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Abstract.
We prove that a bounded poset of finite length is a lattice if and only if the following
condition holds: whenever two elements x1, x2 that cover a common element x are
both smaller that two elements y1, y2 that are covered by a common element y, then
there exists an element z that is an upper bound for x1, x2 and a lower bound for
y1, y2.

For posets that arise in various combinatorial and geometric situations it is nontrivial
to check whether they are lattices. In [2] it was observed that for this it suffices to check
a local condition: the existence of a join for any pair of elements that cover a common
element. In this note we give a new local criterion for the lattice property: it only considers
two covers of an element x, which are both smaller than two cocovers of an element y,
and requires that there is an element z between the two covers of x and the two cocovers
of y. Furthermore, our new criterion is self-dual (that is, equivalent to its order dual
formulation), and it does not any more presuppose the existence of lattice operations for
any pair of elements. It was used in [4] to study the lattice property for higher Bruhat
orders.

For background on elementary properties of posets see [1] and [3, Chap. 3]. We need
the following concepts and terminology. All posets P considered in this note are bounded:
they have a unique minimal element 0̂ and a unique maximal element 1̂. A chain in a
poset is a totally ordered subset, its length is the cardinality minus 1. The length ℓ(P ) of
a poset is the maximal length of a chain in P . The posets we consider need not be finite,
but they have finite length. The closed interval {z ∈ P : x ≤ z ≤ y} is denoted by [x, y].
We say that y covers x if x < y and there is no z with x < z < y, so [x, y] = {x, y}. In
this situation, denoted by x <· y, we say that y is a cover of x, and x is a cocover of y. An
atom is a cover of 0̂, while a coatom is a cocover of 1̂. Note that if x is an atom, then
ℓ[x, 1̂] < ℓ(P ).

An upper bound of x1 and x2 is an element y with x1 ≤ y and x2 ≤ y. If two elements
x1, x2 ∈ P have an upper bound y0 so that y0 ≤ y for every other upper bound y, then this
element y0 is called the join of x1 and x2 and denoted by y0 = x1∨x2. In a poset of finite
length, this is equivalent to the requirement that y0 is the unique minimal upper bound of
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x1 and x2. Similarly, the meet of x1 and x2 is their unique maximal lower bound, denoted
by x1∧x2, if this exists. A poset P is a lattice if the meet and the join exists for every pair
x1, x2 ∈ P . It is easy to see that in posets of finite length it is sufficient to require that
joins exist, or that meets exist.

The following lemma shows that if the join x1∨x2 does not exist, then there exist
upper bounds with a common cover that serve as a certificate. As an immediate corollary
we get a criterion that was designed in [2] to check the lattice property for “posets of
regions”. For the following, we use expressions like “x <·x1, x2” to denote that x <·x1 and
x <·x2.

Lemma. Let P be a bounded poset of finite length, and X1, X2 ∈ P . Then X1∨X2

exists if and only if there are no elements y1, y2 <· y with a common cover in P which are
both upper bounds for X1 and X2, for which there is no element Z with Xi ≤ Z ≤ yj for
i, j ∈ {1, 2}.

Proof. If X1∨X2 exists, then we can always put Z := X1∨X2. For the converse we use
induction on the length of P . For ℓ(P ) ≤ 2 the claim is trivial since P is automatically a
lattice. Let Y1, Y2 ∈ P be minimal upper bounds for X1, X2. If Y1 = 1̂ or Y2 = 1̂ then we
get Y1 = Y2 from minimality. Otherwise we can choose coatoms y1, y2 so that Y1 ≤ y1 <· 1̂
and Y2 ≤ y2 <· 1̂. Then by assumption there is an element Z ∈ P with X1, X2 ≤ Z ≤ y1, y2.
Now Z and Y1 are both upper bounds for X1 and X2 in the interval [0̂, y1] of P , where
X1∨X2 exists by induction on length. Since Y1 is a minimal upper bound, this implies
Y1 ≤ Z. Analogously, we get Y2 ≤ Z. This means that Y1, Y2 are minimal upper bounds
for X1 and X2 in the interval [0̂, Z], where X1∨X2 exists by induction. This implies
Y1 = Y2 = X1∨X2.

Criterion 1. [2, Lemma 2.1] Let P be a bounded poset of finite length. P is a lattice
if and only if the following condition holds: whenever x1, x2 ∈ P cover a common element
x, they have a join z = x1∨x2.

Proof. It is sufficient to show that Y1∧Y2 exists for all Y1, Y2. Consider two lower bounds
x1, x2 ·>x. By the lemma (dualized), the existence of Z := x1∨x2 implies that Y1∧Y2

exists.

To apply Criterion 1, one has to still have control over the existence of joins for pairs
of elements x1, x2 ·>x with a common cocover. However, the lemma above provides again
a local obstruction for this, which leads to the following.

Criterion 2. Let P be a bounded poset of finite length. P is a lattice if and only if the
following condition holds: whenever there are covers x1, x2 of x and cocovers y1, y2 of y
such that both x1 and x2 are smaller than both y1 and y2, there exists z ∈ P that is an
upper bound for x1, x2 and a lower bound for y1, y2.

In symbols, P is a lattice if and only if x <· x1, x2 ≤ y1, y2 <· y implies the existence
of z ∈ P with x <· x1, x2 ≤ z ≤ y1, y2 <· y.
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Proof. The condition is necessary: if P is a lattice, then x <· x1, x2 ≤ x1∨x2 ≤ y1∨y2 ≤
y1, y2 <· y and hence we can choose z ∈ [x1∨x2, y1∨y2].

For sufficiency we use Criterion 1: it suffices to show that x1∨x2 exists for x1, x2 ·>x.
If x1∨x2 does not exist, then we get the required elements y1, y2 <· y from the lemma.

Both criteria yield straightforward algorithms to test the lattice property. For this
we need a data structure for the poset P that provides lists of the covers and cocovers of
any element: this amounts to storing lists of predecessors an successors for the directed
graph of the Hasse diagram. Then a spanning tree algorithm can be used to identify
the elements that are larger than x1, x2 and smaller than y1, y2. We omit details of a
complexity analysis.

Finally we observe that the assumption of finite length is essential for the above
criteria, even if we impose the condition (∗) that whenever X < Y is not a cover relation,
then there exist x, y with X <·x ≤ y <·Y . This can be seen as follows. Let P be any
bounded poset. The ordinal product P ⊗ ZZ is the partial order on P × ZZ where (x, n) ≤
(y, m) if either x = y and n ≤ m, or x < y, see [3, p. 101]. Let Q denote the interval
[(0̂, 0), (1̂, 0)] of P ⊗ ZZ. Then Q is a bounded poset in which every element except for 1̂
has a unique cover, and every element except for 0̂ has a unique cocover. Furthermore
the poset Q satisfies (∗). However, Q is not a lattice unless P is a chain: if x1, x2 are
incomparable elements of P , then (x1, 0) and (x2, 0) do not have a join — if (z, n) is an
upper bound, then (z, n−1) is a smaller upper bound.
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