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Abstract.
We prove that a bounded poset of finite length is a lattice if and only if the following
condition holds: whenever two elements x1,xs that cover a common element x are
both smaller that two elements y1,y2 that are covered by a common element ¥, then
there exists an element z that is an upper bound for z1,xs and a lower bound for

Y1,Y2-

For posets that arise in various combinatorial and geometric situations it is nontrivial
to check whether they are lattices. In [2] it was observed that for this it suffices to check
a local condition: the existence of a join for any pair of elements that cover a common
element. In this note we give a new local criterion for the lattice property: it only considers
two covers of an element x, which are both smaller than two cocovers of an element y,
and requires that there is an element z between the two covers of x and the two cocovers
of y. Furthermore, our new criterion is self-dual (that is, equivalent to its order dual
formulation), and it does not any more presuppose the existence of lattice operations for
any pair of elements. It was used in [4] to study the lattice property for higher Bruhat
orders.

For background on elementary properties of posets see [1] and [3, Chap. 3]. We need
the following concepts and terminology. All posets P considered in this note are bounded:
they have a unique minimal element 0 and a unique maximal element 1. A chain in a
poset is a totally ordered subset, its length is the cardinality minus 1. The length ¢(P) of
a poset is the maximal length of a chain in P. The posets we consider need not be finite,
but they have finite length. The closed interval {z € P : x < z < y} is denoted by [z,y].
We say that y covers x if < y and there is no z with z < z < y, so [z,y] = {z,y}. In
this situation, denoted by = <y, we say that y is a cover of z, and x is a cocover of y. An
atom is a cover of 0, while a coatom is a cocover of 1. Note that if 2 is an atom, then
(lx, 1] < ¢(P).

An upper bound of x1 and x5 is an element y with z; < y and x5 < y. If two elements
1,22 € P have an upper bound yq so that yy < y for every other upper bound y, then this
element vy is called the join of 1 and x5 and denoted by yg = x1Vxs. In a poset of finite
length, this is equivalent to the requirement that yg is the unique minimal upper bound of
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x1 and xo. Similarly, the meet of 1 and x5 is their unique maximal lower bound, denoted
by x1 Az, if this exists. A poset P is a lattice if the meet and the join exists for every pair
r1,x2 € P. It is easy to see that in posets of finite length it is sufficient to require that
joins exist, or that meets exist.

The following lemma shows that if the join x;Vzy does not exist, then there exist
upper bounds with a common cover that serve as a certificate. As an immediate corollary
we get a criterion that was designed in [2] to check the lattice property for “posets of
regions”. For the following, we use expressions like “x < x1,x2” to denote that = < x; and
T <Zo.

Lemma. Let P be a bounded poset of finite length, and X1, X, € P. Then X1VXs
exists if and only if there are no elements y;,ys <y with a common cover in P which are
both upper bounds for Xy and X5, for which there is no element Z with X; < Z < y; for
i,7 €41,2}.

Proof. If X,V X5 exists, then we can always put Z := X;VXs. For the converse we use
induction on the length of P. For ¢(P) < 2 the claim is trivial since P is automatically a
lattice. Let Y7,Y5 € P be minimal upper bounds for X, Xs. If Y7 = 1 or Ys = 1 then we
get Y7 = Y5 from minimality. Otherwise we can choose coatoms y1,ys so that Y7 <y < 1
and Yo < yo < 1. Then by assumption there is an element Z € P with X1, Xo < Z < y1, 9s.
Now Z and Y7 are both upper bounds for X; and X5 in the interval [O, y1] of P, where
X1V X5 exists by induction on length. Since Y; is a minimal upper bound, this implies
Y1 < Z. Analogously, we get Yo < Z. This means that Y7, Y5 are minimal upper bounds
for X7 and X, in the interval [6, Z], where X1V X, exists by induction. This implies
Y] =Y, = X1VXs. []

Criterion 1. [2, Lemma 2.1] Let P be a bounded poset of finite length. P is a lattice
if and only if the following condition holds: whenever x1,xs € P cover a common element
x, they have a join z = x1Vxs.

Proof. It is sufficient to show that Y; AY5 exists for all Y7, Y5. Consider two lower bounds
x1,r2 >z. By the lemma (dualized), the existence of Z := z1Vxy implies that Y1AY5
exists. []

To apply Criterion 1, one has to still have control over the existence of joins for pairs
of elements x1,x2 > with a common cocover. However, the lemma above provides again
a local obstruction for this, which leads to the following.

Criterion 2. Let P be a bounded poset of finite length. P is a lattice if and only if the
following condition holds: whenever there are covers x1,xo of x and cocovers yi,ys of y
such that both x, and x4 are smaller than both y, and ys, there exists z € P that is an
upper bound for x1, x5 and a lower bound for y1,ys.

In symbols, P is a lattice if and only if v < x1,x2 < y1,ys < y implies the existence
of ze Pwithe < z1,220 < 2z < y1,y2 < .



Proof. The condition is necessary: if P is a lattice, then z < x1, x5 < x1Vry < y1Vys <
Y1, Y2 <y and hence we can choose z € [x1Vxa, y1Vya].

For sufficiency we use Criterion 1: it suffices to show that z;Vzs exists for x1, 29 > x.
If 21 Vas does not exist, then we get the required elements y;, yo < y from the lemma. [

Both criteria yield straightforward algorithms to test the lattice property. For this
we need a data structure for the poset P that provides lists of the covers and cocovers of
any element: this amounts to storing lists of predecessors an successors for the directed
graph of the Hasse diagram. Then a spanning tree algorithm can be used to identify
the elements that are larger than z1,x, and smaller than y;,y2. We omit details of a
complexity analysis.

Finally we observe that the assumption of finite length is essential for the above
criteria, even if we impose the condition (x) that whenever X <Y is not a cover relation,
then there exist x,y with X <x < y<Y. This can be seen as follows. Let P be any
bounded poset. The ordinal product P ® 7Z is the partial order on P x 7Z where (z,n) <
(y,m) if either x = y and n < m, or & < y, see [3, p. 101]. Let @ denote the interval
[(0,0), (1,0)] of P® Z. Then Q is a bounded poset in which every element except for 1
has a unique cover, and every element except for 0 has a unique cocover. Furthermore
the poset @) satisfies (x). However, @) is not a lattice unless P is a chain: if z1,xo are
incomparable elements of P, then (z1,0) and (z2,0) do not have a join — if (z,n) is an
upper bound, then (z,n—1) is a smaller upper bound.
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