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Notation

Today F will be a number field, Ωfin
F the set of finite places and we will denote P any element of Ωfin

F .
We will consider, as usual, f : AdF → A1

F and we will study X0 := f−1(0). We denote |X0| the set of
closed point of X0. We will always suppose fixed a log-resolution h : (Y,E)→ (AdF , X0).

We recall the notation we are using in our seminar:

– We decompose E =
⋃
i∈I Ei, with each Ei irreducible;

– Ni will be the multiplicity of f ◦ h along Ei;

– νi − 1 the multiplicity of Jach, the jacobian ideal of h, along Ei;

– lctx := min{νi/Ni | x ∈ h(Ei)} and lct := minx∈|X0| lctx;

– For every ∅ 6= J ⊆ I , we define EJ :=
⋂
j∈J Ej and

◦
EJ = EJ \

⋃
j /∈J Ej .

1 Analytic results

1.1 Bernstein polynomials

We start defining an analytic zeta function attached to f . For every ψ ∈ C∞0 (Cd,R) we consider

Z∞ψ (s) :=

∫
Cd

|f(z)|2sψ(z)dzdz

when <s > 0, s ∈ C.

Theorem 1.1 (Bernstein). Z∞ψ (s) admits a meromorphic continuition to C. The poles are negative
rational numbers.

We will see how this zeta function encodes some important informations of the singularities of X0.
Before doing this we present an important tool for the studying of this function and that it is used, for
example, to show the previous theorem.

Let O := C[z1, . . . , zn] and f ∈ O, then we consider O[s, f−1]f s, a rank 1 free O[s, f−1]-module
with signpost fs. Let D := C[z1, . . . , zn, ∂z1 , . . . , ∂zn ] and D[s] the ring of polynomials in the variable
s with coefficients in D. We put a D[s]-action on O[s, f−1]fs by setting ∂zi(gf

s) := (∂zig+g
s∂zif

f )fs

for every g ∈ O[s, f−1]. We call D[s]fs the sub-D[s]-module generated by f s and D[s]fs+1 the one
generated by ffs.
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Definition 1.2 (Bernstein polynomial). We define bf (s) as the minimal polynomial of the endomor-
phism of the D[s]-module D[s]f s/D[s]f s+1 given by the multiplication by s on the left. Equivalently
bf (s) is the minimal polynomial such that there exists a differential operator P ∈ D[s], such that
bf (s)fs = Pfs+1.

Theorem 1.3 (Bernstein). For every f ∈ O, bf always exists.

You can verifying putting s = −1 that bf (−1) = 0. In general there is a theorem of Kashiwara
telling us that the roots of bf (s) are rational numbers.

Example 1.4. If f = zN1
1 zN2

2 , with N1, N2 ∈ N it is easy to show that

bf (s) =
2∏
i=1

Ni−1∏
j=0

(
s+ 1− j

Ni

)
and it satisfies the differential equation

bf (s)fs =
1

NN1
1 NN2

2

∂N1
z1 ∂

N2
z2 f

s+1

The computation of Bernstein polynomials in the general case is instead very difficult. Toshinori
Oaku found an algorithm [Oak97] that gives bf (s) for every f using an analogue of Grobner basis for
differential operators.

The relation between Bernstein polynomials and the analytic zeta function is the following.

Proposition 1.5. For every ψ ∈ C∞c (Cn,R) if s0 is a pole of Z∞ψ (s) with Re(s0) ≥ 0, then s0 + j is a
root of bf for some integer j such that 0 ≤ j ≤ m.

Proof. The proof proceed by induction on m. If m = 0 it holds emptily because analytic zeta functions
have no poles when Re(s) ≥ 0.

For the inductive step we use the Berstein polynomial of f . We know here exists P ∈ D[s] such
that

bf (s)fs = Pfs+1.

Applying the conjugation we also get

bf (s)f
s

= Pf
s+1

.

Hence

|bf (s)|2Z∞ψ (s) = |bf (s)|2
∫
Cn

|f(z)|2sψ(z) dzdz =

∫
Cn

PP
(
|f(z)|2(s+1)

)
ψ(z) dzdz.

Thanks to the partial integration formula 1 the RHS is equal to Z∞
PP (ψ)

(s), thus the partial differential
equation defining bf (s) translates to

|bf (s)|2Z∞ψ (s) = Z∞
PP (ψ)

(s+ 1).

If s0 is a pole of Z∞ψ (s) which is not a root of bf (s), then s0 + 1 is a pole of Z∞
PP (ψ)

(s). Hence we
can use the inductive hypothesis on Z∞

PP (ψ)
(s) getting the final result.

1 Here we are strongly using the fact we are working with analytic zeta functions. Indeed this formula has no analogue for
P-adic and motivic zeta functions.
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Proposition 1.6. lctx = sup{s| |f |−2s integrable around x}

Proof. Exercise: Take a log-resolution h : (Y,E) → (Ad, X0), then use the change of variables for-
mula.

Corollary 1.7. For every x ∈ X0, − lctx is a zero of bf .

Proof. Exercise: The reasoning is analogue to the proof of Proposition 1.5.

1.2 Monodromy

Milnor showed that if f : Cd → C is algebraic then for every x such that f(x) = 0, there exists a
ball B ⊆ Cd centered at x and A ⊆ C \ {0} a punctured ball centered at 0 such that A ⊆ f(B)
and f |B is a locally trivial C∞-fibration over A with fiber Fx = f−1(t) ∩ B for a certain t ∈ A. If
we choose a generator of the topological fundamental group of A it induces an endomorphism Tx of⊕2d

i=0H
i
sing(Fx,Z). We call the monodromy eigenvalues at x the eigenvalues of Tx.

Theorem 1.8 (Malgrange [Mal83], Barlet [Bar84]). For every α ∈ R, the class [α] ∈ R/Z is repre-
sented by a root of the Bernstein polynomial if and only if exp(2πiα) is a monodromy eigenvalue for a
certain x ∈ X0.

Hence as a consequence we obtain the main result of this section.

Theorem 1.9. If for some ψ ∈ C∞c (Cn,R), complex number s0 is a pole of Z∞ψ (s0), then exp(2πis0)
is a monodromy eigenvalue for a certain x ∈ X0.

2 P-dic monodromy conjecture

We now switch to the P-adic zeta function defined during Tanya’s talk. For simplicity we will only
work with

ZP(s) :=

∫
OP

|f |sPdx.

We have seen the following theorem due to Igusa.

Theorem 2.1 (Igusa). ZP(s) is rational in the variable t = q−s. If s0 is a pole of ZP(s), then

s0 ∈ −
νi
Ni

+
2πi

ln q
Z

for some i ∈ I .

Even if Re(s0) = −νi/Ni for some i ∈ I , many numerical examples show that some possibilities
are never taken. The data collected suggest a behavior similar to the analytic zeta function (Theorem
1.9).

Conjecture 2.2 (P-adic monodromy conjecture). For almost every P ∈ Ωfin
F , if s0 is a pole of ZP(s)

then exp(2πiRe(s0)) is a monodromy eigenvalue for some x.

Let’s try to understand now how to attack this conjecture. We define the monodromy zeta function
at x as

ζx(t) :=

2d∏
n=0

det(1− tTx|Hn
sing(Fx,Z))(−1)n+1

.

There is an explicit formula of this function using the log-resoultion of (Ad, X0).
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Theorem 2.3 (A’ Campo’s formula [A’C75]).

ζx(t) =
∏
i∈I

(1− tNi)−χtop(
◦
Ei∩h−1(x))

It may happen that a monodromy eigenvalue at x is not a zero or a pole of ζx(t) because of some
unlucky cancellation. Nevertheless Denef [Den93] has proven, thanks to the perversity of the nearby
cycles complex, that every eigenvalue of the monodromy operator of a certain point x is a zero or a pole
of ζy(t) for a certain point y, maybe different from x.

Meanwhile even the P-adic zeta function has an explicit formula using the log-resolution. We take
a model Y of the log-resolution Y and we call

◦
EJ the closure of

◦
EJ in Y for every ∅ 6= J ⊆ I . Denote

kP the residue field at P.

Theorem 2.4 (Denef’s formula). For almost every P,

ZP(s) = q−d
∑
∅6=J⊆I

|
◦
EJ(kP)|

∏
j∈J

(q − 1)q−Njs−νj

1− q−Njs−νj

where q is the cardinality of kP and |
◦
EJ(kP)| is the cardinality of the kP-points of

◦
EJ.

Proof. [Den87, Theorem 3.1]

Now we have explicit formulas for the monodromy eigenvalues and of the P-adic zeta function,
using a log-resolution.

The main difficulty from here to prove the monodromy conjecture is the configuration of the irre-
ducible components Ei in Y .

Cases when the conjecture is known are:

– n = 2 ;

– n = 3 and f homogeneous ;

– some nice classes of singularities.

For references about these cases and some other facts about the P-adic monodromy conjecture you can
look at [Nic09, Section 3].

3 Motivic zeta function

We have defined in the previous talk the naive motivic zeta function.

Znaive(s) :=

∫
L(X0)

L−ordt(f)sdµ =
∞∑
n=1

L−ns−d(n+1)[Xn/X0] ∈MX0 [[L−s]]

where Xn := Ln(X0) ∩ ord−1
t (n). We will be interested in studying Znaivex (s) := Znaive(s)×X0 x ∈

Mx[[L−s]] where the fiber product is done on the coefficients of the series and the topological zeta
function Ztopx (s) := χtop(Z

naive
x (s)), defined taking the Euler characteristic of the coefficients.

We have seen the following formula without a proof.
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Theorem 3.1 (Denef-Loeser’s formula).

Znaive(s) = L−n
∑
∅6=J⊆I

(L− 1)|J |[
◦
EJ/X0]

∏
j∈J

L−Njs−νj

1− L−Njs−νj

Sketch of the proof. One can reduce to the case when X0 is an snc divisor, taking a log-resolution and
using the change of variables formula. Then the computation becomes easier thanks to the local de-
scription of the divisor E as the zero locus of monomials. If you want to see how to do concretely this
last computation I added in the Appendix A an example.

As a consequence we also have a formula for the topological zeta function:

Ztopx (s) =
∑
∅6=J⊆I

χtop(
◦
EJ ×X0 x)

∏
j∈J

1

Njs+ νj
. (3.1.1)

We finally have all the tools to prove Veys’ conjecture.

Theorem 3.2 (Veys’ conjecture). If s0 is a pole of order d of Ztopx (s) then s0 = − lctx.

Proof. If for some J , ◦EJ 6= ∅ then the cardinality of J is at most d by dimension reasoning on EJ ,
using that E is an snc divisor. Hence by the formula 3.1.1, if s0 is a pole of order d, there exists J0 ⊆ I
such that |J0| = d,

◦
EJ0 ∩ h−1(x) 6= ∅ and for every j ∈ J0, −νj/Nj = s0. In particular, J0 is maximal

with this property. Hence we can apply the Main Theorem of Michael’s talk. Namely by the maximality
of J0, νj/Nj = lctx for every j ∈ J0. This proves the theorem.

We can ask for the motivic zeta function an analogous of the P-adic monodromy conjecture. Here
talking about poles is more delicate because MX0 is not a domain [Poo02].

Conjecture 3.3 (Motivic monodromy conjecture). There exists a finite subset S ⊆ Z>0 × Z>0 such
that

Znaive(s) ∈MX0

[
L−s,

1

1− L−as−b

]
(a,b)∈S

⊆MX0 [[L−s]]

and such that (a, b) ∈ S implies exp(−2πib/a) is a monodromy eigenvalue for some x ∈ X0.

Specialisation to P-adic world
Take the ring

ZP := Q
[
|kP|−as−b

1− |kP|−as−b

]
(a,b)∈Z>0×Z>0

where |kP| is the cardinality of the residue field at P. We denote Z as the ring obtained via the quotient
of
∏

P∈Ωfin
E

ZP by the ideal
⊕

P∈Ωfin
E

ZP. We can define a morphism of rings

N : MX0

[
L−as−b

1− L−as−b

]
(a,b)∈Z>0×Z>0

→ Z

in the following way: for every variety T we take a model T over OF and we send the class [T/X0] ∈
MX0 to the class [(|T(kP)|)

P∈Ωfin
F

] where |T(kP)| is the number of kP-points of the model T. The
morphism N is a well defined morphism of rings because two different models of T are isomorphic
for almost every P. Putting together Denef and Loeser’s formulas for P-adic and motivic zeta function
we obtain the following.
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Theorem 3.4 (Denef-Loeser).

N (Znaive(s)) =

[(
ZP(s)

)
P∈Ωfin

F

]
.

In particular, as a consequence of this, the motivic monodromy conjecture implies the P-adic mon-
odromy conjecture for almost every P.
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A An example

We want to compute the naive motivic zeta function

Znaive(s) :=
∞∑
n=1

L−ns−d(n+1)[Xn/X0]

when f = xN1yN2 . We can decomposeX0 as a disjoint union
◦
E1t

◦
E2t

◦
E12 with

◦
E1 = {x = 0, y 6= 0},

◦
E2 = {x 6= 0, y = 0} and

◦
E12 = {x = 0, y = 0}.

To compute the motivic zeta function we need to understand [Xn/X0] for every n. We recall that Xn
is the subscheme of Ln(Ad) with C-points the n-jets with order n. The C-points of Ln(Ad) corresponds
to HomRing(C[x, y],C[t]/tn+1), hence they are determined by the images of x and y, namely a couple
(a0 +a1t+ · · ·+ant

n, b0 +b1t+ · · ·+bnt
n) with ai and bi complex numbers. The order with respect to

t of a certain γn ∈ HomRing(C[x, y],C[t]/tn+1) is given by vt(γn(xN1yN2)), where vt is the standard
valuation on C[t]/tn+1 with vt(t) = 1. The previous decomposition translates in a decomposition
Xn =

◦
E1,n t

◦
E2,n t

◦
E12,n where

◦
EJ,n := (πn0 )−1(EJ) ∩ Xn.

Let’s study one piece at a time. The variety
◦
E1,n is a locally trivial fibration of

◦
E1. We want to

understand the fiber. We fix a point (a0, b0) ∈
◦
E1, hence a0 = 0 and b0 6= 0. The points γn =

(a0 + a1t + · · · + ant
n, b0 + b1t + · · · + bnt

n) over (a0, b0) are precisely given by the condition
vt(γn(xN1yN2)) = n. The element γn(y) is invertible as b0 6= 0, thus vt(γn(x))N1 = n. In particular
N1|n and if we denote α1 := n/N1, then a1 = · · · = aα1−1 = 0, aα1 6= 0. There are no conditions on
the other bi, hence

◦
E1,n is a (Gm × An−α1 × An)-bundle over

◦
E1 when N1|n and it’s empty if N1 - n.

Thus if N1|n, [
◦
E1,n/X0] = (L− 1)L2n−α1 [

◦
E1/X0] and

∞∑
n=1

L−nsL−2(n+1)[
◦
E1,n/X0] =

∑
N1|n

L−nsL−2(n+1)(L− 1)L2n−α1 [
◦
E1/X0] =

= L−2(L− 1)[
◦
E1/X0]

∞∑
α1=1

Lα1(−N1s−1) =

= L−2(L− 1)[
◦
E1/X0]

L−N1s−1

1− L−N1s−1
.

The same reasoning applies to
◦
E2.

The case
◦
E12,n is slightly different. The scheme

◦
E12,n consists only of one point (0, 0). The n-jets

γn = (a1t + · · · + ant
n, b1t + · · · + bnt

n) over (0, 0) with order n are again given by the condition
γn(xN1yN2) = n, thus we have vt(γn(x))N1 + vt(γn(y))N2 = n. For every choice of (α1, α2) ∈
Z>0 × Z>0 such that α1N1 + α2N2 = n, the n-jets with vt(γn(x)) = α1 and vt(γn(y)) = α2 give
a variety isomorphic to (G2

m × An−α1 × An−α2) over
◦
E12. In other words, if α1N1 + α2N2 = n,

[
◦
E12,n/X0] = (L− 1)2L2n−α1−α2 [

◦
E12/X0] and
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∞∑
n=1

L−nsL−2(n+1)[
◦
E12,n/X0] =

∞∑
n=1

∑
α1,α2∈Z>0

α1N1+α2N2=n

L−nsL−2(n+1)(L− 1)2L2n−α1−α2 [
◦
E12/X0] =

= L−2(L− 1)2[
◦
E12/X0]

∑
α1,α2∈Z>0

Lα1(−N1s−1)Lα2(−N1s−1) =

= L−2(L− 1)2[
◦
E12/X0]

L−N1s−1

1− L−N1s−1

L−N2s−1

1− L−N2s−1
.

Now you can put the three pieces together and compare the result with Theorem 3.1. Recall that in our
case νi = 1.
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