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Abstract. We introduce and study a family of real hyperplane arrangements that

includes the reflection arrangements of types An and Dn as well as an infinite family

of arrangements E′
n (constructed by Orlik, Solomon & Terao) that is related to the

exceptional arrangements of type En, n ≤ 8.

We investigate freeness (in the sense of Terao) of these arrangements, disproving the

conjecture that the arrangements E′
n are free in general.

1. Introduction.

Consider the hyperplane arrangements E′
n in IRn defined (for n ≥ 2) by

Qn =
∏

1≤i<j≤n

(xi − xj) ·
∏

1≤i<j<k≤n

(xi + xj + xk).

These arrangements are very interesting because of their close relation to the exceptional

root systems of type E. In fact, they were constructed by Orlik, Solomon and Terao [St,

Exercise 3.56(d), p. 167] in an attempt to clarify the algebraic structure of the exceptional

reflection arrangements En (n ≤ 8).

Specifically, Orlik, Solomon and Terao conjectured that E′
n is free in the sense of

Terao’s theory [T1] of free arrangements, which we briefly review below. In this paper we

show that this conjecture is false.

Theorem.

E′
n is free for n ≤ 7, but not free for n ≥ 9.

We will proceed as follows. In Section 2 we will briefly sketch the theory of free

arrangements and review the necessary facts. In Section 3 we construct a family An,k of

arrangements in IRn (for 1 ≤ k ≤ n) which contain E′
n = An,3 and also the reflection

arrangements of types A and D. Then (in Section 4) we determine free arrangements

among the An,k, using their close connections to reflection arrangements. In the next

section, we do the non-freeness proofs. We close with some comments on the remaining

case of E′
8.
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2. Free Arrangements.

We refer to [O] or [OT] for introductions to free arrangements, their geometry and com-

binatorics. The necessary facts and background material can be found there, as well as

further references. We only list the results that will be needed in this note.

In this paper we only consider linear, real arrangements of hyperplanes. So an ar-

rangement is a finite set X = {H1, . . . , Hm} ⊆ IRn of hyperplanes through the origin.

We will need some data from the combinatorics of L, and its matroid (see [W]).

The set of intersections of the hyperplanes in X , ordered by reverse inclusion, forms a

geometric lattice L = L(X), the intersection lattice of X . Its minimal element is 0̂ = IRn,

its maximal element is 1̂ = ∩m
i=1Hi. The rank of X is r = r(L) = n − dim(∩m

i=1Hi);

the rank of a flat Y ∈ L is similarly given by r(Y ) = n − dim(Y ). The arrangement X

is essential if ∩m
i=1Hi = {0}, that is, if r = n. In particular we need the characteristic

polynomial χ(t) =
∑

Y ∈L µ(0̂, Y )tr−r(Y ) = tr − mtr−1 ± . . . of L, where µ denotes the

Möbius function of L, see [W] [St].

Every hyperplane Hi of the arrangement is the kernel of a linear function, Hi = ker(li).

Now let S := IR[x1, . . . , xn] be the ring of polynomial functions on IRn. Then we can

consider the li as elements of S, and their product Q :=
∏m

i=1 li ∈ S is a polynomial of

degree m which defines X . Now let Sn be the set of all polynomial functions from IRn

to IRn. We will consider the set Der(X) := {p ∈ Sn : p(H) ⊆ Hi} of those polynomial

functions that map every hyperplane of X into itself. The set Der(X) of “derivations” has

the structure of a module over S of rank n.

Following [T1], we call X free if Der(X) is a free S-module, that is, if it has a basis.

This is the case [Sa] if and only if there are homogeneous elements p1, . . . ,pn in Der(X)

such that det(p1, . . . ,pn) = Q. The multiset of degrees ei := deg(pi) does not depend

on the specific basis of Der(X). They are called the exponents of X . The exponents of a

free arrangement satisfy e1 + . . . + en = m. In (e1, . . . , en) the exponent 0 appears n − r

times. So if X is essential, then the exponents are positive integers. If the arrangement is

irreducible (not a direct sum), then the exponent 1 appears exactly once.

Terao’s Factorization Theorem [T2] states that if X is a free arrangement, the char-

acteristic polynomial has a special form: it is given by χ(t) =
∏r

i=1(t − ei), where the ei

are the positive exponents of X .

A localization of X (at x ∈ IRn) is the subarrangement of all hyperplanes Hi ∈ X

that contain a fixed point x. The localizations of X are in bijection with the flats Y ∈ L,

via Y ↔ ∩Hi⊇Y Hi. If X is free, then all the localizations of X are free as well [T1].

Terao’s Addition-Deletion Theorem [T1] states that if two of the following facts are

true for some i, then so is the third:

– the arrangement X is free with exponents [e1, . . . , en],

– the deletion X\Hi is free with exponents [e1, . . . , ei − 1, . . . , en],
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– the restriction X |Hi
is free with exponents [e1, . . . , ei−1, ei+1, . . . , en].

A Coxeter arrrangement is the set of reflecting hyperplanes of a finite reflection group.

Coxeter arrrangements are free [Sa]: this follows from Chevalley’s theorem [B] with pi :=

( ∂fi

∂x1

, . . . , ∂fi

∂xn
). The corresponding exponents are di − 1, where di is the degree of the i-th

fundamental invariant fi of the group. The classification of Coxeter groups, and lists of

their exponents, can be found in [B].

Orlik, Solomon & Terao [OST] show that if XG is a Coxeter arrrangement with ex-

ponents e1 ≤ . . . ≤ en, then for H ∈ XG, the deletion XG\H is also free, with exponents

[e1, . . . , en−1, en − 1], and thus the restriction XG|H is free with exponents [e1, . . . , en−1].

An arrangement is uniform if its hyperplanes are in general position (so that the

matroid is uniform). Uniform arrangements are not free if m > r > 2 [Z1]. We will only

need the special case where m− 1 = n = r: in this case non-freeness can also be seen from

the characteristic polynomial χ(t) = (1 − 1
t
)((t − 1)n−1 + (−1)n).

3. More Arrangements.

To understand the arrangements of type E′, we have to clarify their relation to Coxeter

arrangements. We will interpret the arrangements E′
n as part of a two-parameter family

of arrangements An,k in IRn, which for 1 ≤ k < n are given by

Qn,k :=
∏

1≤i<j≤n

(xi − xj) ·
∏

1≤i1<...<ik≤n

(xi1 + . . . + xik
).

Defining x(I) :=
∑

i∈I xi, this can also be written as

Qn,k =
∏

1≤i<j≤n

(xi − xj) ·
∏

|I|=k

x(I).

This formula defines a family of arrangements of cardinality
(

n
2

)

+
(

n
k

)

in IRn. It is inter-

esting, because teh following Proposition will show that

– it nearly contains all the Weyl arrangements with a simply laced diagram, and

– it contains the arrangements E′
n,

– it supports an interesting duality.

We start by observing some isomorphisms, and by identifying the Weyl arrangements

among the arrangements An,k. The case of k = 0 will be ignored in our discussion.

Proposition.

(i) An,1
∼= An for n ≥ 1.

An,2
∼= Dn for n ≥ 3.

An,3
∼= E′

n for n ≥ 3.

(ii) An,k
∼= An,n−k for 1 ≤ k < n.

(iii) An,k is a localization of An+1,k, and of An+1,k+1, for 1 ≤ k ≤ n.

Proof:
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(i) is clear.

(ii) follows from the coordinate transformation

x′
i := xi −

1
k

n
∑

j=1

xj ,

whose inverse is given by

xi = x′
i −

1
n−k

n
∑

j=1

x′
j .

This transformation satisfies

x′
i − x′

j = xi − xj for i < j and

x′(I) = −x([n]\I) for |I| = k,

and thus transforms An,k into An,n−k.

(iii) holds because the hyperplanes of An+1,k that contain en+1 are exactly those which do

not contain the variable xn+1; the corresponding localization is therefore isomorphic

to An,k.

The second statement follows now from (ii).

4. Freeness Proofs.

In this section, we prove that E′
n is free for n ≤ 7, and determine the corresponding

exponents.

Theorem. (Orlik, Solomon and Terao, see [St, p. 192])

The arrangements E′
n are free for 2 ≤ n ≤ 7, with the following sets of exponents:

E′
2 [0, 1]

E′
3 [1, 1, 2]

E′
4 [1, 2, 3, 4]

E′
5 [1, 3, 4, 5, 7]

E′
6 [1, 4, 5, 7, 8, 10]

E′
7 [1, 5, 7, 9, 10, 11, 13]

Proof:

Coxeter arrrangements are free. From this we get that

E′
3
∼= A2 × A1

E′
4
∼= A4,3

∼= A4,1
∼= A4 and

E′
5
∼= A5,3

∼= A5,2
∼= D5

are free with the exponents as stated.

[[Note that D5 is not supersolvable, so neither is E′
n for n ≥ 5.]]

For E′
6 we observe that E6 is in the non-standard coordinates given by Cartan in his

thesis (“in Cartan’s coordinates”) [C] [S] given by

Q6,3 · (x1 + . . . + x6) = Q6,3 · x([6]).
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In other words, E′
6
∼= E6\H, where H = {x ∈ IR6 : x([6]) = 0}. Now E6 is a Coxeter

arrrangement with exponents [1, 4, 5, 7, 8, 11]. With the Orlik-Solomon-Terao theorem

[OST], this yields that E′
6 is free with the exponents as stated.

[[At this point, we can also notice that E6\H is not simplicial, and thus E′
n is not

simplicial for n ≥ 6.]]

For E′
7, we use that E7 is “in Cartan’s coordinates” given by

Q7,3 ·
7
∏

i=1

(x1 + . . . + x7 − xi) = Q7,3 ·
∏

|I|=6

x(I),

(that is, E7
∼= E′

7 ∪ A7,6). This Coxeter arrangement is free with exponents [1,5,7,9,

11,13,17]. By the Orlik-Solomon-Terao theorem, we get that E7|Hi
(with Hi = {x ∈

IR7 : x1 + . . . + x7 − xi = 0}) is free with exponents [1, 5, 7, 9, 11, 13]. Now Hi ∩

Hj ⊆ {x : xi = xj}, and thus E7\{H1, . . . , Hi−1}|Hi
∼= E7|Hi

. This allows for a

repeated application of Terao’s Addition-Deletion Theorem, to get that E′
7 is free

with exponents [1, 5, 7, 9, 11, 13, 10], as required.

Note that the last argument is analogous to the proofs of freeness given in [Z2]. In fact, it

constructs a resolution of E′
7 in the sense of [Z2]: however, in this case this is a Coxeter-

resolution, analogous to the supersolvable resolutions of [Z2].

5. Non-freeness proofs.

In this section, we show the following result.

Theorem.

The arrangements A9,3 = E′
9 and A8,4 are not free.

First Proof. We start with E′
9. In fact, the subarrangement of E′

9 defined by

Q0 := (x1 +x2 +x3)(x4 +x5 +x6)(x7 +x8 +x9)(x1 +x4 +x7)(x2 +x5 +x8)(x3 +x6 +x9)

is the localization of E′
9 at a point like x = (0, 1,−1, 2, 4,−6,−2,−5, 7). However, Q0

defines a generic subarrangement of six hyperplanes of rank 5, which cannot be free. Hence

E′
9 is not free, and neither is E′

n for n ≥ 9.

In matroid theory terms, one studies the matroid M(E′
n) given by the set

S := {ei − ej : 1 ≤ i < j ≤ n} ∪ {ej + ej + ek : 1 ≤ i < j < k ≤ n}

of vectors in IRn. One finds that the subset

S0 := {e1 + e2 + e3, e4 + e5 + e6, e7 + e8 + e9, e1 + e4 + e7, e2 + e5 + e8, e3 + e6 + e9}

forms a flat of rank 5 of M(E′
9) that is a 6-circuit. In other words, S0 is a flat of M(E′

9)

that is isomorphic as a matroid to the uniform matroid U5,6. The characteristic polynomial
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of the interval [0̂, E′] of L(E′
9) is χ(t) = t5 − 6t4 + 15t3 − 20t2 + 15t − 5, which does not

factor completely in ZZ[t].

To see that A8,4 is not free, consider the localization of A8,4 at the point x :=

(0, 1, 2,−3, 4,−5,−8, 9). There are only four hyperplanes in the arrangement that con-

tain this point. They are described by

Q0
8,4 = (x1 + x2 + x3 + x4)·(x3 + x4 + x7 + x8)·(x1 + x2 + x5 + x6)·(x5 + x6 + x7 + x8).

They determine a uniform subarrangement of rank 3, whose matroid is U3,4. Thus this

localization of A8,4 is not free, and hence A8,4 is not free.

A different method to show that an arrangement is not free is to show that the

characteristic polynomial doesn’t factor. For this, it may be sufficient to compute only

part of the characteristic polynomial. For example, the formula one gets for E′
n is

χ
n
(t) = tn

− {

(

n

2

)

+

(

n

3

)

}tn−1

+ {5

(

n

3

)

+ 15

(

n

4

)

+ 25

(

n

5

)

+ 10

(

n

6

)

}tn−2

− {2

(

n

3

)

+ 42

(

n

4

)

+ 290

(

n

5

)

+ 995

(

n

6

)

+ 1575

(

n

7

)

+ 1120

(

n

8

)

+ 280

(

n

9

)

}tn−3

± . . .

by enumeration of the flats of L(E′
n) of rank at most 3, and computation of their Möbius

functions. This can be done by hand, if one considers the orbits of the Sn-action. In fact,

it would be nice to get the next coefficient, but that seems to be beyond reach.

Second Proof. For E′
9, one gets from the above formula that

χ9(t) = t9 − 120t8 + 6300t7 − 189280t6 ± . . . ,

which shows (with an enumeration by computer) that χ9(t) does not factor completely in

ZZ[t] – this is another proof that E′
9 is not free.

For A8,4 the characteristic polynomial begins with

χ8,4(t) = t8 − 98t7 + 4137t6 ∓ . . . ,

and this implies (again by computer enumeration) that the zeroes of χ8,4(t) ∈ ZZ[t] are not

all positive integers: so A8,4 is not free.
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6. Comments.

Combining our results, we can conclude whether An,k is free or not for all values of k and

n, except for E′
8 = A8,3

∼= A8,5.

Corollary.

An,k is free if min{k, n − k} ≤ 2 and if n ≤ 7.

An,k is not free if min{k, n − k} ≥ 4 and if min{k, n − k} = 3, n ≥ 9.

What about the open case? E′
8 has characteristic polynomial

χ8(t) = (t − 1) · (t − 7) · (t − 10) · (t − 11) · (t − 12) · (t − 13) · (t − 14) · (t − 16)

(enumeration by computer). This suggests that E′
8 is free, although we have no proof

for this. In principle, this is a question that can be decided by a computer calculation,

using the Gröbner basis methods. However, it seems to be just beyond the reach of a fast

workstation (with extra memory) to even to compute the Hilbert series of Der(E′
8), using

the method of Billera & Rose [BR, Section 5]. However, a Gröbner basis computation

shows a generator in Der(E′
8) of degree 7 (at least computing in finite charateristic), but

no generator of degree 6, killing the possible conjecture that in general Der(E′
n) contains

a has a homogeneous generator of degree n − 2.

Also it is not clear (and similarly hard to check) whether every restriction of E′
8

to one of its hyperplanes is free. There are two isomorphism classes of such. In the

first case, a Hilbert series computation indicates that E′
8|xi=xj

is free with exponents

[1, 7, 10, 11, 11, 13], the second case was again beyond reach. This might be of interest in

connection with “Orlik’s Conjecture” [O, p. 86] that restrictions of free arrangements to

their hyperplanes are always free, which was recently disproved (using the same Gröbner

basis methods on different examples) by Edelman & Reiner [ER].

We note that E′
8 is a localization of E′

9, while “in Cartan’s coordinates” [C] [S] E8

arises as the restriction of E′
9 to {x ∈ IR9 :

∑

xi = 0} 6∈ E′
9. However, there is no direct

connection between E8 and E′
8 that would lead to a conclusion about the freeness of E′

8.
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