Logo der Freien Universität BerlinFreie Universität Berlin

Fachbereich Mathematik und Informatik


Service-Navigation

  • Startseite
  • Diskrete Geometrie
  • Impressum
  • Datenschutz
DE
  • DE: Deutsch
  • EN: English
Hinweise zur Datenübertragung bei der Google™ Suche
Fachbereich Mathematik und Informatik/Mathematik/

Arbeitsgruppe Diskrete Geometrie

Menü
  • Projekte

    loading...

  • Mitglieder

    loading...

  • Lehre

    loading...

  • Termine

    loading...

  • Neuigkeiten

    loading...

  • Stellenanzeiger

    loading...

  • Seminar

    loading...

  • Events

    loading...

Mikronavigation

  • Startseite
  • Mathematik
  • Arbeitsgruppen
  • Diskrete Geometrie
  • Projekte
  • ERC Advanced Grant Project
  • Publications
  • Preprints
  • Unimodular triangulations of dilated 3-polytopes

Unimodular triangulations of dilated 3-polytopes

Francisco Santos, Günter M. Ziegler – 2013

Focus Area 2: Delaunay Geometry A seminal result in the theory of toric varieties, due to Knudsen, Mumford and Waterman (1973), asserts that for every lattice polytope P there is a positive integer k such that the dilated polytope kP has a unimodular triangulation. In dimension 3, Kantor and Sarkaria (2003) have shown that k=4 works for every polytope. But this does not imply that every k>4 works as well. We here study the values of k for which the result holds showing that: 1. It contains all composite numbers. 2. It is an additive semigroup. These two properties imply that the only values of k that may not work (besides 1 and 2, which are known not to work) are k∈{3,5,7,11}. With an ad-hoc construction we show that k=7 and k=11 also work, except in this case the triangulation cannot be guaranteed to be "standard" in the boundary. All in all, the only open cases are k=3 and k=5.

Titel
Unimodular triangulations of dilated 3-polytopes
Verfasser
Francisco Santos, Günter M. Ziegler
Datum
2013-04
Quelle/n
  • http://arxiv.org/abs/1304.7296
Art
Text

Links

  • Arbeitsgruppen - Wiki

Termine

spinner

Neuigkeiten

spinner

Seminar

Service-Navigation

  • Startseite
  • Diskrete Geometrie
  • Impressum
  • Datenschutz

Diese Seite

  • Drucken
  • RSS-Feed abonnieren
  • Feedback
  • English