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1 Introduction

A method for linearising the problem of studying topological spaces is to pass to (co)homology.
The theory of motives is an attempt to linearise the study of algebraic varieties. Unlike in alge-
braic topology, we have many (co)homology theories for algebraic varieties together with canonical
comparison isomorphisms: Betti, de Rham, ℓ-adic, crystalline, etc.. Moreover, these cohomology
theories satisfy Künneth-type formulas and often come with extra structure which can be encoded
as a representation of a pro-algebraic group: Galois representation, mixed Hodge structure, etc.

In the ideal world, for a field k, one wishes for a Tannakian category MM(k) of mixed motives
over k and a functor M : Sm/k → MM(k) from the category of smooth schemes over k, such
that cohomology theories of X with their additional structure and the higher Chow groups of X
can be recovered from M(X). There has been many attempts to construct such a category. In
the pure case (restricting to smooth projective varieties), we have among others Grothendieck’s
original proposal of numerical motives (abelian semi-simple category, for which the existence of
fiber functors depends on the standard conjectures), and André motives built out of motivated
cycles (avoiding the standard conjectures and constructing a semi-simple tannakian category with
a pure motivic Galois group). In the mixed case, Deligne and Beilinson observed that it might be
easier to construct the derived category of MM(k) and then try to recover MM(k) as the heart of
this category for the right t-structure. In the 90s a triangulated category DM(k) of motives were
constructed by Voevodsky (along with similar constructions by Hanamura and Levine), based on
his theory of A1-homotopy invariant sheaves with transfers. This category has natural realisation
functors, and the higher Chow groups of X appear as extension groups. However, constructing the
right t-structure on this category turned out to be at least as difficult as the standard conjectures
[14]. Nori suggested another approch, constructing a tannakian category of mixed motives MM(k)
and a mixed motivic Galois group based on his version of a weak tannakian formalism. The relation
with algebraic cycles is unfortunately unclear.

In this seminar we will study yet another approach due to Ayoub. Like Nori’s, it is unconditional
and produces a certain pro-algebraic group as candidate for the motivic Galois group. Unlike Nori’s,
it builds on the work of Voevodsky and his successors.

Ayoub first constructs a category DA(S) of etale motivic sheaves on a scheme S with rational
coefficients (which is equivalent with Voevodsky’s triangulated category of motives with rational
coefficients when S is the spectrum of a field). Then he develops a new variant of the tannakian
formalism which works outside of the abelian category case, and applies it to the Betti realisation
functor Bti∗ : DA(k) → D(VecQ) to obtain a Hopf algebra in D(VecQ), from which he constructs
the motivic Galois group [9].

We will study the construction of DA(k) and the Betti realisation in details. A priori, these
objects live in the world of monoidal triangulated categories; however, it is convenient to lift them
to the more structured context of stable monoidal model categories. We will then present Ayoub’s
construction of the motivic Galois group.

We will then proceed to study applications. First, we have a non-trivial reformulation of the
conjecture of Grothendieck and Kontsevich-Zagier on transcendance properties of periods. Then,
we have a motivic version of the theorem of the fixed part [10], which states that if a “motivic
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local system” (i.e., a representation of Ayoub’s motivic fundamental group!) over a variety X/k
has the property that its underlying local system, after a base change k → C, on XC,an is trivial,
then it comes from the base field. Finally, and most importantly, we have the geometric version of
the Kontsevich-Zagier conjecture [13, Theorem 1.6] - this last item is a “true” application, not a
motivic or conjectural one!

For a general view of these results and applications, André’s Bourbaki talk “Groupes de Galois
motiviques et périodes” and Ayoub’s own survey [11] are recommended.

2 Talks

2.1 Overview

Give an introduction to the conjectural picture for the tannakian category of mixed motives,
following [1, Chapter 21]. Sketch André’s construction of a Tannakian category of pure motives
and a pure motivic Galois group using motivated cycles [1, Chapter 9.2].

Recall briefly the notion of triangulated category and the example of the derived category
of an abelian category. Explain how to form the Verdier localisation of a triangulated category.
See e.g. [20, Chapter 10,13]. Define (symmetric) monoidal triangulated categories, and explain
how the monoidal structure descends to a Verdier localisation at a thick tensor ideal, i.e. a thick
triangulated subcategory I of T such that A ∈ I, B ∈ T ⇒ A⊗B ∈ I.

Next use Verdier localisation to give a first construction of the categories of motives DAeff(S,Λ)
andDA(S,Λ) as monoidal tensor triangulated categories, following [3, §2.1-3] (with S a base scheme
and Λ a commutative ring). As we will only consider motives for the étale topology, we drop the
ét from the notation in loc.cit.

Let σ : k → C. Explain the construction of the Betti realisation functor

Bti∗ = Bti∗σ : DA(k,Λ) → D(Λ−Mod)

as follows (for more details, see [7], where everything is stated in the model category language).
The “naive” construction of the category of motives can be repeated using the site of complex
analytic varieties over a fixed analytic variety X with its usual topology instead of the site of
smooth k-varieties with the étale topology. One also replaces the affine line A1 with the open disk
D1. This produces monoidal triangulated categories AnDAeff(X,Λ) and AnDA(X,Λ). Given
a smooth algebraic variety S over k, we have an associated analytic variety San and there is an
induced analytification functor

An∗ : DA(S,Λ) → AnDA(San,Λ)

Moreover, there is a functor

ι∗S : D(San,Λ) → AnDA(San,Λ)

from the derived category of sheaves of Λ-modules on San to AnDA(San,Λ). Because complex
analytic varieties are, locally for their topology, covered by polydisks, and because the analytic Tate
object is already invertible so that the T an-spectrum construction does not change the category,
one can show that the functor ι∗s is an equivalence of categories [7, Theorem 1.6]. There is a natural
quasi-inverse ιS∗, and one then defines

Bti∗ = ιS∗An
∗

Let S = Spec(k) and X ∈ Sm/k: one can show that Bti∗M(X) is quasi-isomorphic to the singular
chain complex of Xan with Λ-coefficients, i.e. it is an object in D(Λ−Mod) whose homology groups
are canonically isomorphic to singular homology groups of Xan.

Now, the functor Bti∗ turns out to have a right adjoint, which we denote by Bti∗; its existence
can be obtained by triangulated category theory, but will also be proven later via model category
theory. By adjunction, the object Bti∗Λ represents singular homology in DA. We then define
(with Λ = Q):

Hmot(k, σ) = Bti∗Bti∗Q[0]

2



This is Ayoub’s motivic Hopf algebra. One of the main results of the later talks is thatHn(Hmot(k, σ)) =
0 for n < 0. This shows that H0(Hmot(k, σ)) is an Hopf algebra over Q. We can finally put

Gmot(k, σ) := Spec(H0(Hmot(k, σ))).

This is Ayoub’s motivic Galois group, a pro-algebraic group defined over Q.
Time permitting: state the motivic t-structure conjecture, in the form of [12, 3.26]. To put it

in our context, replace DM with DA, specialize to Λ = Q, and use the fact that DMgm(k,Q) is
equivalent to the category DAct(k) which we just introduced. This conjecture would imply that
MMct(k) is a Tannakian category, with dual group isomorphic to Gmot(k, σ).

2.2 Model categories

We have seen in the overview talk that categories of motives can be thought of as monoidal
triangulated categories, obtained as Verdier localisation of derived categories of certain abelian
categories. For many constructions and results, a more structured approach is required. A way to
present monoidal triangulated categories is through stable monoidal model categories. In this talk,
we explain the basic of (monoidal) model categories. The main reference is the book [21, Chapters
14-18], which is available at the FU library.

Because of time constraints, we are going to sweep under the rug some technical aspects.
In particular, any mention of “left/right proper”, ”cell complexes”, ”cofibrantly generated” or
”compactly generated” can be safely ignored for this introduction.

First, give the definition of model categories:

• 14.1: Present everything up to 14.1.11, except material related to transfinite compositions.
In the definition of a weak factorisation system, assume factorisations to be functorial.

• 14.2: Present everything, except the proof of 14.2.5 and remark 14.2.6.

Give the basic examples of model categories:

• 18.1: Present everything, but only mention the q-model structure (and call it the ”projective
model structure”, to keep closer to Ayoub’s terminology in later talks). A look at [18, 2.3]
could be useful.

• 18.4: give 18.4.1 and state 18.4.2-4.

• 18.5: State 18.5.2-3, and give the remark just after that about projective resolutions. State
18.5.4 (and call the model structure there the ”injective model structure”).

• 17.2: State Thm 17.2.2. (optional, to connect model category theory with algebraic topology).

In the rest of the talk, the notions can be illustrated on the example Cpl(Λ) of complexes of
Λ-modules with the projective and injective model structures.

Explain how homotopical algebra works in model categories. This section is not essential for the
rest of the seminar, since we can usually compute morphisms groups using the universal property
of Bousfield localisations explained in the next talk.

• 14.3: Give definition 14.3.1 and 14.3.4. State 14.3.2-3. State 14.3.9.(iii)-(iv), 14.3.10-11,
14.3.14-15.

• 14.4: Give definition 14.4.5, state 14.4.6 and 14.4.7.

Explain the functoriality of model categories. Those are the tools we will use most in the rest
of the seminar.

• 16.1: Present everything up to 16.1.7

• 16.2: Present everything up to 16.2.3

Explain the interaction of model categories with monoidal structures.
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• 16.3: everything without too much details, focussing on the ”homological algebra” examples1
6.3.1.(v)-(vi)

• 16.4: Give definition 16.4.7. State Lemma 16.4.8. Discuss 16.4.10-12. For an alternative
treatment, one can also consult [18, Chapter 4]

2.3 Bousfield localisation and local homotopy theory

Given a model category, we can construct new ones by a general process called Bousfield local-
isation. Bousfield localisation is used several times during the construction of the categories of
motives. A particular important example for us is the homotopy theory of presheaves of com-
plexes of abelian groups over a Grothendieck site; Bousfield localisation is used to incorporate the
topology into the picture.

For Bousfield localisations:

• Give definition [21, 19.4.1], its enriched variant [21, 19.5.1], and specialize the latter to the
case of model categories enriched in complexes of Λ-modules.

• Assert that, in practice, Bousfield localisations at a class of maps exist. It is not necessary
to get into the precise hypotheses, which are satisfied in all the examples we encounter.

• Present some of the properties of weak equivalences and fibrations in the localised model
structure, for instance [17, 3.3.3.(1),3.3.4.(1),3.4.1.(1),3.4.4].

For local homotopy theory, we use [6, Chapitre 4] as the main reference. You should specialize
to the case M = Λ −Mod, which is the most important for us. We also cover at the same time
the notion of stable model categories, which provides us with triangulated category structures.

• Define pointed categories (i.e. the map from the initial object to the final object is an
isomorphism).

• State, without details, the existence of the suspension and loop adjunction (Σ1,Ω1) in a
pointed model category (part of Thm 4.1.38). The terminology comes from pointed spaces
and it may be useful to present that example.

• Give definition 4.1.44-45. Explain that the category Cpl(Λ) (with both the projective and
injective structures) is stable, while the standard model structure on topological spaces is
not.

• State Thm 4.1.49, and how this recovers the triangulated structure on derived categories.

• Recall the material of 4.4.1 on presheaves and sheaves with values in a category, without
giving details for the proof of the existence of sheaffification.

• Give definition 4.4.15 and state Proposition 4.4.16 (as usual, ignore the hypothesis “présentable
par cofibrations”).

• Prove Lemma 4.4.19: deduce in particular that, if M = Cpl(Λ) (with its projective model
structure) and U ∈ S, then the object U ⊗ Λ is cofibrant in the projective model structure.

• In the following, assume that M = Cpl(Λ) with the projective model structure. It is a
category of coefficients in the sense of 4.4.23, with E consisting of one element, the complex
R[0], so the results apply.

• Give definition 4.4.27. Note that for presheaves of complexes, this takes a more concrete
form: a map is a top-local equivalence iff it induces isomorphism of cohomology sheaves.

• Give definition 4.4.34, and note without proof that the weak equivalences in the localised
structure are exactly the top-local equivalences. State and prove 4.4.35.

• Explain the elementary functoriality of presheaves and sheaves: 4.4.44,4.4.47-49,4.4.50
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• Explain the corresponding results for model categories: 4.4.46 and 4.4.51.

• State 4.4.63. (without insisting on the condition that the site has enough points, this is a
technicality).

• Conclude that we have constructed a (top-local) stable monoidal model categories of presheaves
of complexes of Λ-modules over a site, whose homotopy category is the derived category of
sheaves of Λ-modules on that same site.

2.4 Spectra and motives

In the original definitions of categories of pure motives by Grothendieck, an important step is to
pass from effective motives to non-effective motives by inverting the Lefschetz motive. We have
to perform a similar step in our context, using the technique of spectra borrowed from classical
homotopy theory. We then have all the ingredients necessary to define the categories of motives;
we then present without proofs some of their main properties.

For spectra, we follow [19]. Note that in later talks we do not need to use spectra so often, so
you don’t need to give details.

• Present §1 up to 1.6. In 1.2, use Ayoub’s notation Susn instead of Fn.

• Give definition 1.8 and state Theorem 1.14 (ignoring the “cofibrantly generated” and “left
proper” part, just the existence of the model structure) and Proposition 1.16.

• Present 3.1, 3.3, 3.4, 3.6, 3.7, 3.8. Explain that 1.16 is still valid for the stable model structure.

• State 5.1.

• Discuss Lemma 5.10 together with the paragraphs above and below it. To obtain a monoidal
category structure on a model category of spectra, it is necessary to use a more complicated
notion of ”symmetric spectra”. We will not need to know the details in this seminar, and we
will pretend that plain spectra are good enough!

Using all the ingredients introduced so far, give the definition of the categories of motives
DAeff(S,Λ) and DA(S,Λ), following [9, 2.1.1] and [8, §3]. We always work with the étale topology
(and not with the Nisnevich topology) so we put τ = ét in loc.cit. and omit it from the notation.
The construction makes sense for S any (noetherian) scheme and Λ any commutative ring, but we

are most interested in the case S = Spec(k) and Λ = Q, for which we use the notation DA(eff)(k).
Explain why, as homotopy categories of stable monoidal model categories, the categoriesDAeff(S,Λ)

and DA(S,Λ) are monoidal triangulated categories. Using the Quillen adjunction (Sus0,Ev0), de-
fine the derived adjunction (with the left adjoint being monoidal):

LSus0 : DAeff(S,Λ) ⇆ DA(S,Λ) : REv0

Recall from the first talk that DAeff(S,Λ) (resp. DA(S,Λ)) are actually Verdier localisations
of the derived category of the abelian category of presheaves (resp. T -spectra of presheaves) of
complexes of Λ-modules on Sm/S. Time permitting, present the results [3, §2.4], which lay out
explicitely what the Bousfield localisation looks like in the A1-local model structures.

Define the effective motive M eff(X) ∈ DAeff(S,Λ) of a smooth S-scheme Sm/S as the complex
of presheaves X ⊗ Λ[0] with X the representable presheaf of sets and Λ[0] the constant presheaf
with value the complex Λ[0]. Explain why this is a cofibrant object in the model category defining
DAeff(S,Λ) (recall that Bousfield localisation does not change cofibrations). Similarly, define
M(X) ∈ DA(S,Λ) as Sus0T (X⊗Λ[0]). Since X⊗Λ[0] is cofibrant, we have M(X) ≃ LSus0M eff(X).
Explain that we have

M (eff)(X)⊗M (eff)(Y ) ≃ M (eff)(X × Y )

Define the Tate twists Λ(n) in DAeff(S,Λ) for n ≥ 0 (resp. in DA(S,Λ) for n ∈ Z) following [8,
Notation 3.1.(ii)].

Recall the notion of compactly generated triangulated categories. State that if S is noetherian
and finite dimensional, the triangulated category DA(eff)(S,
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Recall the structure of compact objects in a compactly generated triangulated category [5,
Proposition 2.1.24]. Deduce from the previous paragraph that, for S noetherian finite dimensional,
the subcategoryDAeff

c (S) of compact objects in DAeff(S) (resp. DAc(S) inDA(S)) is the smallest
triangulated subcategory with direct factors containing M eff(X) for X ∈ Sm/S (resp. M(X)(−n)
for X ∈ Sm/S, n ∈ N).

We need the existence of Gysin triangles in DA(eff)(k,Λ) for k a field. Let X be a smooth
variety over k and Z be a smooth closed subvariety of codimension c. Then there are distinguished
triangles

M (eff)(X \ Z) → M (eff)(X) → M (eff)(Z)(c)[2c]

The proof uses a deformation to the normal cone argument and a projective bundle theorem
for motives, and could be sketched. See for instance [22, Chapter 15] (this is in DM, but a
similar argument work in DA). Deduce from resolution of singularities (existence of smooth
compactifications) and the results of the previous paragraph that, if k is a field of characteristic

0, DA(eff)(k,Λ) is compactly generated by motives of smooth projective varieties (with negative
Tate twists in the non-effective case).

Recall the notion of strongly dualizable object in a symmetric monoidal category . State [3,
Theorem 3.11]. This duality statement is the reason we work in DA instead of DAeff . It is part of
the six operation formalism for DA; again, this could be summarized if there is interest. From the
previous paragraph, deduce that if k is a field of characteristic 0, any compact object in DA(k) is
strongly dualizable. This is a fundamental result for the construcion of the motivic Galois group.

2.5 Betti realisation and the motivic Hopf algebra

We first develop Ayoub’s weak tannakian formalism, and look for a fiber functor to apply it to. In
characteristic 0, this is provided by the Betti realisation, the motivic incarnation of the singular
homology of complex algebraic varieties. It is defined by copying the construction of DA in the
complex analytic setting: the resulting homotopy category is then just D(VecQ). Once we have
the Betti realisation, the weak Tannakian formalism provides us with a motivic Hopf algebra. We
follow [9] supplemented by [7]

For the weak tannakian formalism, we follow [9, §1]:

• Recall the definitions of bialgebras and Hopf algebras, following 1.1.1-3, and of comodules in
1.3.1

• State Hypothesis 1.20 and Theorem 1.21, giving an idea of the proof if possible.

• State Proposition 1.28.(a)-(b), and remark 1.29.

• State Hypothesis 1.40 and Theorem 1.45 (no need to give details of the definition of the
antipode).

• Explain the basic functoriality of the construction as in Proposition 1.48.

• State the universality property 1.55.

The comparison with usual Tannakian theory goes as follows. Let A be a (small) Tannakian
category and ω : A → VecfdK be a fiber functor. Consider the Ind-category Ind(A). This is a
Grothendieck abelian category (see e.g. [20, Chap. 8.6.5]). The monoidal exact functor ω extends
to a monoidal exact functor f : Ind(A) → VecK . This extension is an exact functor which commutes
with colimits, hence by [20, 8.3.27.(iii)], it admits a right adjoint g : VecK → Ind(A). There is also
a section e : VecK → Ind(A) obtained from the unit of A. These functors satisfy Hypothesis 1.40,
and the resulting Hopf algebra in VecK is the algebra of functions on the Tannakian dual group of
A.

For the Betti realisation, we have already explained some ingredients in the first talk. Follow
the sketch in [9, 2.1.2], without proofs.

We can now put everything together and define the motivic bialgebra and Hopf algebra. For
simplicity, in the rest of the seminar, we restrict to rational coefficients (Λ = Q). Recall also that
we ignore everything related to the Nisnevich topology. Present the material in [9, 2.1.3] in details.
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The motivic Hopf algebra Hmot(k, σ) is obtained from the effective motivic bialgebra Heff
mot(k, σ)

by a simple localisation procedure: this is the content of Theorem 2.14. Define the relevant maps
and state the theorem. Sketch the proof. This is about the only place where we need to explicitely
manipulate spectra, precisely because Theorem 2.14 reduces the study of the motivic Hopf algebra
to the study of the effective motivic bialgebra.

2.6 The D1-localisation functor

To understand the structure of Hmot(k, σ), we need to understand the Betti realisation. By def-
inition, this requires getting our hands on fibrant replacement functor for the D1-local model
structures in the analytic setting. Because of Thm 2.14, we only need to do this effectively. All
the references are to [9].

Discuss (co)cubical objects in a pseudo-abelian category and the associated simple complex
following App. A.1 (“karoubienne” is a synonym for ”pseudo-abelian”). The rest of App. A is
devoted to quasi-isomorphic variants of the associated complex construction when the cubical object
has some extra structure. Present the definition of enriched (co)cubical object and normalised
complex from A.2.

Present all of 2.2.1, up to Lemme 2.28. In 2.21, there is a typo: Ni should be Ci. Ignore remark
2.22. In the proof of 2.24, you can admit the result referenced as “[5. Lem 4.2.69]”.

2.7 Approximation of singular chains

Singular homology of a complex algebraic variety does not come solely from cycle classes of algebraic
subvarieties (there are many obstructions to this, especially Hodge-theoretic ones). A surprising
result of Ayoub is that it can be computed from a complex of ”algebraic chains” (in a suitable
sense). Combined with the results of the previous talk, this provides a very nice model for the
Betti realisation functor. All the references are to [9].

Present 2.2.4 up to Remarque 2.64. There is a lot of commutative algebra going on in Proposi-
tion 2.50, how much you present is up to taste and time constraints. On the other hand, Popescu’s
theorem is a key ingredient which is of independent interest. The introduction of the paper of
Spivakovsky referenced as [42] in [9] gives the basic idea and present the refinement in terms of
subalgebras which is also used by Ayoub. The introduction of Swan’s survey ”Néron-Popescu desin-
gulrization” is also a good read. The proof of 2.61 is quite involved: only discuss the surjectivity
part.

2.8 Motivic Galois group and period torsor

The motivic Hopf algebra is an object in the derived category of Q-vector spaces. We would like to
extract an honest Hopf algebra over Q from this situation. The key step is to show that the motivic
Hopf algebra is concentrated in positive homological degrees. The proof uses de Rham cohomology,
and introduces at the same time a key object for the sequel, the motivic period torsor.

Introduce the de Rham complexes and the de Rham spectrum, and prove Proposition 2.88,
replacing the Nisnevich topology with the étale topology both in statement and proof.

Discuss the corollaries of 2.88 up to Thm 2.93. The proof of Proposition 2.91 requires a digres-
sion into Proposition 2.83 (and paragraph above) on the multiplicative structure of the singular
complex. Skip everything between 2.93 and 2.101 included, and prove 2.102-3. State Thm 2.104
and explain that it is obtained from Thm 2.90 by an explicit quasi-isomorphism. Discuss the rest
of the section, without details in the proof of 2.108.(b). State conjecture A from section 2.4.

State without details the fact that Ayoub’s motivic Galois group is known to be isomorphic
to Nori’s [15], and that consequently its maximal reductive quotient is known to be isomorphic to
André’s pure motivic Galois group (this is a result of Arapura in [2]).

State the Kontsevich-Zagier conjecture on periods in the form of [11, §2.1] and state [11, Propo-
sition 11, Remark 13].
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2.9 Motivic fundamental group and the theorem of the fixed part

As in Tannakian theory, the weak Tannakian theorem of Ayoub can be applied to define versions of
fundamental groups for local systems of various kinds. In particular, it can be applied to a version
of motivic local systems, and yields a motivic fundamental Hopf algebra. It turns out that this
object is easier to understand than the motivic Hopf algebra itself. In particular, it is controlled
in a sense by the topological fundamental group of the associated complex analytic variety.

Recall briefly how the construction of DA for general base schemes work. Let f : X → Y be a
morphism of schemes. There is an adjunction

f∗ : DA(Y ) ⇆ DA(X) : f∗

obtained by deriving a Quillen adjunction at the level of the model categories of T -spectra. This
Quillen adjunction is obtained from the elementary functoriality of categories of presheaves of
complexes discussed in Talk 2.3. A result from [7] which is needed below and which should be
stated without proof, is that these operations “commute” with Betti realisation in the sense that
there are natural transformations

Bti∗f∗ → (fan)∗Bti∗

and

Bti∗f∗ → Bti∗(fan)∗

with the first one always an isomorphism and the second one an isomorphism on compact objects.
Introduce the category SmDA(X) as in 2.4.1. Recall the relative duality theorem for smooth

projective morphisms and explain why motives of smooth projective morphisms are in SmDA.
Recall the fact that DA(k) is generated by motives of smooth projective varieties and deduce that
DA(k) = SmDA(k).

State Neeman’s adjoint functor theorem for compactly generated triangulated categories [5,
Corollaire 2.1.22]. Introduce the adjunction ϕ∗

f , ϕf∗, prove 2.42 and introduce definition 2.43 (with
S = Spec(k) for simplicity).

Present the rest of 2.4.1, maybe only sketching the proof of 2.45, which is quite intuitive but
lengthy.

Finally, present 2.4.2 till 2.54. In the proof of Step A of Theorem 2.49, instead of the diagram
of strongly dualizable motives M provided by Lemma 2.51, you can proceed as if ϕc∗Q is strongly
dualizable itself (this is not true, but the argument shows that for our purpose it behaves as such),
and replace the mentions of i∗M with ϕc∗Q. Similar arguments later on, again using Lemma
2.51, can also be glossed over. Still in Step A, for the reduction to Q → f∗ϕc∗Q being invertible,
gloss over the arguments involving p♯ and explain that the reduction essentially follows from the
commutation of the Betti realisation with f∗. The “théorème classique de Chevalley” mentioned
in Step D is treated, for instance, in Milne’s book project ”Algebraic Groups”, Theorem 4.19.

Time permitting, recall the theorem of the fixed part for geometric variations of Hodge struc-
tures ( [16, Corollaire 4.1.2] ): a geometric VHS with constant underlying local system is constant.
Reformulate it in Tannakian terms using the Tannakian category of geometric VHS and draw the
analogy with Theorem 2.49. In fact, such a theorem in the situation of Theorem 2.49 (and its
extension to geometric variations of mixed Hodge structures, which is known by Steenbrink and
Zucker) would follow from Theorem 2.49 together with an appropriate Hodge realisation functor
(which has not yet been constructed).

2.10 Relative motivic Galois groups

Building on the previous talk on motivic fundamental groups, we study relative motivic Galois
groups attached to a field extension. References are to [10].

Discuss briefly the notion of semi-direct product of Hopf algebras, following 2.1.1. Explain the
criterion for semi-direct product decomposition in the weak tannakian setting (Theorem 2.7).

Introduce nearby cycles in the topological setting (giving the definition, see e.g [7] before Propo-
sition 4.8) and motivic nearby cycles (as a black box, following e.g. [4]). State the commutation
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with the Betti realisation [7, 4.8,4.9]. State Proposition 2.20, or rather (because we do not want
to discuss rigid analytic geometry) its main ingredient, which is a canonical isomorphism

Bti∗ ≃ Bti∗Ψπ

stated right at the beginning of proof.
Discuss the notion of relative motivic Galois group for a field extension; state Thm 2.34 and

the more precise Proposition 2.35. The argument for 2.35 is not so difficult, in particular the
“rigid analytic” aspects occur mostly to show that Ψπ has a right adjoint and to check some of the
hypotheses of the weak tannakian formalism, which we can admit.

State and sketch the proof of Thm 2.55, combining what has just been done with the result of
the previous talk. Finally, state and sketch the proof of Thm 2.57.

2.11 Geometric Kontsevich-Zagier conjecture

Using all the previous material, we can now explain the main ideas of the proof of the geometric
Kontsevich-Zagier period conjecture from [13].

• State the main theorem, contrast with the period algebra computed in a previous talk.

• Define the tangential Betti realisation, the tangential motivic Hopf algebras, the groups, the
relative versions... and state theorem 3.10 (a variant of the main result of the previous talk).

• Introduce the tangential period torsors, and state corollary 3.22 (sweeping under the rug the
”prime” version, and trying to give an idea why the log appears). Present all of section 3.7.

• Recall the basics on the Riemann-Hilbert correspondence for integrable connexions with
regular singularities on a curve.

• Explain how Riemann-Hilbert lifts to smooth motives on a curve (Theorem 4.8).

• Explain how everything ties together to prove the main theorem.
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[1] Yves André. Une introduction aux motifs: motifs purs, motifs mixtes, périodes. 2004.

[2] Donu Arapura. An abelian category of motivic sheaves. Adv. Math., 233:135–195, 2013.

[3] Joseph Ayoub. A guide to étale motivic sheaves. In Proceedings of the International Congress
of Mathematicians 2014.

[4] Joseph Ayoub. The motivic nearby cycles and the conservation conjecture.

[5] Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents
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[16] Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.

[17] Philip S Hirschhorn. Model categories and their localizations. Number 99. American Mathe-
matical Soc., 2009.

[18] Mark Hovey. Model categories. Number 63. American Mathematical Soc., 1999.

[19] Mark Hovey. Spectra and symmetric spectra in general model categories. Journal of Pure and
Applied Algebra, 165(1):63–127, 2001.

[20] Masaki Kashiwara and Pierre Schapira. Categories and sheaves, volume 332 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 2006.

[21] J Peter May and Kate Ponto. More concise algebraic topology: localization, completion, and
model categories. University of Chicago Press, 2011.

[22] C. Mazza, V. Voevodsky, and C. Weibel. Lecture Notes on Motivic Cohomology. Clay Math-
ematics Monographs. American Mathematical Society, 2006.

10


	Introduction
	Talks
	Overview
	Model categories
	Bousfield localisation and local homotopy theory
	Spectra and motives
	Betti realisation and the motivic Hopf algebra
	The D1-localisation functor
	Approximation of singular chains
	Motivic Galois group and period torsor
	Motivic fundamental group and the theorem of the fixed part
	Relative motivic Galois groups
	Geometric Kontsevich-Zagier conjecture


