Monodromy conjecture and proof of Veys' conjecture

Marco D'Addezio

February 28, 2017

Notation

Today F will be a number field, Ω_F^{fin} the set of finite places and we will denote $\mathfrak P$ any element of Ω_F^{fin} . We will consider, as usual, $f:\mathbb A^d_F\to\mathbb A^1_F$ and we will study $X_0:=f^{-1}(0)$. We denote $|X_0|$ the set of closed point of X_0 . We will always suppose fixed a log-resolution $h:(Y,E)\to(\mathbb A^d_F,X_0)$.

We recall the notation we are using in our seminar:

- We decompose $E = \bigcup_{i \in I} E_i$, with each E_i irreducible;
- N_i will be the multiplicity of $f \circ h$ along E_i ;
- ν_i 1 the multiplicity of Jac_h , the jacobian ideal of h, along E_i ;
- $\operatorname{lct}_x := \min\{\nu_i/N_i \mid x \in h(E_i)\} \text{ and } \operatorname{lct} := \min_{x \in |X_0|} \operatorname{lct}_x;$
- For every $\emptyset \neq J \subseteq I$, we define $E_J := \bigcap_{j \in J} E_j$ and $\mathring{E}_J = E_J \setminus \bigcup_{j \notin J} E_j$.

1 Analytic results

1.1 Bernstein polynomials

We start defining an analytic zeta function attached to f. For every $\psi \in C_0^{\infty}(\mathbb{C}^d, \mathbb{R})$ we consider

$$Z_{\psi}^{\infty}(s) := \int_{\mathbb{C}^d} |f(z)|^{2s} \psi(z) dz d\overline{z}$$

when $\Re s > 0$, $s \in \mathbb{C}$.

Theorem 1.1 (Bernstein). $Z_{\psi}^{\infty}(s)$ admits a meromorphic continuition to \mathbb{C} . The poles are negative rational numbers.

We will see how this zeta function encodes some important informations of the singularities of X_0 . Before doing this we present an important tool for the studying of this function and that it is used, for example, to show the previous theorem.

Let $\mathbb{O}:=\mathbb{C}[z_1,\ldots,z_n]$ and $f\in \mathbb{O}$, then we consider $\mathbb{O}[s,f^{-1}]f^s$, a rank 1 free $\mathbb{O}[s,f^{-1}]$ -module with signpost f^s . Let $D:=\mathbb{C}[z_1,\ldots,z_n,\partial_{z_1},\ldots,\partial_{z_n}]$ and D[s] the ring of polynomials in the variable s with coefficients in D. We put a D[s]-action on $\mathbb{O}[s,f^{-1}]f^s$ by setting $\partial_{z_i}(gf^s):=(\partial_{z_i}g+g\frac{s\partial_{z_i}f}{f})f^s$ for every $g\in \mathbb{O}[s,f^{-1}]$. We call $D[s]f^s$ the sub-D[s]-module generated by f^s and $D[s]f^{s+1}$ the one generated by f^s .

Definition 1.2 (Bernstein polynomial). We define $b_f(s)$ as the minimal polynomial of the endomorphism of the D[s]-module $D[s]f^s/D[s]f^{s+1}$ given by the multiplication by s on the left. Equivalently $b_f(s)$ is the minimal polynomial such that there exists a differential operator $P \in D[s]$, such that $b_f(s)f^s = Pf^{s+1}$.

Theorem 1.3 (Bernstein). For every $f \in \mathcal{O}$, b_f always exists.

You can verifying putting s = -1 that $b_f(-1) = 0$. In general there is a theorem of Kashiwara telling us that the roots of $b_f(s)$ are rational numbers.

Example 1.4. If $f = z_1^{N_1} z_2^{N_2}$, with $N_1, N_2 \in \mathbb{N}$ it is easy to show that

$$b_f(s) = \prod_{i=1}^{2} \prod_{j=0}^{N_i - 1} \left(s + 1 - \frac{j}{N_i} \right)$$

and it satisfies the differential equation

$$b_f(s)f^s = \frac{1}{N_1^{N_1} N_2^{N_2}} \partial_{z_1}^{N_1} \partial_{z_2}^{N_2} f^{s+1}$$

The computation of Bernstein polynomials in the general case is instead very difficult. Toshinori Oaku found an algorithm [Oak97] that gives $b_f(s)$ for every f using an analogue of Grobner basis for differential operators.

The relation between Bernstein polynomials and the analytic zeta function is the following.

Proposition 1.5. For every $\psi \in C_c^{\infty}(\mathbb{C}^n, \mathbb{R})$ if s_0 is a pole of $Z_{\psi}^{\infty}(s)$ with $\text{Re}(s_0) \geq 0$, then $s_0 + j$ is a root of b_f for some integer j such that $0 \leq j \leq m$.

Proof. The proof proceed by induction on m. If m=0 it holds emptily because analytic zeta functions have no poles when $Re(s) \ge 0$.

For the inductive step we use the Berstein polynomial of f. We know here exists $P \in D[s]$ such that

$$b_f(s)f^s = Pf^{s+1}.$$

Applying the conjugation we also get

$$\overline{b_f(s)}\overline{f}^s = \overline{P}\overline{f}^{s+1}.$$

Hence

$$|b_f(s)|^2 Z_{\psi}^{\infty}(s) = |b_f(s)|^2 \int_{\mathbb{C}^n} |f(z)|^{2s} \psi(z) \, \mathrm{d}z \, \mathrm{d}\overline{z} = \int_{\mathbb{C}^n} P\overline{P}\left(|f(z)|^{2(s+1)}\right) \psi(z) \, \mathrm{d}z \, \mathrm{d}\overline{z}.$$

Thanks to the partial integration formula 1 the RHS is equal to $Z_{P\overline{P}(\psi)}^{\infty}(s)$, thus the partial differential equation defining $b_f(s)$ translates to

$$|b_f(s)|^2 Z_{\psi}^{\infty}(s) = Z_{P\overline{P}(\psi)}^{\infty}(s+1).$$

If s_0 is a pole of $Z_{\psi}^{\infty}(s)$ which is not a root of $b_f(s)$, then s_0+1 is a pole of $Z_{P\overline{P}(\psi)}^{\infty}(s)$. Hence we can use the inductive hypothesis on $Z_{P\overline{P}(\psi)}^{\infty}(s)$ getting the final result.

¹ Here we are strongly using the fact we are working with analytic zeta functions. Indeed this formula has no analogue for
β-adic and motivic zeta functions.

Proposition 1.6. $lct_x = \sup\{s | |f|^{-2s} \text{ integrable around } x\}$

Proof. Exercise: Take a log-resolution $h:(Y,E)\to (\mathbb{A}^d,X_0)$, then use the change of variables formula. \Box

Corollary 1.7. For every $x \in X_0$, $-\operatorname{lct}_x$ is a zero of b_f .

Proof. Exercise: The reasoning is analogue to the proof of Proposition 1.5. \Box

1.2 Monodromy

Milnor showed that if $f:\mathbb{C}^d\to\mathbb{C}$ is algebraic then for every x such that f(x)=0, there exists a ball $B\subseteq\mathbb{C}^d$ centered at x and $A\subseteq\mathbb{C}\setminus\{0\}$ a punctured ball centered at 0 such that $A\subseteq f(B)$ and $f|_B$ is a locally trivial C^∞ -fibration over A with fiber $F_x=f^{-1}(t)\cap B$ for a certain $t\in A$. If we choose a generator of the topological fundamental group of A it induces an endomorphism T_x of $\bigoplus_{i=0}^{2d} H^i_{sing}(F_x,\mathbb{Z})$. We call the *monodromy eigenvalues* at x the eigenvalues of T_x .

Theorem 1.8 (Malgrange [Mal83], Barlet [Bar84]). For every $\alpha \in \mathbb{R}$, the class $[\alpha] \in \mathbb{R}/\mathbb{Z}$ is represented by a root of the Bernstein polynomial if and only if $\exp(2\pi i\alpha)$ is a monodromy eigenvalue for a certain $x \in X_0$.

Hence as a consequence we obtain the main result of this section.

Theorem 1.9. If for some $\psi \in C_c^{\infty}(\mathbb{C}^n, \mathbb{R})$, complex number s_0 is a pole of $Z_{\psi}^{\infty}(s_0)$, then $\exp(2\pi i s_0)$ is a monodromy eigenvalue for a certain $x \in X_0$.

2 \$\partial \text{-dic monodromy conjecture}\$

We now switch to the \mathfrak{P} -adic zeta function defined during Tanya's talk. For simplicity we will only work with

$$Z^{\mathfrak{P}}(s) := \int_{\mathfrak{O}_{\mathfrak{P}}} |f|_{\mathfrak{P}}^{s} \mathrm{d}x.$$

We have seen the following theorem due to Igusa.

Theorem 2.1 (Igusa). $Z^{\mathfrak{P}}(s)$ is rational in the variable $t=q^{-s}$. If s_0 is a pole of $Z^{\mathfrak{P}}(s)$, then

$$s_0 \in -\frac{\nu_i}{N_i} + \frac{2\pi i}{\ln a} \mathbb{Z}$$

for some $i \in I$.

Even if $Re(s_0) = -\nu_i/N_i$ for some $i \in I$, many numerical examples show that some possibilities are never taken. The data collected suggest a behavior similar to the analytic zeta function (Theorem 1.9).

Conjecture 2.2 (\mathfrak{P} -adic monodromy conjecture). For almost every $\mathfrak{P} \in \Omega_F^{fin}$, if s_0 is a pole of $Z^{\mathfrak{P}}(s)$ then $\exp(2\pi i \operatorname{Re}(s_0))$ is a monodromy eigenvalue for some x.

Let's try to understand now how to attack this conjecture. We define the *monodromy zeta function* at x as

$$\zeta_x(t) := \prod_{n=0}^{2d} \det(1 - tT_x | H_{sing}^n(F_x, \mathbb{Z}))^{(-1)^{n+1}}.$$

There is an explicit formula of this function using the log-resoultion of (\mathbb{A}^d, X_0) .

Theorem 2.3 (A' Campo's formula [A'C75]).

$$\zeta_x(t) = \prod_{i \in I} (1 - t^{N_i})^{-\chi_{top}(\mathring{E_i} \cap h^{-1}(x))}$$

It may happen that a monodromy eigenvalue at x is not a zero or a pole of $\zeta_x(t)$ because of some unlucky cancellation. Nevertheless Denef [Den93] has proven, thanks to the perversity of the nearby cycles complex, that every eigenvalue of the monodromy operator of a certain point x is a zero or a pole of $\zeta_y(t)$ for a certain point y, maybe different from x.

Meanwhile even the \mathfrak{P} -adic zeta function has an explicit formula using the log-resolution. We take a model \mathfrak{Y} of the log-resolution Y and we call $\mathring{\mathfrak{E}}_{\mathfrak{J}}$ the closure of \mathring{E}_J in \mathfrak{Y} for every $\emptyset \neq J \subseteq I$. Denote $k_{\mathfrak{P}}$ the residue field at \mathfrak{P} .

Theorem 2.4 (Denef's formula). For almost every \mathfrak{P} ,

$$Z^{\mathfrak{P}}(s) = q^{-d} \sum_{\emptyset \neq J \subseteq I} |\mathring{\mathfrak{E}}_{\mathfrak{J}}(k_{\mathfrak{P}})| \prod_{j \in J} \frac{(q-1)q^{-N_j s - \nu_j}}{1 - q^{-N_j s - \nu_j}}$$

where q is the cardinality of $k_{\mathfrak{P}}$ and $|\mathring{\mathfrak{E}_{\mathfrak{J}}}(k_{\mathfrak{P}})|$ is the cardinality of the $k_{\mathfrak{P}}$ -points of $\mathring{\mathfrak{E}_{\mathfrak{J}}}$.

Now we have explicit formulas for the monodromy eigenvalues and of the \mathfrak{P} -adic zeta function, using a log-resolution.

The main difficulty from here to prove the monodromy conjecture is the configuration of the irreducible components E_i in Y.

Cases when the conjecture is known are:

- n = 2;
- n = 3 and f homogeneous;
- some nice classes of singularities.

For references about these cases and some other facts about the \mathfrak{P} -adic monodromy conjecture you can look at [Nic09, Section 3].

3 Motivic zeta function

We have defined in the previous talk the naive motivic zeta function.

$$Z^{naive}(s) := \int_{\mathcal{L}(X_0)} \mathbb{L}^{-\operatorname{ord}_t(f)s} d\mu = \sum_{n=1}^{\infty} \mathbb{L}^{-ns - d(n+1)} [\mathfrak{X}_n / X_0] \in \mathfrak{M}_{X_0}[[\mathbb{L}^{-s}]]$$

where $\mathfrak{X}_n := \mathcal{L}_n(X_0) \cap \operatorname{ord}_t^{-1}(n)$. We will be interested in studying $Z_x^{naive}(s) := Z^{naive}(s) \times_{X_0} x \in \mathcal{M}_x[[\mathbb{L}^{-s}]]$ where the fiber product is done on the coefficients of the series and the *topological zeta* function $Z_x^{top}(s) := \chi_{top}(Z_x^{naive}(s))$, defined taking the Euler characteristic of the coefficients.

We have seen the following formula without a proof.

Theorem 3.1 (Denef-Loeser's formula).

$$Z^{naive}(s) = \mathbb{L}^{-n} \sum_{\emptyset \neq J \subseteq I} (\mathbb{L} - 1)^{|J|} [\mathring{E}_J / X_0] \prod_{j \in J} \frac{\mathbb{L}^{-N_j s - \nu_j}}{1 - \mathbb{L}^{-N_j s - \nu_j}}$$

Sketch of the proof. One can reduce to the case when X_0 is an snc divisor, taking a log-resolution and using the change of variables formula. Then the computation becomes easier thanks to the local description of the divisor E as the zero locus of monomials. If you want to see how to do concretely this last computation I added in the Appendix A an example.

As a consequence we also have a formula for the topological zeta function:

$$Z_x^{top}(s) = \sum_{\emptyset \neq J \subseteq I} \chi_{top}(\mathring{E}_J \times_{X_0} x) \prod_{j \in J} \frac{1}{N_j s + \nu_j}.$$
 (3.1.1)

We finally have all the tools to prove Veys' conjecture.

Theorem 3.2 (Veys' conjecture). If s_0 is a pole of order d of $Z_x^{top}(s)$ then $s_0 = -\operatorname{lct}_x$.

Proof. If for some $J, \circ E_J \neq \emptyset$ then the cardinality of J is at most d by dimension reasoning on E_J , using that E is an snc divisor. Hence by the formula 3.1.1, if s_0 is a pole of order d, there exists $J_0 \subseteq I$ such that $|J_0| = d, \mathring{E}_{J_0} \cap h^{-1}(x) \neq \emptyset$ and for every $j \in J_0, -\nu_j/N_j = s_0$. In particular, J_0 is maximal with this property. Hence we can apply the Main Theorem of Michael's talk. Namely by the maximality of $J_0, \nu_j/N_j = \mathrm{lct}_x$ for every $j \in J_0$. This proves the theorem.

We can ask for the motivic zeta function an analogous of the \mathfrak{P} -adic monodromy conjecture. Here talking about poles is more delicate because \mathcal{M}_{X_0} is not a domain [Poo02].

Conjecture 3.3 (Motivic monodromy conjecture). There exists a finite subset $S \subseteq \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ such that

$$Z^{naive}(s) \in \mathfrak{M}_{X_0}\left[\mathbb{L}^{-s}, \frac{1}{1 - \mathbb{L}^{-as - b}}\right]_{(a,b) \in S} \subseteq \mathfrak{M}_{X_0}[[\mathbb{L}^{-s}]]$$

and such that $(a, b) \in S$ implies $\exp(-2\pi i b/a)$ is a monodromy eigenvalue for some $x \in X_0$.

Specialisation to \mathfrak{P} -adic world

Take the ring

$$\mathscr{Z}_{\mathfrak{P}} := \mathbb{Q} \left[\frac{|k_{\mathfrak{P}}|^{-as-b}}{1 - |k_{\mathfrak{P}}|^{-as-b}} \right]_{(a,b) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}}$$

where $|k_{\mathfrak{P}}|$ is the cardinality of the residue field at \mathfrak{P} . We denote \mathscr{Z} as the ring obtained via the quotient of $\prod_{\mathfrak{P}\in\Omega_E^{fin}}\mathscr{Z}_{\mathfrak{P}}$ by the ideal $\bigoplus_{\mathfrak{P}\in\Omega_E^{fin}}\mathscr{Z}_{\mathfrak{P}}$. We can define a morphism of rings

$$\mathscr{N}: \mathfrak{M}_{X_0} \left[\frac{\mathbb{L}^{-as-b}}{1 - \mathbb{L}^{-as-b}} \right]_{(a,b) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}} \to \mathscr{Z}$$

in the following way: for every variety T we take a model \mathfrak{T} over \mathfrak{O}_F and we send the class $[T/X_0] \in \mathfrak{M}_{X_0}$ to the class $[(|\mathfrak{T}(k_{\mathfrak{P}})|)_{\mathfrak{P} \in \Omega_F^{fin}}]$ where $|\mathfrak{T}(k_{\mathfrak{P}})|$ is the number of $k_{\mathfrak{P}}$ -points of the model \mathfrak{T} . The morphism \mathscr{N} is a well defined morphism of rings because two different models of T are isomorphic for almost every \mathfrak{P} . Putting together Denef and Loeser's formulas for \mathfrak{P} -adic and motivic zeta function we obtain the following.

Theorem 3.4 (Denef-Loeser).

$$\mathcal{N}(Z^{naive}(s)) = \left[\left(Z^{\mathfrak{P}}(s) \right)_{\mathfrak{P} \in \Omega_F^{fin}} \right].$$

In particular, as a consequence of this, the motivic monodromy conjecture implies the \mathfrak{P} -adic monodromy conjecture for almost every \mathfrak{P} .

A An example

We want to compute the naive motivic zeta function

$$Z^{naive}(s) := \sum_{n=1}^{\infty} \mathbb{L}^{-ns - d(n+1)} [\mathfrak{X}_n / X_0]$$

when $f = x^{N_1}y^{N_2}$. We can decompose X_0 as a disjoint union $\mathring{E}_1 \sqcup \mathring{E}_2 \sqcup \mathring{E}_{12}$ with $\mathring{E}_1 = \{x = 0, y \neq 0\}$, $\mathring{E}_2 = \{x \neq 0, y = 0\}$ and $\mathring{E}_{12} = \{x = 0, y = 0\}$.

To compute the motivic zeta function we need to understand $[\mathfrak{X}_n/X_0]$ for every n. We recall that \mathfrak{X}_n is the subscheme of $\mathcal{L}_n(\mathbb{A}^d)$ with \mathbb{C} -points the n-jets with order n. The \mathbb{C} -points of $\mathcal{L}_n(\mathbb{A}^d)$ corresponds to $\mathrm{Hom}_{Ring}(\mathbb{C}[x,y],\mathbb{C}[t]/t^{n+1})$, hence they are determined by the images of x and y, namely a couple $(a_0+a_1t+\cdots+a_nt^n,b_0+b_1t+\cdots+b_nt^n)$ with a_i and b_i complex numbers. The order with respect to t of a certain $\gamma_n\in\mathrm{Hom}_{Ring}(\mathbb{C}[x,y],\mathbb{C}[t]/t^{n+1})$ is given by $v_t(\gamma_n(x^{N_1}y^{N_2}))$, where v_t is the standard valuation on $\mathbb{C}[t]/t^{n+1}$ with $v_t(t)=1$. The previous decomposition translates in a decomposition $\mathfrak{X}_n=\mathring{\mathcal{E}}_{1,n}\sqcup\mathring{\mathcal{E}}_{2,n}\sqcup\mathring{\mathcal{E}}_{12,n}$ where $\mathring{\mathcal{E}}_{J,n}:=(\pi_0^n)^{-1}(E_J)\cap\mathfrak{X}_n$.

Let's study one piece at a time. The variety $\mathring{\mathcal{E}}_{1,n}$ is a locally trivial fibration of \mathring{E}_1 . We want to understand the fiber. We fix a point $(\overline{a_0}, \overline{b_0}) \in \mathring{E}_1$, hence $\overline{a_0} = 0$ and $\overline{b_0} \neq 0$. The points $\gamma_n = (\overline{a_0} + a_1t + \dots + a_nt^n, \overline{b_0} + b_1t + \dots + b_nt^n)$ over $(\overline{a_0}, \overline{b_0})$ are precisely given by the condition $v_t(\gamma_n(x^{N_1}y^{N_2})) = n$. The element $\gamma_n(y)$ is invertible as $\overline{b_0} \neq 0$, thus $v_t(\gamma_n(x))N_1 = n$. In particular $N_1|n$ and if we denote $\alpha_1 := n/N_1$, then $a_1 = \dots = a_{\alpha_1-1} = 0$, $a_{\alpha_1} \neq 0$. There are no conditions on the other b_i , hence $\mathring{\mathcal{E}}_{1,n}$ is a $(\mathbb{G}_m \times \mathbb{A}^{n-\alpha_1} \times \mathbb{A}^n)$ -bundle over $\mathring{\mathcal{E}}_1$ when $N_1|n$ and it's empty if $N_1 \nmid n$.

Thus if $N_1|n, [\mathring{\mathcal{E}}_{1,n}/X_0] = (\mathbb{L}-1)\mathbb{L}^{2n-\alpha_1}[\mathring{E}_1/X_0]$ and

$$\sum_{n=1}^{\infty} \mathbb{L}^{-ns} \mathbb{L}^{-2(n+1)} [\mathring{\mathcal{E}}_{1,n}/X_0] = \sum_{N_1|n} \mathbb{L}^{-ns} \mathbb{L}^{-2(n+1)} (\mathbb{L} - 1) \mathbb{L}^{2n-\alpha_1} [\mathring{E}_1/X_0] =$$

$$= \mathbb{L}^{-2} (\mathbb{L} - 1) [\mathring{E}_1/X_0] \sum_{\alpha_1=1}^{\infty} \mathbb{L}^{\alpha_1(-N_1s-1)} =$$

$$= \mathbb{L}^{-2} (\mathbb{L} - 1) [\mathring{E}_1/X_0] \frac{\mathbb{L}^{-N_1s-1}}{1 - \mathbb{L}^{-N_1s-1}}.$$

The same reasoning applies to \mathring{E}_2 .

The case $\mathring{\mathcal{E}}_{12,n}$ is slightly different. The scheme $\mathring{E}_{12,n}$ consists only of one point (0,0). The n-jets $\gamma_n=(a_1t+\cdots+a_nt^n,b_1t+\cdots+b_nt^n)$ over (0,0) with order n are again given by the condition $\gamma_n(x^{N_1}y^{N_2})=n$, thus we have $v_t(\gamma_n(x))N_1+v_t(\gamma_n(y))N_2=n$. For every choice of $(\alpha_1,\alpha_2)\in\mathbb{Z}_{>0}\times\mathbb{Z}_{>0}$ such that $\alpha_1N_1+\alpha_2N_2=n$, the n-jets with $v_t(\gamma_n(x))=\alpha_1$ and $v_t(\gamma_n(y))=\alpha_2$ give a variety isomorphic to $(\mathbb{G}_m^2\times\mathbb{A}^{n-\alpha_1}\times\mathbb{A}^{n-\alpha_2})$ over \mathring{E}_{12} . In other words, if $\alpha_1N_1+\alpha_2N_2=n$, $[\mathring{\mathcal{E}}_{12,n}/X_0]=(\mathbb{L}-1)^2\mathbb{L}^{2n-\alpha_1-\alpha_2}[\mathring{\mathcal{E}}_{12}/X_0]$ and

$$\begin{split} \sum_{n=1}^{\infty} \mathbb{L}^{-ns} \mathbb{L}^{-2(n+1)} [\mathring{\mathcal{E}}_{12,n}/X_0] &= \sum_{n=1}^{\infty} \sum_{\substack{\alpha_1, \alpha_2 \in \mathbb{Z}_{>0} \\ \alpha_1 N_1 + \alpha_2 N_2 = n}} \mathbb{L}^{-ns} \mathbb{L}^{-2(n+1)} (\mathbb{L} - 1)^2 \mathbb{L}^{2n - \alpha_1 - \alpha_2} [\mathring{E}_{12}/X_0] &= \\ &= \mathbb{L}^{-2} (\mathbb{L} - 1)^2 [\mathring{E}_{12}/X_0] \sum_{\alpha_1, \alpha_2 \in \mathbb{Z}_{>0}} \mathbb{L}^{\alpha_1 (-N_1 s - 1)} \mathbb{L}^{\alpha_2 (-N_1 s - 1)} = \\ &= \mathbb{L}^{-2} (\mathbb{L} - 1)^2 [\mathring{E}_{12}/X_0] \frac{\mathbb{L}^{-N_1 s - 1}}{1 - \mathbb{L}^{-N_1 s - 1}} \frac{\mathbb{L}^{-N_2 s - 1}}{1 - \mathbb{L}^{-N_2 s - 1}}. \end{split}$$

Now you can put the three pieces together and compare the result with Theorem 3.1. Recall that in our case $\nu_i = 1$.

References

- [A'C75] N. A'Campo. La fonction zêta d'une monodromie. *Comment. Math. Helvetici*, 50:233–248, 1975.
- [Bar84] D. Barlet. Contribution effective de la monodromie aux développements asymptotiques. *Ann. Sci. Ec. Norm. Sup. 17 (1984)*, 293-315
- [Den87] J. Denef. Local zeta functions and Euler characteristics. *American Journal of Mathematics*, Vol. 109, No. 6 (Dec., 1987), pp. 991-1008
- [Den91] J. Denef. Report on Igusa's local zeta function. In *Séminaire Bourbaki*, *Vol. 1990/91*, *Exp. No.730-744*, volume 201-203, pages 359–386, 1991.
- [Den93] J. Denef. Degree of local zeta functions and monodromy. *Compositio Math.*, 89:207–216, 1993.
- [Mal83] B. Malgrange. Polynômes de Bernstein-Sato et cohomologie évanescente. *Astérisque*, 101/102:243–267, 1983.
- [Mil68] J. Milnor. *Singular points of complex hypersurfaces*, volume 61 of *Annals of Math. Studies*. Princeton University Press, 1968.
- [Nic09] J. Nicaise. An introduction to *p*-adic and motivic zeta functions and the monodromy conjecture. preprint available at arXiv:0901.4225
- [Oak97] T. Oaku. Algorithms for the b-function and D-modules associated with a polynomial. *Journal of Pure and Applied Algebra Volumes 117–118, May 1997*, Pages 495-518.
- [Poo02] B. Poonen. The Grothendieck ring of varieties is not a domain. *Math. Res. Letters*, 9(4):493–498, 2002.