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Among the many ways to view oriented matroids as geometrical objects, we consider two
that have special properties:

• Bland’s analysis of complementary subspaces in IRn [2] has the special feature that
it simultaneously and symmetrically represents a realizable oriented matroid and its
dual;

• Lawrence’s topological representation of oriented matroids by arrangements of pseudo-
spheres [4] has the advantage of yielding a faithful picture also in the general case of
non-realizable oriented matroids.

In this note we prove a “Topological Representation Theorem for Dual Pairs”, which
combines these two points of view.

We refer to [1, Chap. 1] for an exposition of the theory of oriented matroids. Here we
only review some notation and fix terminology.

Bland’s [2, Sect. 3] [1, Sect. 1.2(d)] set-up is as follows. Let ξB be a subspace of IRn

of dimension r. The intersections of the coordinate hyperplanes Hi = {x ∈ IRn : xi = 0}
with ξ determine an arrangement of hyperplanes {ξ ∩ Hi : 1 ≤ i ≤ n} in ξ, and with it a
(realizable) oriented matroid M of rank r on {1, . . . , n}. In the same way, the orthogonal
complement ξ⊥ of dimension n− r determines an arrangement in ξ⊥ that represents M∗.

Now write ξ and ξ⊥ as intersections ξ⊥ =
⋂n+r

j=n+1 H ′
j and ξ =

⋂2n
j=n+r+1 H ′

j of
hyperplanes H ′

j ⊆ IRn. This construction encodes the realizable oriented matroid M and
its dual M∗ into an arrangement of 2n hyperplanes Hi, H ′

j in IRn, for 1 ≤ i ≤ n and
n+1 ≤ j ≤ 2n. In view of this, the Topological Representation Theorem of Lawrence
suggests a generalization that encodes a general pair of dual oriented matroids into an
arrangement of 2n pseudospheres in Sn−1, stated below as Theorem 1.
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For this, recall that a pseudosphere is the image of a coordinate sphere Si = {x ∈
Sn−1 : xi = 0} (for 1 ≤ i ≤ n) under a homeomorphism h : Sn−1 −→ Sn−1. The
complement of a pseudosphere S in Sn−1 has two components S+ and S−, called the sides
of S.

A pseudosphere arrangement (or pseudoarrangement) is a family A = (Se)e∈E of
pseudospheres in Sn−1 such that for A ⊆ E, the intersection SA =

⋂
e∈E Se is a sphere of

some dimension, SE = ∅, and for ∅ ̸= SA ̸⊆ Se, the intersection SA ∩ Se is a pseudosphere
in SA with sides SA∩S+

e and SA∩S−
e . A pseudoarrangement is signed if for every Se ∈ A,

a positive side S+
e is chosen.

The intersections SA are called subspheres of A. Two subspheres SA and SB are
complementary if for some r, SA is an (r−1)-sphere and SB is an (n−r−1)-sphere, with
SA ∩ SB = ∅.

The Topological Representation Theorem [4, Chap. IV] [1, Sect. 1.4 and Chap. 5] states
that there is a bijection between oriented matroids of rank r on n elements and equivalence
classes of signed arrangements of n pseudospheres in Sr−1 that represent them. Under this
bijection, the k-subspheres of an arrangement of pseudospheres correspond to contractions
of the oriented matroid of rank k+1; in particular, the cocircuits of the oriented matroid
can be identified with the vertices of the pseudoarrangement.

Theorem 1. (Topological Representation of Dual Pairs)
Let M be an oriented matroid of rank r on {1, . . . , n}. There is a signed arrangement

of 2n pseudospheres A = (Si)1≤i≤2n in Sn−1 so that

– Si = {x ∈ Sn−1 : xi = 0} for 1 ≤ i ≤ n [that is, A contains the “frame” of linear
coordinate spheres],

– the (r−1)-subsphere SB := Sn+r+1 ∩ . . . ∩ S2n and the (n−r−1)-subsphere SA :=
Sn+1 ∩ . . . ∩ Sn+r form a pair of complementary subspheres in Sn−1,

– The arrangement (Si ∩ SB)1≤i≤n is a topological representation of M in SB.

– The arrangement (Si ∩ SA)1≤i≤n is a topological representation of M∗ in SA.

In view of the Topological Representation Theorem, this Theorem 1 can be reduced to
the following construction of an oriented matroid that has M and M∗ as complementary
minors.

Theorem 2. (Representation of Dual Pairs as Complementary Minors)
For every oriented matroid M of rank r on the ground set E = {1, . . . , n}, there exists

an oriented matroid M̂ of rank n on the ground set Ê = {1, . . . , 2n} = E ∪· A∪· B with
A := {n+1, . . . , n+r} and B := {n+r+1, . . . , 2n}, such that

M̂\A/B = M,

M̂/A\B = M∗.
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Proof. For the following, we relabel the ground set such that {1, . . . , r} is a basis of M.
Now let M1 be the oriented matroid on Ê that is obtained by extending M by elements
n+i that are parallel to the elements i for 1 ≤ i ≤ r, and that are loops for r+1 ≤ i ≤ n.
Similarly, let M2 be the oriented matroid on Ê that is obtained by extending M∗ by
elements n+i that are loops for 1 ≤ i ≤ r and that are parallel to the elements i for
r+1 ≤ i ≤ n.

M1 and M2 are matroids of ranks r and n−r on Ê that have disjoint bases. Thus
their union M̂ := M1 ∪ M2 (see [1, Sect. 7.6]) is an oriented matroid of rank n on Ê.
We claim that M̂ has the required properties. To see this, we use an explicit description
of oriented matroid union by Lawrence & Weinberg [5] [1, Prop. 7.6.4]: if A1 and B1 are
disjoint (ordered) bases of M1 and of M2, so that (A1, B1) is the lexicographically smallest
permutation of A1 ∪ B1 for which the first r1 elements form a basis of M1 and the other
r2 elements form a basis of M2, then

χM1∪M2(A1 ∪ B1) = χM1(A1) · χM2(B1)

In our situation, let A1 be an r-subset of {1, . . . , n}. If A1 is not a basis of M1, then
A1 ∪ B is not a basis of M1 ∪ M2, since the elements of B are loops in M1, and thus
χ(M1∪M2)\A/B(A1) = χM(A1) = 0. If A1 is a basis of M1, then A1 ∪· B is a basis of
M1 ∪M2, and the Lawrence-Weinberg formula yields

χ(M1∪M2)\A/B(A1) = χ(M1∪M2)(A1 ∪ B) = χM1(A1) · χM2(B) = χM(A1),

which proves (M1 ∪M2)\A/B = M. Analogously, we get (M1 ∪M2)\B/A = M∗.

Theorem 2 has a straightforward analogue for ordinary matroids. The main difference
is that in the unoriented case the construction of a union is unique, while the oriented
construction involves a lot of choice. However, even in the unoriented case the conditions
of Theorem 2 do not uniquely determine M̂ .

In the case where M is realizable, the oriented matroid M̂ constructed from it is
again realizable. Namely, if M can be represented by (I|C), where I denotes an identity
matrix, then M1 is represented by (I|C|I|0), and M2 is represented by (−Ct|I|0|I). Now
let (−Ct|I|0|I)ϵ be the matrix obtained by multiplying the i-th column by ϵ2n−i, for all
i ∈ {1, . . . , 2n} and ϵ > 0 sufficiently small. Then the combined matrix

( I C I 0 )
( −Ct I 0 I )ϵ

is a representation of M̂, see [5] [1, Prop. 8.2.7]. A similar statement holds for ordinary
matroids when represented over a sufficiently large field, see [3, Prop. 7.6.1].

The construction of Theorem 2 seems to be new. We expect that it should have other
applications, facilitating the use and the interpretation of (oriented) matroid duality, to
the analysis of linear programming algorithms on oriented matroids, etc.
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