6.

(1) The following conditions are equivalent, for every 2-matroid K ⊆ {i, j,+,−, 0}E .

(i) r = rir.

(i′) r = r′.

(ii) M = M ir, i.e. for every Z ∈ K there is some Z ′ ∈ K with Z ′ = ℑ(Z).

(ii′) M = M ′, i.e. for every Z ∈ K there is some real X ∈ K with X = Z.

(iii) iℑ(K) ⊆ K.

(iii′) K = (K ∩ {+,−, 0}E) ◦ iℑ(K).

(iv) K is a quasi-complexified 2-matroid.

(2) The following conditions are all equivalent, and imply the previous ones, for every

2-matroid K ⊆ {i, j,+,−, 0}E .

(v) ℑ(K) ⊆ K.

(vi) K = ℑ(K) ◦ iℑ(K).

(vi′) K = (K ∩ {+,−, 0}E) ◦ i(K ∩ {+,−, 0}E).

(vii) K ∩ {+,−, 0}E = ℑ(K).

(viii) K is a complexified oriented matroid.

Proof. We start with part (1). (i)⇐⇒(ii) follows from Lemma 1.5(iv), since every rank

preserving strong map of matroid on the same ground set is the identity. ¿From the same

argument we get (i′)⇐⇒(ii′).

(iii)=⇒(ii) is obvious. Also, we get (iii′)=⇒(ii′), since the underlying matroids of ℑ(K)

and of K ∩ {+,−, 0}E have to coincide by Proposition 1.4(4).

For (ii)=⇒(ii′) we use that every support is a union of minimal non-empty supports.

Thus it suffices to consider Z ∈ K with minimal non-empty support. By (K4) we may

assume that Z is not imaginary. Then from (ii) we get that there is some Z ′ ∈ K with

Z ′ =ℑ(Z)⊂ Z, so Z ′ = 0 by minimality, and Z is real.

For (ii′)=⇒(iii) let Z ∈ K have some {+,−}-components. By (ii′), we find a real

vector X with the same support as Z. Thus by elimination between Z and ±X we find a

new vector in K with the same imaginary components, but less {+,−}-components than

Z. Iterating, we get iℑ(Z) ∈ K.
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For (iii)=⇒(iii′), let Z = X◦iY ∈ K for X,Y ∈ {+,−, 0}E . ¿From (iii) we know that

iY ∈ K, so eliminating between Z and −iY we obtain a vector Z ′ ∈ K whose support is

contained in that of Z, and which agrees with Z in the real components of Z. Iterating

this, we obtain a real vector Z ′′ ∈ K which agrees with Z in the real components of Z,

and thus Y ◦X = Y ◦Z ′′ ∈ K.

Finally, (iii′)⇐⇒(iv) is clear.

In part (2), observe that the implications (viii)⇐⇒(vi)=⇒(v)=⇒(ii) are obvious.

For (v)=⇒(vi) we use that M ir −→ M ′ is a strong map by Lemma 1.5(4). Now from

(v) we get that every flat of M ir is a flat of M ′, and thus M ir = M ′. But now from

ℑ(K) ⊆ K ∩ {+,−, 0}E we conclude that the oriented matroids ℑ(K) and K ∩ {+,−, 0}E

have the same set of cocircuits, and thus they coincide.

Now (viii)=⇒(vi′)=⇒(vii)=⇒(v) is again clear, and we are done.

We will call e ∈ E a loop of K if Ze = 0 for all Z ∈ K. The loops of a 2-matroid K

coincide with the loops of its underlying matroid M , and with the loops of Mir (by Axiom

(K4)). In some cases (like Theorem 3.1) it is convenient to assume that K is loop-free, or

that all loops have been deleted from K (in the obvious way).

Finally, for any sign vector Z ∈ {i, j,+,−, 0}n and A ⊆ [n] := {1, . . . , n} we define

the reorientation −AZ of Z on A by

(−AZ)a =

{
−Za if a ∈ A,
Za otherwise.

Similarly, we define the reorientation of any sign vector system K ⊆ {i, j,+,−, 0}n by

−AK := {−AZ : Z ∈ K}. Clearly −AK is a 2-matroid if and only if K is one.

Remark 1.7. The reader may observe that the main results of our theory, including

Lemma 2.4 and Theorem 3.5 below, can be generalized to 2-matroids that do not neces-

sarily satisfy (K4). Such 2-matroids can, besides loops, contain elements that are real or

imaginary in the sense that Ze ∈ {+,−, 0} resp. Ze ∈ {i, j, 0} for all Z ∈ K. This covers

the cases of oriented matroids L (for which every element is real) and of systems of the

form iL, for which all elements are imaginary. We will not pursue this extra generality.

Let us only note that Lemma 1.5(i) becomes false without (K4).
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2. Extension Lemma.

The goal of this section is to prove the Extension Lemma 2.4. This quite innocent-looking

lemma is the key step in our reduction of 2-matroids to oriented matroids. We start with

three simple preparatory lemmas. For simplicity, we write W ∈ [Z ′, Z ′′] if for every e ∈ E

we have We ≤ Z ′
e or We ≤ Z ′′

e , or both. This is satisfied if W ≤ Z ′, or if W ≤ Z ′′, or if

W ∈ Ie(Z
′, Z ′′) for some e ∈ S(Z ′, Z ′′).

Lemma 2.1. Assume that K ⊆ {i, j,+,−, 0}E satisfies (K2). Then

(i) S(Z ′, Z ′′) = S(Z ′◦Z ′′, Z ′′◦Z ′), and

(ii) If (Z ′, Z ′′) = If (Z ′◦Z ′′, Z ′′◦Z ′) for f ∈ S(Z ′, Z ′′).

This is immediate from the definitions. It implies that the axiom (K3) need only be

checked for pairs Z ′, Z ′′ with Ze(Z ′) = Ze(Z ′′) and Re(Z ′) = Re(Z ′′).

Lemma 2.2. Let W,Z ′, Z ′′ ∈ K, with W ∈ [Z ′, Z ′′] and f ∈ S(Z ′, Z ′′).

(i) If Wf < Z ′
f , then f ∈ S(Z ′,W◦Z ′′), and If (Z ′,W◦Z ′′) ⊆ If (Z ′, Z ′′).

(ii) If Wf = Z ′
f , then f ∈ S(W◦Z ′′, Z ′′), and If (W◦Z ′′, Z ′′) ⊆ If (Z ′, Z ′′).

(iii) If Wf < Z ′
f and Z ∈ If (Z ′, Z ′′), then W ≤ W◦Z ∈ If (Z ′, Z ′′).

Proof. The proofs for (i) and (ii) are easy, since we can argue component-wise. For this

note that by replacing Z ′′ −→ W◦Z ′′, resp. Z ′ −→ W◦Z ′′, we get smaller separation sets:

S(Z ′,W◦Z ′′) ⊆ S(Z ′, Z ′′), resp. S(W◦Z ′′, Z ′′) ⊆ S(Z ′, Z ′′). Thus the stronger condition

(i.e., if g is not in the separation set) has to be verified on a smaller set of elements g.

Similarly, (iii) easily follows component-wise. We will do this proof, to demonstrate

the general pattern.

Z ′
f = −Z ′′

f 6= 0, so Zf < Z ′
f , where Wf < Z ′

f . Thus Wf◦Zf < Z ′
f .

If Z ′
g = Z ′′

g , then Zg = Z ′
g, where Wg ≤ Z ′

g. Thus Wg◦Zg ≤ Z ′
g.

If Z ′
g = −Z ′′

g 6= 0, then Zg and Wg are ≤ Z ′
g or ≤ Z ′′

g . Thus Wg◦Zg ≤ Z ′
g or ≤ Z ′′

g .

Lemma 2.3. Assuming (K2), the axiom (K3) is equivalent to

(K3′) S(Z ′, Z ′′) 6= ∅ implies
⋃

g∈S(Z′,Z′′) Ig(Z
′, Z ′′) 6= ∅. [Elimination]

Proof. We use induction on |S(Z ′, Z ′′)|: by Lemma 2.1 we can assume that we are given

Z ′, Z ′′ ∈ K of the same support and f ∈ S(Z ′, Z ′′). By (K3′) there is Z ∈ Ig(Z
′, Z ′′) for

some g ∈ S(Z ′, Z ′′). If Zf < Z ′
f , then we are done. If Zf = Z ′

f then we can replace Z ′

by Z◦Z ′′, and be done by induction and Lemma 2.2(ii). The case Zf = Z ′′
f is handled

symmetrically.

Now we go for the ‘big step’. Figure 2.1 below is supposed to give the intuition for

what is actually happening: we interpret the situation with respect to a real hyperplane
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H ir
e

∼= {Z ∈ K : Ze ∈ {+,−, 0}} and to a flat He
∼= {Z ∈ K : Ze = 0} ⊆ H ir

e of real

codimension 2. The ‘new’ hyperplane H ir
e! is supposed to be inserted in such a way that

He = H ir
e! ∩ H ir

e , where H ir
e! arises from H ir

e by a small rotation in clock-wise order. In

Figure 2.1, each of the 9 cells of the subdivision of the plane by He and He! are labeled by

the pair (Ze, Ze!).

More algebraically, this corresponds to the insertion of a second copy ker(ℓe!) of the

complex hyperplane ker(ℓe), which is given by ℓe!(z) := eiǫℓ(z), for small enough ǫ > 0.

u�
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AA
A
A
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(i, i)

(+, i)
(j, i)

(j,+)
(j, j)

(−, j)

(i, j)

(i,−)

6He

���
He!

X X X X X X X X X X X X X X X X X

Figure 2.1: Sketch for the construction of K ⊎ e! in Lemma 2.4.

Having this picture in mind, we write down the set of sign vectors of the extended

arrangement in terms of the original one, and verify that the extension again satisfies the

axioms.

Extension Lemma 2.4. Let K ⊆ {i, j,+,−, 0}E be a 2-matroid, and e ∈ E. Then

K! := K!
1 ⊎ K!

2 ⊎ K!
3 ⊆ {i, j,+,−, 0}E⊎e!

is a 2-matroid on the extended ground set E ⊎ {e!}, where

K!
1 :=

{
± (Z, i) : Z ∈ K, Ze ∈ {i,+}

}

K!
2 :=

{
± (Z, 0) : Z ∈ K, Ze = 0

}

K!
3 :=

{
± (Z, i),±(Z,+) : W,Z ∈ K, W ≤ Z, We = +, Ze = j

}
.

Note that in this Lemma, K!
1 ⊎ K!

2 = {(Z,E(Ze)) : Z ∈ K}.

Proof. We assume that the axioms (K0) — (K4) hold for K, and using this we verify

“(K0)! — (K4)!”, where (Ki)! denotes the validity of (Ki) for K!. Here (K0)! and (K1)!

are clear by construction.
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(K2)!: Let (Z, τ), (Z ′, τ ′) ∈ K!. Using (K1)!, we may assume that τ ∈ {0,+, i}. We

distinguish three cases:

– If (Z, i) ∈ K!
1, then τ◦τ ′ = i. We get that (Z◦Z ′, i) ∈ K!

1 unless Ze = + and

Z ′
e = j = (Z◦Z ′)e. In this case we get (Z◦Z ′, i) ∈ K!

3.

– If (Z, 0) ∈ K!
2, then τ◦τ ′ = τ ′, Ze = 0, (Z◦Z ′)e = Z ′

e. Furthermore, if W ≤ Z ′,

then Z◦W ≤ Z◦Z ′ with (Z◦W )e = We, so (Z ′, τ ′) ∈ K!
i implies (Z◦Z ′, τ◦τ ′) ∈ K!

i for

i = 1, 2, 3.

– If (Z, τ) ∈ K!
3, then W ≤ Z ≤ Z◦Z ′ with We = +, (Z◦Z ′)e = Ze = j, τ ∈ {+, i}

and τ◦τ ′ ∈ {+, i, j}. In this case we conclude that (Z◦Z ′,+), (Z◦Z ′, i) ∈ K!
3 and

(Z◦Z ′, j) ∈ K!
1, so all bases are covered.

(K3)!: Using (K2)! and Lemma 2.3, it suffices to verify (K3′)!.

For this, let (Z ′, τ ′), (Z ′′, τ ′′) ∈ K! and f ∈ S((Z ′, τ ′), (Z ′′, τ ′′)). With (K2)! and

Lemma 2.1, we can assume that (Z ′, τ ′) and (Z ′′, τ ′′) have the same support, so Z ′
g = ±Z ′′

g

for all g ∈ E, and τ ′ = ±τ ′′. We will distinguish three main cases.

To reduce the number of subcases we have to consider, we make the following obser-

vations. First, using (K1)!, we may assume that Z ′
e ∈ {0,+, i}. Also, if Z ′

e = Z ′′
e and

τ ′
e = −τ ′′

e (in Case II below), then we may assume that τ ′
e ∈ {0,+, i}, using the symmetry

between (Z ′, τ ′) and (Z ′′, τ ′′). Similarly, if Z ′
e = −Z ′′

e and τ ′
e = τ ′′

e (in Case I), then we may

assume that τ ′
e ∈ {0,+, i}, using the symmetry together with (K1)!. Also, by construction

we find that (Z ′
e, τ

′), (Z ′′
e , τ ′′) ∈ {±(i, i),±(+, i), (0, 0),±(j, i),±(j,+)}. In the following

we only consider those non-trivial subcases that are not ruled out by these assumptions

we can make.

Case I: e ∈ S(Z ′, Z ′′), that is, Z ′
e = −Z ′′

e 6= 0.

I.1: Z ′
e = −Z ′′

e = +. This implies τ ′ = −τ ′′ = i. Choose some Z ∈ Ie(Z
′, Z ′′). Then

Ze = 0, and we can use (Z, 0) ∈ K!
2.

I.2: Z ′
e = −Z ′′

e = i. Then τ ′ ∈ {i, j,−}, τ ′′ ∈ {i, j,+}, and there are three subcases left to

consider.

– Let τ ′ = τ ′′ = i. By construction, we get W ′′ < Z ′′ with W ′′
e = +.

Now W ′′
e < Z ′′

e , so by Lemma 2.2(i)(iii) we can find Z ∈ Ie(W
′′◦Z ′, Z ′′) ⊆ Ie(Z

′, Z ′′)

with W ′′ ≤ Z, which implies Ze ∈ {+, i, j}. For Ze ∈ {+, i} we get (Z, i) ∈ K!
1, and

for Ze = j we get (Z, i) ∈ K!
3.

– For τ ′ = −τ ′′ = − we get W ′ < Z ′ and W ′′ < Z ′′ with W ′
e = −, W ′′

e = +.

Now W ′
e < Z ′

e, thus by Lemma 2.2(i)(iii) we can choose a U ′ ∈ Ie(Z
′,W ′◦Z ′′) ⊆

Ie(Z
′, Z ′′) that satisfies W ′ ≤ U ′, and thus − = W ′

e ≤ U ′
e < Z ′

e = i, that is, U ′
e = −.

Symmetrically, we get U ′′ ∈ Ie(Z
′, Z ′′) with U ′′

e = +. Now we choose Z ∈ Ie(U
′, U ′′).

This Z satisfies Z ∈ Ie(Z
′, Z ′′) (check component-wise), and Ze = 0, so (Z, 0) ∈ K!

2

meets all conditions.

– For τ ′ = −τ ′′ ∈ {i, j}, let Z ∈ Ie(Z
′, Z ′′). If Ze = 0, then we have (Z, 0) ∈ K!

2, for

Ze = + we use (Z, i) ∈ K!
1, and for Ze = − we use (Z, j) ∈ K!

1.
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Case II: e /∈ S(Z ′, Z ′′) 6= ∅. In this case we choose some f ∈ S(Z ′, Z ′′), so we have

Z ′
f = −Z ′′

f 6= 0, but Z ′
e = Z ′′

e .

II.1: Z ′
e = Z ′′

e = 0. Take Z ∈ If (Z ′, Z ′′), then (Z, 0) ∈ K!
2 satisfies (K3)!.

II.2: Z ′
e = Z ′′

e = +. Then τ ′ = τ ′′ = i. Taking Z ∈ If (Z ′, Z ′′), we get Ze = Z ′
e = +, so

(Z, i) ∈ K!
1 eliminates as required.

II.3: Z ′
e = Z ′′

e = i. We are left with two subcases:

– For τ ′ = ±τ ′′ = i we take Z ∈ If (Z ′, Z ′′), where Ze = i. From this we get (Z, i) ∈ K!
1,

which satisfies (K3)!.

– τ ′ = τ ′′ ∈ {−, j}. In this case there are W ′ < Z ′, W ′′ < Z ′′ in K with W ′
e = W ′′

e = −.

Now we could have W ′
f < Z ′

f , in which case we can choose Z ∈ If (Z ′,W ′◦Z ′′) ⊆

If (Z ′, Z ′′) with W ′ ≤ Z, by Lemma 2.2(i)(iii). This implies that (Z,−), (Z, j) ∈ K!
3,

and we are done. Analogously we proceed if W ′′
f < Z ′′

f .

The last possibility is that W ′
f = Z ′

f and W ′′
f = Z ′′

f . In this case we choose Z ∈

If (Z ′, Z ′′) and W ∈ If (W ′,W ′′). Now by Lemma 2.2(iii) W ≤ W◦Z ∈ If (Z ′, Z ′′),

which satisfies We = W ′
e = − and (W◦Z)e = Ze = Z ′

e = i, so (W◦Z, τ ′) ∈ K!
3 solves

the problem.

Case III: S(Z ′, Z ′′) = ∅, that is, Z ′ = Z ′′ and f = e!.

(Z ′,+), (Z ′,−) ∈ K! is impossible. If (Z ′, i), (Z ′, j) ∈ K!, then Z ′
e ∈ {i, j}, and by

(K1)! we may assume Z ′
e = j. But this implies (Z ′,+) ∈ K!

3, and we are done.

(K4)!: We consider (Z, τ) ∈ K! with (Z, τ)g 6= 0, and σ 6= 0. By (K1)!, we can assume

that τ, σ ∈ {+, i}.

We first treat the case g = e!. For (Z,+) ∈ K! we always have (Z, i) ∈ K!. Similarly,

for (Z, i) ∈ K!
3 we have (Z,+) ∈ K!

3. For (Z, i) ∈ K!
1 we get Ze ∈ {+, i}. With (K4) we

find U,W ∈ K with U = W = Z and Ue = +, We = j. Thus we get (U◦W,+) ∈ K!
3 with

U◦W = Z, as required.

Finally, assume g ∈ E: for this let (Z, τ) ∈ K! with Zg 6= 0, and let Z ′ ∈ K have

Z = Z ′ and Z ′
g = σ 6= 0. Now if (Z, τ) ∈ K!

2, then we conclude Ze = Z ′
e = 0 and thus

(Z ′, 0) ∈ K!
2 satisfies the conditions. Otherwise, if (Z, τ) ∈ K!

1 ∪ K!
3, we get that Ze 6= 0,

and thus Z ′
e 6= 0. This means that we can either use (Z ′, i) ∈ K!

1, if Z ′
e ∈ {+, i}, or we can

use (Z ′, j) ∈ K!
1, if Z ′

e ∈ {−, j}.

Note that if e is a loop in K, then both e and e! are loops in K!. Otherwise the matroid

M ! := M(K!) is obtained by inserting e! into M as an element that is parallel to e, while

{e, e!} is independent in the oriented matroid Mir(K!).
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3. Reduction and Representation Theorem.

At this stage of our work it is easy to construct an oriented matroid that ‘represents’ a

given 2-matroid, although the precise analysis of the geometric situation will need some

care. Definition 3.1 contains the basic construction, and we will assume its notation for

the whole section. The exclamation mark will consistently be used to denote the basic

doubling operation, with F ! := F ⊎ {a+n : a ∈ F} for subsets F ⊆ [n] := {1, . . . , n}: it

will never be used to denote factorials or excitement.

Definition 3.1. Let K ⊆ {i, j,+,−, 0}n be a loop-free 2-matroid of rank r on [n]. Let

L := Ze(K) be the geometric lattice of flats associated with K by Lemma 1.5(i), and

r = r(K) := r(L) its rank.

¿From this, construct

K! := ((...((K ⊎ 1!) ⊎ 2!) ⊎ . . .) ⊎ n!) ⊆ {i, j,+,−, 0}2n,

the doubled 2-matroid on {1, . . . , n, 1!, . . . , n!} ∼= [2n] obtained from K by n successive single

element extensions according to Lemma 2.4. The lattice of flats of K! will be denoted by

L! := Ze(K!).

The oriented matroid frame of K is the set of real sign vectors

L! := ℑ(K!) = {ℑ(Z) : Z ∈ K!} ⊆ {+,−, 0}2n,

which is the covector set of an oriented matroid by Lemma 1.5(ii).

The constructions in this section depend on a linear ordering of the ground set, which

we prescribe by identifying the ground set with [n] = {1, . . . , n}. For example, it is not

clear that the single element extensions of Definition 3.1 commute (they don’t). Similarly,

for the construction of minors, which we need below, we assume tacitly that the elements

of a deletion or contraction keep the induced linear order (even if they are relabeled as

{1, . . . ,m}).

Lemma 3.2.

(i) The map ℑ : K! −→ {+,−, 0}2n is injective.

(ii) The flats of K! are given by L! = {F ! : F ∈ L}: so we get a canonical isomorphism

L ∼= L!.

(iii) The flats of the underlying matroid of L! are given by Ze(L!). We have F ! ∈ Ze(L!) if

and only if F ∈ L.

Proof. (i) The map ℑ : K! −→ {+,−, 0}2n is injective, since its inverse is given by

ℑ−1 : L! −→ K!, (X,Y ) 7−→ (Y ◦iX, (−X)◦iY ).
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For this observe that ℑ(Ze) = 0 implies Ze = ℑ(Ze!), and ℑ(Ze!) = 0 implies Ze! =

−ℑ(Ze), from the construction of Lemma 2.4.

(ii) Since the extensions of Lemma 2.4 add new elements that are parallel to old ones,

we get L ∼= L! canonically, where L! = {F ! : F ⊆ [n]} is the geometric lattice of K!.

(iii) For every F ∈ L there is some imaginary sign vector iX ∈ K with Ze(iX) = F .

We conclude (iX, iX) ∈ K!, hence (X,X) ∈ L! and thus F ! ∈ Ze(L!). For the converse

let F ! ∈ Ze(L!) and take (X,Y ) ∈ L! with Ze(X) = Ze(Y ) = F . Then ℑ−1(X,Y ) =

(Y ◦iX, (−X)◦iY ) = (iX, iY ) ∈ K!, which implies iX ∈ K and thus F ∈ L.

The definition of minors of 2-matroids K ⊆ {i, j,+,−, 0}n follows the model (and

the geometric intuition) of oriented matroids, see [BLSWZ, Lemma 4.1.8]. We denote the

deletion of F from a sign vector Z by Z\F = (Zf : f /∈ F ), and the restriction to the

entries in F by Z|F = (Zf : f ∈ F ). With this, for F ⊆ [n] we define the deletion of F

from K by

K\F := {Z\F : Z ∈ K},

and the contraction of K by F as

K/F := {Z\F : Z ∈ K, Z|F = 0}.

Note that if K is a 2-matroid, then so is any deletion or contraction. The two operations

commute; a minor is defined as any deletion of a contraction (or contraction of a deletion)

of K.

Lemma 3.3.

(i) K!/F ! = (K/F )!

K!\F ! = (K\F )!

(ii) ℑ(K!/F !) = ℑ(K!)/F !

ℑ(K!\F !) = ℑ(K!)\F !

Proof. For (i), we can use induction on |F |, and thus only consider the case F = {f}. But

then this amounts to saying that contraction and deletion commute with the !-extensions.

Specifically, we need four statements, which are easily checked from the construction of

K′ ⊎ e!, for a 2-matroid K′:

• (K′ ⊎ e!)/f = (K′/f) ⊎ e! for f /∈ {e, e!},

• (K′ ⊎ e!)\f = (K′\f) ⊎ e! for f /∈ {e, e!},

• (K′ ⊎ e!)\{e, e!} = K′\e,

• (K′ ⊎ e!)/{e, e!} = K′/e.

The most subtle case occurs for ‘⊆’ in the second statement. If (Z\f, τ) ∈ (K′\f)!3
with Ze = j, then there exists some W\f < Z\f with We = +. If W < Z does not hold

in this case, then we replace Z by W◦Z, and are done.
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For part (ii), we get the first equality from the proof of Lemma 3.2(i), the second one

is trivial.

Note that there are no complicated isomorphisms involved in Lemma 3.3, it just states

an equality of two sign vector systems (complex for part (i), real for part (ii)).

However, let us mention that one has to be careful with handling the !-construction:

it certainly depends on the order of the elements, and the single element extensions that

produce it cannot in general be interchanged.

Lemma 3.4. Let K be a 2-matroid of rank 1. Then L! is an oriented matroid of rank 2.

Proof. We may assume that K has no loops, so that Ze(K) = {∅, [n]} and K\0 ⊆

{i, j,+,−}n.

Claim 1: for all a ∈ [n] there is a unique Z ∈ K with Za = +. In fact, existence of Z

follows from (K4). If there was a second one, Z ′ say, we would conclude 0 ∈ Ia(Z,−Z ′).

Thus for all b ∈ [n] we have either Zb = Z ′
b = 0 or b ∈ S(Z,−Z ′), which shows Z = Z ′.

Claim 2: for all a ∈ [n] there is a unique Z ∈ K! with Za = +. For this we only

have to show that uniqueness cannot be lost under the extensions of Lemma 2.4. For this

assume Za = ±, Ze = j and there is some W < Z with We = +. But this implies either

Wa = Za, contradicting Claim 1, or Wa = 0, contradicting that we have rank 1.

Claim 3: for all a ∈ [n] there is a unique (X,Y ) ∈ L! with Xa = 0, Ya = +. This we

get from Claim 2, using the formula for ℑ−1 in the proof for Lemma 3.2(i).

Claim 4: r(L!) = 2. Here r(L!) ≤ 2 follows from the fact that r(L!/a) = 1 for a ∈ [n],

by Claim 3. The rest follows from the fact that {a, a+n} is independent in L for a ∈ [n],

by construction.

The main goal of the rest of this section is to explain the geometry of K! and L!. For

this we rely on

– the topological representation of oriented matroids by 1-pseudoarrangements, accord-

ing to the Topological Representation Theorem [FL] [EdM] [BLSWZ, Chap. 5]. Here

we use the prefix ‘1-’ to indicate that we are talking of subspheres of codimension 1

in the sphere Sr(L)−1.

– the concept of 2-pseudoarrangements B, as defined by [BZ, Def. 8.3]: this is an

arrangement of codimension 2 subspheres {S1, . . . , Sn} in S2r−1 with the property

that every intersection of some of them has an even codimension. Furthermore

one requires the existence of a signed real frame, that is, of a 1-pseudoarrangement

{T1, . . . , Tn, U1, . . . , Un} such that every codimension 2 pseudosphere can be written

as an intersection of two codimension 1 pseudospheres, Sa = Ta ∩ Ua.

– the s(1)-stratification of a 2-arrangement B with respect to a real frame [BZ, Def. 8.6],

which is the cell decomposition of S2r−1 given by all the intersections of spheres in
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{S1, . . . , Sn} and spheres in {T1, . . . , Tn}: this is constructed as a map

s(1)

B
: S2d−1 −→ {i, j,+,−, 0}n

which is (for 1 ≤ a ≤ n, x ∈ S2d−1) defined by:

(
s(1)

B
(x)

)

a
=





i, if x ∈ T+
a ,

j, if x ∈ T−
a ,

+, if x ∈ Ta ∩ U+
a ,

−, if x ∈ Ta ∩ U−
a ,

0, if x ∈ Ta ∩ Ua.

This cell decomposition, the s(1)-stratification of B, is a regular CW decomposition of

S2r−1 by [BZ, Theorem 8.10]. Thus it is completely encoded in the associated complex

sign vector system K(1)
B

:= s(1)
B

(S2r−1), with its natural partial order.

– Similarly, the s(2)-stratification

s(2)

B
: S2d−1 −→ {+,−, 0}2n

is defined (for 1 ≤ a ≤ 2n, x ∈ S2d−1) by:

(
s(2)

B
(x)

)

a
=





+, if 1 ≤ a ≤ n and x ∈ T+
a ,

−, if 1 ≤ a ≤ n and x ∈ T−
a ,

0, if 1 ≤ a ≤ n and x ∈ Ta,
+, if n + 1 ≤ a ≤ 2n and x ∈ U+

a−n,
−, if n + 1 ≤ a ≤ 2n and x ∈ U−

a−n,
0, if n + 1 ≤ a ≤ 2n and x ∈ Ua−n.

Its sign vector system K(2)
B

:= s(2)
B

(S2r−1) ⊆ {+,−, 0}2n is itself an oriented matroid

of rank 2r.

The following theorem contains both the reduction of 2-matroids to oriented matroids,

and the topological representation theorem for 2-matroids. We will for simplicity only

consider loop-free 2-matroids.

Reduction and Representation Theorem 3.5.

(1) Let K ⊆ {i, j,+,−, 0}n be a loop-free 2-matroid of rank r on [n], let K! be the

corresponding doubled 2-matroid, and L! the oriented matroid frame of K!.

If {T1, . . . , Tn, U1, . . . , Un} is a 1-pseudoarrangement in S2r−1 that represents L!, and

Sa := Ta ∩ Ua, then

B := {S1, . . . , Sn} is a 2-pseudoarrangement,

F := {T1, . . . , Tn, U1, . . . , Un} is a signed real frame for B,

K = K(1)
B

is the face poset of the s(1)-stratification of B, and

L! = K(2)
B

is the face poset of the s(2)-stratification of B associated with the frame F .
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(2) Conversely, if B = {S1, . . . , Sn} is a 2-pseudoarrangement with a signed real frame

F = {T1, . . . , Tn, U1, . . . , Un}, then its s(1) face poset K(1)
B

(with respect to the frame K)

is a 2-matroid.

Let L! be the oriented matroid frame for K(1)
B

and let F ′ = {T ′
1, . . . , T

′
n, U ′

1, . . . , U
′
n}

be a 1-pseudoarrangement in S2r−1 that represents L!. Then there is a homeomorphism

S2r−1 −→ S2r−1 that identifies Sa = Ta ∩Ua with S′
a := T ′

a ∩U ′
a, and Ti with T ′

i (but not

in general Ui with U ′
i). In particular, F and F ′ represent the same 2-arrangement.

Proof. Here we rely on the work done in [BZ, Sect. 8], in particular the fact that the

s(1)-stratification of a 2-arrangement yields a regular cell complex, by [BZ, Theorem 8.10].

With this, the main point that is left to prove for (1) is that B is a 2-arrangement, that

is, that each F ⊆ [n] the set F ! = F ⊎ {a+n : a ∈ F} has even rank in the underlying

matroid L!, and rank 2 if F = {a}. The key to this is

(∗) rir!(F !) = 2·r(F ) for all F ⊆ [n],

where r denotes the rank function of L, while rir! is the rank function of the underlying

matroid of L!.

Now (∗) is certainly correct for F = ∅, where both ranks vanish. We use induction on

r(F ). Consider flats F ⊂· F ′ in L, that is, F ′ contains F , but with no flat between. This

means that M/F\([n]\F ′) has rank 1. We have to verify rir!(F ′!) − rir!(F !) = 2.

Using (K2)+(K4) we can find imaginary vectors iY < iY ′ in K with Ze(Y ) = F and

Ze(Y ′) = F ′. From the construction of K! and L! we now get that (Y ′, Y ′) < (Y, Y ) are

vectors in L!, with Ze(Y, Y ) = F !, Ze(Y ′, Y ′) = F ′!. Since the zero map on oriented ma-

troids is order inverting and cover preserving [BLSWZ, Thm. 4.1.14(ii)], this is equivalent

to showing that the oriented matroid L!/F !\([n]\F ′)! has rank 2. By Lemma 3.3, we get

that this is ℑ
(
(K/F\([n]\F ′))!

)
. Thus we are done by Lemma 3.4.

For part (2), the key result is that K(1)
B

is a 2-matroid: this is proved in [BZ, Prop. 8.12].

The rest now follows from the description of the geometry in [BZ, Sect. 8].

Theorem 3.5 allows us to develop the whole theory of 2-matroids ‘on top of’ the theory

of oriented matroids. As examples, we list some results that can be lifted to 2-matroids

by Theorem 3.5.

Corollary 3.6. Let K be a 2-matroid of rank r = r(M), whose oriented matroids have

ranks rir = r(Mir) and r′ = r(M′).

Then 0 ≤ r′ ≤ r ≤ rir ≤ 2r with r′+rir = 2r, where r′ = r = rir holds if and only if

K is a quasi-complexified oriented matroid.

Proof. r′ ≤ r ≤ rir was proved in Lemma 1.5. For rir ≤ 2r we observe that L! is an

oriented matroid extension of Mir, with rir = r(Mir) ≤ r(L!) = 2r.

Now consider a topological representation of K. Then Mir is represented by the 1-

pseudoarrangement {T1, . . . , Tn} in S2r−1. Thus rir is the codimension of T :=
⋂n

a=1 Ta
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in S2r−1. At the same time, T consists of all the cells with real sign vectors, and thus M′

is represented by the 1-pseudoarrangement {T ∩ S1, . . . ,T ∩ S1} in T. Thus

rir = (2r−1) − dim(T) = (2r−1) − (r′−1) = 2r − r′.

The case of equality r′ = r = rir is characterized in Theorem 1.6.

Corollary 3.7. For every 2-matroid K of rank r, the poset (K,≤) is the face poset of a

PL CW-sphere S2r−1.

Proof. This follows from the PL version of the Topological Representation Theorem [FL]

for oriented matroids, due to Edmonds & Mandel [EdM] [BLSWZ, Chap. 5].

Let us now identify some interesting subposets in 2-matroids, following [BZ, Sect. 3].

By Theorem 3.5, K is the face poset of a (2r−1)-sphere. Similarly,

Klink := {Z ∈ K : Za = 0 for some a ∈ [n]},

the link poset, is the face poset of a cell decomposition of
⋃
B. Thus we get that the order

complex ∆(Klink\0) is homeomorphic to
⋃
B. Similarly, with the yoga of [BZ, Sect. 3], we

see that the poset K determines the complement space S2r−1\
⋃
B up to homeomorphism.

Setting

Kcomp := K\Klink,

we find that 0⊎(Kcomp)
op is the face poset of a CW-complex Γcomp that is homotopy equiv-

alent to (in fact, a deformation retract of) the complement S2r−1\
⋃
B. Here ∆(Kcomp) is

the barycentric subdivision of Γcomp.

The following collects some basic topological results. For this, recall that a circuit of

M on [n] is a minimal dependent subset C ⊆ [n], corresponding to a minimal subset of B

for which the codimension of the intersection is less than twice the cardinality. A broken

circuit is a set C\min(C) for a circuit C. With this we define the broken circuit complex

as the set system

BC(M) = {A ⊆ [n] : A does not contain a broken circuit}.

Finally, the characteristic polynomial of M is

χ(t) =
∑

A∈BC(M)

(−1)|A| tr−|A|.

Corollary 3.8. Let K be a 2-matroid, with underlying matroid M of rank r.

(1) The link complex ∆(Klink\0) of a 2-arrangement is a disjoint union of circles, if r = 2,

and for r > 2 it is homotopy equivalent to a wedge of spheres:

∆(Klink\0) ≃
∨

A∈BC(M)\∅

S2r−2−|A|.
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(2) The complement ∆(Kcomp) is stably homotopy equivalent to a wedge of spheres,

∆(Kcomp) ∼
∨

A∈BC(M)\∅

S|A|.

The cohomology algebra H∗(∆(Kcomp); ZZ) of the complement has a presentation of

the form

0 −→ I −→ Λ∗ZZn π
−→ H∗(∆(Kcomp); ZZ) −→ 0.

Here the relation ideal I is generated by relations of the form

k∑
i=0

ǫi ea0
∧ . . . ∧ êai

∧ . . . ∧ eak

for circuits A = {a0, . . . , ak} ⊆ [n] and ǫi ∈ {+1,−1}, and {π(eA) : A ∈ BC(M)} is

a ZZ-basis for H∗(∆(Kcomp); ZZ).

In particular, H∗(∆(Kcomp); ZZ) is free over ZZ, generated in dimension 1, and has the

Poincaré polynomial (−t)rχ(−1/t).

Proof. With Theorem 3.5, this are immediate consequences of [BZ, Thm. 6.6] (for r 6= 3)

and [ZŽ, Cor. 3.3] for part (1), and of [ZŽ, Thm. 3.4] and [BZ, Cor. 7.3] for part (2).
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4. Complex matroids.

As we have seen, every 2-arrangement gives rise to a 2-matroid. However, 2-matroids

are really more general than complex arrangements: for example, they have a completely

different representation theory [GM, p. 257], and they have structurally different cohomo-

logy algebras [Z]. Therefore, the need arises to distinguish a class of complex matroids

among the more general 2-matroids.

Definition 4.1. A complex matroid is a 2-matroid that satisfies the additional ax-

iom (K5):

(K5) If iX ∈ K\0 with X ∈ {+,−, 0}E , then there is X◦iY ∈ K for some Y < X,

Y ∈ {+,−, 0}n. [Complex structure]

To get a feeling for what this axiom means geometrically, we will first prove that

it holds for complex arrangements and for complexified oriented matroids. Then we will

discuss examples, including a complete discussion of the case of rank 1.

Proposition 4.2.

(i) Let B = {ker(ℓ1), . . . , ker(ℓn)} be a complex arrangement in Cd. Then K := s(1)
B

(Cd)

is a complex matroid.

(ii) Let L ⊆ {+,−, 0}n be an oriented matroid. Then K := L◦iL is a complex matroid.

Proof. For (ii), we can simply choose Y = 0. For (i), take z ∈ Cd with Z0 = iX =

s(1)(z), and consider Zt := s(1)(e−itz) for real t ∈ IR. The s(1)-function is semi-continuous,

thus the s(1)-strata are open in their linear hull [BZ, Sect. 1]. Since Z0 is imaginary, we

conclude Z0◦Zt = Z0 for all t. Thus {t ∈ IR : Zt = Z0} is an open subset of IR, and

t0 := min{t > 0 : Zt 6= Z0} exists.

Now Zt
a = s(1)(ℓa(e−itz)) = s(1)(e−itℓa(z)), from which we see that E(Zt0) = Zt for

0 ≤ t < t0, which proves the claim.

In the situation of Proposition 4.2(i), we call

– the sequence of complex linear forms ℓ1, . . . , ℓn ∈ (Cd)∗, or, equivalently,

– the complex vector space V := {(ℓ1(z), . . . , ℓn(z)) : z ∈ Cd} ⊆ Cn

a complex realization of K = s(1)(V ). For the equivalence, see [BZ, proof of Thm. 2.5].

Thus, a 2-matroid is complex realizable (and thus, in particular, it is a complex ma-

troid) if there exists a complex vector subspace V ⊆ Cn with s(1)(V ) = K.

More generally, we say that a 2-matroid is realizable if there is a real vector subspace

of Cn such that s(1)(V ) = K. In this case we necessarily have that the dimension

dim ir(V ∩ {z ∈ Cn : za = 0 for a ∈ A})

is even for all A ⊆ [n]. We note that the representation theory of 2-matroids and complex

matroids is hardly studied at all, see also Problem 7.4.
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Example 4.3. The following gives a complete list of the 2-matroids on two elements.

First, we have the 2-matroids with two loops, K = {00}, or with exactly one loop

and one coloop, K = {00, 0+, 0−, 0i, 0j} and K = {00,+0,−0, i0, j0} or with two coloops,

K = {i, j,+,−, 0}2. All these 2-matroids correspond to complexified real arrangements,

and are trivially complex.

The interesting case is when K has no loops or coloops, so the underlying matroid is

M = U1,2. By Lemma 3.4, we find four cases in this situation (up to reorientation, i.e.,

reversing all signs on the second element), see Figure 4.1. In the first two, the associated

real matroid M ir has rank 1 as well, in the second two it has rank 2. Also, we can see that

two of these 2-matroids are complex, two are not.

K3:

fs

i+

j−

+j−i

ijii

ji jj

00

K3 is complex.

61

�2 K4:

fs

i+

j−

+i−j

iiij

jj ji

00

K4 is not complex.

61

-2

K1:

fs

00
++−−

ii

jj

K1 is complexified real.

6
2

6
1

K2:

fs

00
+−−+

ii

jj

K2 is quasi-complexified.

62 6
1

Figure 4.1: 2-matroids with underlying matroid U1,2.
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At this point, let us mention two alternative axioms for complex structure:

(K5′) If iX ∈ K\0, with X ∈ {+,−, 0}E , then there is (−X)◦iY ∈ K for some Y < X,

Y ∈ {+,−, 0}n.

(K5′′) If X◦iY ∈ K with X,Y ∈ {+,−, 0}E and Y ≤ X, then iX ∈ K.

Note that axiom (K5′′), which we may abbreviate by E(K) ⊆ K, is satisfied on K4,

although this is not a complex matroid. Thus (K5′′) does not imply (K5) for 2-matroids.

We think, however, that

(K5) ⇐⇒ (K5′) =⇒ (K5′′).

In fact, this would follow from Conjecture 4.8 below. In the following development, we

will not use (K5′) and (K5′′), and show that (K5) itself is good enough to ensure complex

structure in rank 1, and to control the cohomological structure.

Proposition 4.4. Let K ⊆ {i, j,+,−, 0}n be a 2-matroid on [n] of rank 1 without loops.

Then K can be realized over C by

ℓa(z) =

{
z for a = 1,
αaz if the restriction K|{1,a} is complex,
αaz otherwise,

for suitable αa ∈ C, 2 ≤ a ≤ n.

Proof. This we get from Lemma 3.4/Theorem 3.5 and the fact that every oriented matroid

of rank 2 is realizable, together with Example 4.3.

For the four 2-matroids in Figure 4.1, we have, for example, the following coordinati-

zations:

K1: ℓ1(z) = z, ℓ2(z) = z.

K2: ℓ1(z) = z, ℓ2(z) = −z.

K3: ℓ1(z) = z, ℓ2(z) = −iz.

K4: ℓ1(z) = z, ℓ2(z) = iz.

Lemma 4.5. Let K ⊆ {i, j,+,−, 0}n be a 2-matroid. If K is a complex matroid, then

so is every minor of K.

Proof. This is trivial for a contraction K/e ∼= {Z ∈ K : Ze = 0}. Thus we consider

K\e = {Z\e : Z ∈ K}, and take some Z ∈ K such that Z\e is imaginary. By (K2) we may

assume Ze ∈ {0,+, i}.

If Ze = 0, so that Z is of the form Z = (iY, 0), then we are done by (K5). If

Z = (iY,+), then from the 2-matroid axioms we derive that also (iY, j) ∈ K. Now by

(K5) we either get directly that (K5) holds for Z\e, or we conclude that (iY,−) ∈ K, in

which case we can eliminate e between (iY,+) and (iY,−), to get (iY, 0) ∈ K. Finally,
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if Z = (iY, i), then we can directly apply (K5), and we are either done, or we conclude

(iY,+) ∈ K, so we are reduced to the previous case.

Corollary 4.7. Every complex matroid of rank 1 is complex realizable. Furthermore,

there is a natural bijection between the complex matroids of rank at most 1 and the

oriented matroids of rank at most 2 on the same ground set.

Conjecture 4.8. If K is a 2-matroid of rank r, and K\A is complex for every deletion

of rank 1 and of corank 1, then K is complex.

This conjecture is an analogue to the “corank 2 theorems” about oriented matroids,

see [LV] [BLSWZ, Sect. 3.6] [DW3], since by Lemma 3.4 the 2-matroids of rank 1 have an

oriented matroid frame of rank 2.

Some intuition for these questions comes from the example B′ of [Z]: it leads to non-

complex 2-matroids of corank 2 over the matroid U2,4. Here every 1-point deletion has

corank 1. The point is that every deletion can be made complex, by possibly conjugating

elements, but there is no complex structure globally.

Theorem 4.9. The cohomology algebra H̃∗(∆(Klink\0); ZZ) of any complex matroid K

is isomorphic to the Orlik-Solomon algebra OS(M) of the underlying matroid, that is, for

a complex matroid one can choose ǫ = (−1)i in the presentation of Corollary 3.8(2).

Proof. We need that the cohomology classes constructed in [BZ, Cor. 7.3] satisfy the

Orlik-Solomon relations. This is true in complex arrangements, and it is preserved under

deletion of elements that are not involved in the relations.

Thus we only have to show that every complex matroid of corank at most 1 is com-

plex realizable. One way to see this is to combine Corollary 4.7 with the Duality Theo-

rem 5.3.

We note that this contains both the result for complex arrangements due to Orlik

& Solomon [OrS], and the result for complexified oriented matroids, due to Gel’fand &

Rybnikov [GeR] [Ry].
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5. Duality.

In this Section, we will start the work on a duality theory for complex matroids. For this,

we denote by AT the transpose and by A the conjugate of a matrix (or vector) A. We call

two vectors z,w ∈ Cd orthogonal if 〈z,w〉 := zT w = 0. This can be used to define that

Z,W ∈ {i, j,+,−, 0}n are orthogonal, denoted by Z ⊥ W , if there exist z,w ∈ Cd with

s(1)(z) = Z, s(1)(w) = W , and 〈z,w〉 = 0. Then we define, for K ⊆ {i, j,+,−, 0}n,

K∗ := {W ∈ {i, j,+,−, 0}n : W ⊥ Z for all Z ∈ K}.

(This is analogous to the usual definition [BLSWZ, Sect. 3.4] for oriented matroids.)

Example 5.1. Here we compute the duals and double-duals of the 2-matroids of rank 1

listed in Figure 4.1.

(1) The complex matroid K1 = {00,++,−−, ii, jj} is a complexified oriented ma-

troid: K1 = L◦iL for L = {00,++,−−}. We easily find K∗
1 = {00,+−,−+, ij, ji} =

{00,+−,+−}∗◦i{00,+−,+−}∗, which is again a complexified oriented matroid, and K∗∗
1 =

K1.

(2) For the 2-matroid K2 = {00,+−,−+, ii, jj} (which is quasi-complexified), but

not complex, we find K∗
2 = {00, ii, jj}, which is not a 2-matroid.

(3) The dual of the complex matroid K3 = {00,+j, ij, i+, ii,−i, ji, j−, jj} turns

out to be a reorientation of it: K∗
3 = {00, j+, ji,+i, ii, i−, ij,−j, jj} = −{2}K3, and thus

K∗∗
3 = K3.

(4) For the 2-matroid K4 = {00,+i, ii, i+, ij,−j, jj, j−, ji}, finally we find K∗
4 =

{00, ii, ij, jj, ji}, which again fails to be a 2-matroid.

This indicates that there probably is no reasonable duality theory for 2-matroids.

However, for complex matroids a good duality theory can be expected. We will prove this

here for the realizable case: whenever K is a realizable complex matroid, then K∗ is also a

complex matroid, and K∗∗ = K. This amounts to a “complex Farkas Lemma”; we derive

it from the following “real” transposition theorem ‘of Farkas type’.

Lemma 5.2. [StW, p. 23] Let M ∈ IRp×n and N ∈ IRq×n be real matrices. Then

either there is a vector x ∈ IRn with Mx = 0 and Nx > 0 (component-wise),

or there are vectors w ∈ IRp, u ∈ IRq with MT w + NT u = 0, u ≥ 0, u 6= 0,

but not both.

Theorem 5.3. Let V ⊆ Cn be a complex subspace of dimension r, let K := s(1)(V ) be

the complex matroid it represents, and let V ⊥ ⊆ Cn be the orthogonal complement of V .

Then

K∗ = s(1)(V ⊥).

In particular, the dual K∗ is a complex matroid, and K∗∗ = K.
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Proof. First take Z ∈ s(1)(V ⊥), with Z = s(1)(z), and W ∈ K, with W = s(1)(w). Then

we have wT z = 0 by construction, and thus W ⊥ Z. This proves s(1)(V ⊥) ⊆ K∗.

For the reverse inclusion, assume that Z /∈ s(1)(V ⊥). After relabeling and reorienta-

tion, it suffices to consider Z of the form

Z = (00 . . . 00|++ . . . ++|ii . . . ii) ∈ {0,+, i}n,

with a zeroes, b pluses and c i’s, say.

Assuming dimc(V ) = r, we find A ∈ Cr×n with V ⊥ = {z ∈ Cn : Az = 0} and

V = {A
T
w : w ∈ Cr}.

Now Z /∈ s(1)(V ⊥) says that there is no z ∈ Cn with s(1)(z) = Z and Az = 0. Setting

z = x+iy for x,y ∈ IRn and A = ARe+iAIm for ARe, AIm ∈ IRr×n, this means that there

is no x,y ∈ IRn such that

ARex − AImy = 0 AImx + ARey = 0
(Ia | O | O)x = 0 (Ia | O | O)y = 0
(O | Ib | O)x > 0 (O | Ib | O)y = 0

(O | O | Ic)y = 0

where Ia denotes an identity matrix of size a, O denotes a zero matrix and 0 is a zero

vector of appropriate size. Equivalently, with x̂ :=
(
x

y

)
:

/∃ x̂ ∈ IR2n :




ARe −AIm

AIm ARe

Ia O O O O O
O O O Ia O O
O O O O Ib O


 x̂ = 0

(
O Ib O O O O
O O O O O Ic

)
x̂ > 0

Thus, by Lemma 5.2 there exist ŵ ∈ IR2r+n, û ∈ IRb+c with û ≥ 0 and û 6= 0 that

satisfy 


Ia O O
AT

Re AT
Im O O O

O O O
O Ia O

−AT
Im AT

Re O O Ib

O O O




ŵ +




O O
Ib O
O O
O O
O O
O Ic




û = 0.

Now putting ŵ =:




w′

w′′

a1

a2

b2


 with w := w′ + iw′′ and û =:

(
b1

c2

)
, we can rewrite this
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as

AT
Rew

′ + AT
Imw′′ +




a1

0
0


 +




0
b1

0


 = 0,

−AT
Imw′ + AT

Rew
′′ +




a2

0
0


 +




0
b2

0


 +




0
0
c2


 = 0,

that is,

A
T
w +




a1 + ia2

b1 + ib2

ic2


 = 0 for b1, c2 ≥ 0, not both equal to zero.

Now letting w̃ := iA
T
w =




a2 − ia1

b2 − ib1

c2


, we find that there exists a vector W = s(1)(w̃) ∈

K with

W = ( ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
arbitrary

| ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
∈{j,+,−,0}

| ⊕⊕ . . .⊕⊕︸ ︷︷ ︸
∈{+,0}

)

with some j in the middle part, or some + in the third part, or both. But this implies

that W 6⊥ Z, and thus Z /∈ K∗.

Theorem 5.4. Let K = L◦iL′ be a quasi-complexified 2-matroid. Then K∗ ⊆ L∗◦iL∗,

and K∗∗ ⊇ L◦iL.

In particular, the following three conditions are equivalent for quasi-complexified 2-

matroids:

(i) K is a complex matroid,

(ii) K is a complexified oriented matroid,

(iii) K∗ = L∗◦iL∗.

Proof. To see L∗◦iL∗ ⊆ K∗, assume that for some real X ′, Y ′ we have X ′◦iY ′ ⊥ X◦iY

for all X◦iY ∈ L◦iL′. In particular, this implies X ′◦iY ′ ⊥ X for all X ∈ L. Looking at

the imaginary part, this yields Y ′ ∈ L∗. Now assume that Y ′◦X ′ /∈ L∗, then there is some

X ∈ L with X 6⊥ Y ′◦X ′. But if X ∩ Y ′ 6= ∅, then we get X ⊥ Y ′◦X ′ from Y ′ ∈ L∗, and if

X ∩ Y ′ = ∅ but X ∩ X ′ 6= ∅, then we get X 6⊥ X ′◦iY ′, a contradiction.

Next we verify that the other inclusion in the case L = L′. For this we take X,Y ∈ L

and X ′, Y ′ ∈ L∗ and have to show X◦iY ⊥ X ′◦iY ′. If Y ∩ Y ′ 6= ∅, then this already

implies the claim (for arbitrary real X,X ′). If Y ∩ Y ′ = ∅ but Y ∩ X ′ 6= ∅, then we

for corresponding vectors y and x′ the sum (iy)T x′ has summands of both positive and

negative imaginary part, so we can choose y and x′ to get a zero sum, which proves the

claim. Thus we can assume Y ∩ Y ′ = Y ∩X ′ = ∅, and by symmetry also Y ′ ∩X = ∅. But

now orthogonality follows from X ⊥ X ′.
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¿From this we also get K∗∗ ⊇ (L∗◦iL∗)∗ = L∗∗◦iL∗∗ = L◦iL.

Now (ii)=⇒(i) is obvious, and the converse is clear by looking at cocircuits, i.e. vectors

with minimal non-empty supports. Also we have already verified (ii)=⇒(iii).

Now if (ii) fails, that is L 6= L′, then we can find X ∈ L and Y ∈ (L′)∗ with X 6⊥ Y ,

since the underlying matroids coincide. This means that iY 6⊥ X, and thus X /∈ K∗, and

hence (iii) fails.

We note that last proof is most conveniently formulated in the language of fuzzy rings,

where the scalar product ZT W :=
⊕

e∈E Ze ⊙W e can explicitly be defined and evaluated.

We will discuss the set-up for this in the next section.
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6. 2-matroids and ‘matroids with coefficients’.

In this section we want to explain why the theory of “matroids with coefficients” by Dress

& Wenzel [Dr1] [DW1,2,3] does not support complex matroids.

The key observation is the following. Consider the strata of the sign function s(1),

that is, the maximal subsets of the complex plane C that have the same complex sign. If

we define the sum or product of two such strata pointwise, then we get that the sum or

product of two strata is again a union of strata. This allows us to define a ring structure

K on the non-empty sets of signs, with zero element {0}, unit {+}, and negative unit {−}.

In the following, we will simplify notation by omitting some set brackets.

Lemma 6.1. The ring of non-empty sets of signs K := 2{i,j,+,−,0}\∅ is a fuzzy ring

in the sense of Dress [Dr1] with addition and multiplication defined element-wise by the

following tables:

⊕ 0 + − i j
0 0 + − i j
+ + + 0+− i j
− − 0+− − i j
i i i i i 0+−ij
j j j j 0+−ij j

⊙ 0 + − i j
0 0 0 0 0 0
+ 0 + − i j
− 0 − + j i
i 0 i j −ij +ij
j 0 j i +ij −ij

A smaller subring of this ring K is the fuzzy ring K ′ = {0,+,−, i, j, 0+−,+ij,−ij, 0+−ij},

which is generated by the one-element subsets of {i, j,+,−, 0}.

Proof. The axioms are all trivial to check. We only note that in the notation of [Dr1]

[DW1,2,3] for K we have the zero element 0K = {0}, the one element 1K = {+}, the

negative-one ǫ = {−}, the subset K0 = {S ⊆ {i, j,+,−, 0} : 0 ∈ S} and the group of units

K∗ = {+,−} (which is denoted K̇ in [Dr1] and K× in [DW1]). K ′ is a fuzzy subring with

the same zero and units.

Now we can ask about the matroids with coefficients in K. It turns out, however, that

K has too few units (namely, only + and −) to have non-trivial matroids with coefficients.

Proposition 6.2.

(i) The matroids with coefficients in K (or K ′) on the ground set [n] are canonically

equivalent to the complexified oriented matroids on the same ground set.

(ii) Let K ⊆ {i, j,+,−, 0}n be a 2-matroid. Then K presents a matroid with coefficients

over K (and over K ′) if and only if it is a quasi-complexified oriented matroid, K =

L′◦iL. Furthermore, K is in this case equivalent (as a matroid with coefficients in K

resp. K ′) to the complexified oriented matroid L′◦iL′.

Proof. This is quite trivial once the definitions have been decoded. Since we do not want

to go into details, we only sketch a few hints for the interested reader. The set of units of
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K and of K ′ is K∗ = {+,−}. The support of Z ∈ Kn is Z = {e ∈ [n] : Ze 6= 0}, while the

proper support is Z := {e ∈ [n] : Ze ∈ {+,−}.

(i) Let K ⊆ Kn be a matroid with coefficients in K or K ′. We only consider the

minimal presentation of K, which is a subset of {+,−, 0}n, using the defining property

of a matroid with coefficients. Now it is easily seen that C∗ ⊆ {+,−, 0}n is the minimal

presentation of a matroid with coefficients if and only if it is the set of cocircuits C∗ =

min(L\0) of an oriented matroid, and different oriented matroids define different matroids

with coefficients.

(More generally, the matroids with coefficients over a fuzzy ring are canonically

equivalent to the subring generated by 0 and the units; for K and K ′ this subring is

{0,+,−,+−0} = IR//IR+, the canonical fuzzy ring for oriented matroids.)

(ii) For a 2-matroid K ⊆ {i, j,+,−, 0}n to present a matroid with coefficients over

K it is required that for every Z ∈ K we find Z ′ ∈ K ∩ {+,−, 0}n =: L′ with the same

support. Thus K = L′◦iL is quasi-complexified by condition (ii′) of Theorem 1.6(1). But

this implies that K, the oriented matroid L′, and the complexified oriented matroid L′◦iL′

present the same matroid with coefficients.

Thus the theory of matroids with coefficients does not cover complex matroids. The

reason for this failure can be seen in the basic construction of the fuzzy rings that serve

as coefficient domains: it is too closely modeled after a quotient of a ring by a subgroup

of units. Thus it does not allow for the type of equivalence relations such as the finite

topological stratifications that yield CW-models.

On the other hand the fuzzy rings C/IR+ and C//IR+, which the theory of matroids

with coefficients would suggest for studying complex matroids, are infinite. Here C/IR+ is

essentially the fuzzy ring of all subsets of the circle S1, while C//IR+ is essentially the ring

of all arcs on this circle.

However, a ‘theory of matroids’ with coefficients that allows for a topological structure

is not available. (Such a theory would avoid the (interesting) Reorientation Problem 7.5.)

This leads one to desire a theory of matroids with ‘cellular’ coefficient domains that would

be more general (and simpler) than the Dress-Wenzel theory. This new theory should

cover e.g. the present case of complex matroids and 2-matroids, and more general ones,

like the k-matroids of Björner & Ziegler [BZ, Sect. 9.3].
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7. Some problems.

In this section we want to, finally, sketch six areas of future research. All of them can be

considered as major quality criteria for the concept of a ‘complex matroid’. We note that

in the context of matroids with coefficients, the duality is established in [Dr1], the basis

version is available in [DW2], while the reduction to corank 2 is established (for perfect

fuzzy rings) in [DW3]. We hope to attack these problems in future work.

7.1 Duality. We assume that the proof of Theorem 5.3 can be ‘lifted’ to an oriented

matroid setting, to prove that K∗ is a complex matroid and K∗∗ = K also in the non-

representable case. This certainly seems plausible, since it also works for a complexified

oriented matroid (Theorem 5.4).

The alternative would be to construct K∗ from an oriented matroid frame of K. The

problem here is that it is not clear that the !-construction behaves well under duality.

However, from the well-known formula for the rank function of the dual matroid it is easy

to see that if L! defines a real frame for a 2-matroid, then the dual oriented matroid is the

real frame for a 2-matroid as well. The goal would be to adjust the ‘free parameters’ of

the !-construction in such a way that the 2-matroid (which can be defined in terms of L!∗)

coincides with K∗.

7.2 Basis axioms. Assume that a complex hyperplane arrangement in Cd is given as

B = {ker(ℓ1), . . . , ker(ℓn)}. Then all the relevant data are encoded in the set of Grassmann-

Plücker maps

χ :

(
[n]

d

)
−→ {i, j,+,−, 0}, {a1, . . . , ad}< 7−→ s(1) ( α det c (ℓa1

, . . . , ℓad
))

that we get for various α ∈ C. The problem is to characterize 2-matroids and complex

matroids in terms of their Grassmann-Plücker maps.

7.3 Corank 2. It is one of the deeper properties of oriented matroids that important

structural properties can be reduced to corank 2 (see [LV] [BLSWZ, Sects. 3.6, 7.1]). Simi-

lar reductions should be possible for 2-matroids and for complex matroids. Conjecture 4.8

is an attempt in this direction. In the basis version, one would ask for a reduction of the

general Grassmann-Plücker conditions on a 2-matroid to the 3-term conditions.

We note here that this type of problem becomes non-trivial because a complex matroid

is not in general determined by its cocircuit signatures. This means that, for example, it is

not good enough to rely on signed cocircuits when constructing the dual complex matroid.

Also, there does not seem to be a simple complex analogue for the conformal decomposition

of covectors into cocircuits, which is an extremely useful tool for similar situations in the

oriented matroid case [BLSWZ, Prop. 3.7.2].
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7.4 Orientability. The following problem for 2-matroids and complex matroids is nearly

untouched: which matroids M occur as the underlying matroids of 2-matroids resp. com-

plex matroids? In other words, which matroids are 2-orientable resp. complex orientable?

In particular, one should give examples (with proof!) of matroids that are

— not 2-orientable

— 2-orientable but not complex orientable

— complex orientable but not complex realizable.

We have obvious candidates at least for the first two cases, namely the Fano matroid F7

resp. the non-Desargues matroid, but no effective criteria for non-orientability. The fact

that the non-Desargues matroid is 2-realizable [GoM, p. 257] shows that non-canonical

things (from the point of view of matroid representation theory) can happen.

7.5 Complex s(2)-matroids. Let B = {H1, . . . ,Hn} be a linear complex hyperplane

arrangement in Cd, and consider the s(2)-stratification s(2)
B

: Cd −→ {+,−, 0}2n that we

get from
(
s(2)

B
(z)

)

a
=

{
s(ℑ(ℓa(z))) if 1 ≤ a ≤ n,
s(ℜ(ℓa−n(z))) if n < a ≤ 2n.

This yields an oriented matroid frame K(2) ⊆ {+,−, 0}2n for the 2-matroid K(1)(B). Fur-

thermore, with the particular choice of taking real and complex parts we get that K(2)

admits an action of the dihedral group I2(4) (the symmetry groups of the square), induced

by multiplication with ‘+i’ and conjugation, which permutes and reorients the elements of

K(2).

One is lead to ask [Dr2] whether this I2(4)-action can be used to define a complex

structure for even s(2)-oriented matroids K(2) ⊆ {+,−, 0}2n. In particular, would ev-

ery complex matroid K(1) ⊆ {i, j,+,−, 0}n admit a ‘K(2)-frame’ of this symmetric type?

Conversely, is the 2-matroid derived from such a K(2)-matroid with I2(4)-action complex?

7.6 Reorientation. The problem of characterizing which complex matroids realize

the same (i.e., homeomorphic) 2-arrangements in S2r−1 is subtle. We note that this

reorientation problem corresponds to rescaling operations ℓa −→ αaℓa (αa ∈ C\0) in

the realized case.

Clearly, if L! ∪ f is an extension of L! such that {e, e!, f} forms a 3-circuit, then the

corresponding exchange K −→ (K∪f)\e preserves the 2-arrangement. However, it is not at

all clear that exchanges of this type connect every pair of complex matroids that represent

the same 2-arrangement.

In fact, we note that the oriented matroid program (L!, e, e!) can be non-euclidean in

the sense of Edmonds & Mandel [EdM] [BLSWZ, Sect. 10.5], so the space of such extensions

can be disconnected [StZ]. The smallest examples for this occur over U2,4, corresponding

to non-euclidean orientations L! of U4,8. This indicates that the reorientation space of a

complex matroid is not a torus in general.
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7.7 Affine complex matroids. If K ⊆ {i, j,+,−, 0}n is a complex matroid and g ∈ [n]

is a fixed element (not a loop), then the sign vector system K+ := {Z ∈ K : Zg = +} is

an affine complex matroid. Note that 0∪ (K+ ∩Kcomp) is again the face poset of a regular

CW complex Γ+
comp.

If K is complex realizable, then then K+ is the sign vector system of an affine complex

hyperplane arrangement, and Γ+
comp has the homotopy type of the complement of this

affine arrangement; in particular, we get

Γcomp ≃ Γ+
comp × C∗. (∗)

The problem is to prove (∗) also in the case where K is not realizable.

In the case of a complexified oriented matroid, we have (in the notation of [BLSWZ,

Sect. 4.1])

K+ = (L◦iL)+ = {X◦iY : Xg = +, Yg = 0} ∼= L+◦i(L/g),

and K+ ∩ Kcomp = T ◦i(L/g) is the affine Salvetti complex [Sal] of an oriented matroid,

where the linear case was analyzed in [BZ, Sect. 4].

Furthermore, one wants to characterize the affine systems K+ intrinsically. The recent

work of Karlander [Kar] in the oriented matroid case suggests that this might not be easy.

7.8 Spaces of complex matroids. Using complex matroids, one can try to define

complex combinatorial differential manifolds in analogy of MacPherson’s real combinatorial

differential manifolds [MPh].

The classifying space for complex vector bundles over such manifolds should be the

CM-Grassmannian: the order complex of the set of all complex matroids of rank r on the

ground set [n], ordered by weak maps K1
:;K2. These are defined by the condition that

for every Z ∈ K2 there is a W ∈ K1 with W ≥ Z — see [BLSWZ, Prop. 7.7.5] for the

oriented matroid case.

We refer to [GeM], [Bab], [MPh] and [MnZ] for recent work in this direction for the

real case.
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