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Introduction

These are notes for a talk given in the Forschungsseminar at FU Berlin, January 2017. Our main
references are [NX+16] and [KM08].

The goal of this talk is to explain the proof of Theorem 2.4 in [NX+16]. Throughout this talk
we work with an algebraically closed field k of characteristic 0. All our algebro-geometric objects
will be defined relative to k, unless stated otherwise. We will denote the discretely valued field
k((t)) by K.

In previous talks we have assigned to a regular function Y // A1 on a smooth variety Y the K-
schemeX = Y×A1SpecK. The associated Berkovich space is denoted by Y an. How do the geometric
structures present on Y an relate to the geometry of the divisor ∆ = f−1(0)? In the following we use

the notation X = Ỹ ×A1 Spec k[[t]] (where we have chosen a log-resolution h : Ỹ //Y of (Y, f−1(0)))
and choose x to be a point of the divisor f−1(0). We denote by Sk(X , x) the preimage sp−1

X (h−1x).
Recall that ∆ gives rise to the so-called weight function wt∆ : Sk(X ) // R as defined previously in
this seminar.

Theorem 0.1 (Nicaise–Xu). If wt∆ is constant on a maximal face of the simplicial complex
Sk(X , x), then it is constant with value lctx(Y,∆) (the log-canonical threshold of ∆ at x).

In order to understand why this is true we will do two things:
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1. Recall what the log-canonical threshold is.

2. Swap the world of Berkovich spaces with the minimal model programme.

The latter is possible because we have seen that the skeleton Sk(X ) admits a description in
purely combinatorial terms.

1 The log-canonical threshold

Let Y be a variety and ∆ ↪→ Y an effective Q-divisor. We will assume that KY + ∆ is Q-Cartier,
that is, some integer multiple of it is a Cartier divisor.

By virtue of Hironaka’s [Hir64] there exists a proper birational morphism Ỹ
h // Y , such that

Ỹ is smooth, and h∗∆ is a simple normal crossing divisor. We say that h is a log-resolution of the
pair (X,∆). In this case we denote the h-exceptional divisors of Y by E1, . . . , Ek and write

h∗∆ = ∆̃ +

k∑
i=1

NiEi,

KỸ = h∗KX +

k∑
i=1

(νi − 1)Ei.

Definition 1.1. The pair (Y,∆) is called log-canonical, if there exists a log-resolution h : Ỹ //Y ,
and rational numbers a1, . . . , ak ≥ −1, such that

KỸ + ∆̃ = h∗(KY + ∆) +

k∑
i=1

aiEi.

A general Q-divisor ∆ is not going to be log-canonical, in fact one observes that the divisors
with “large coefficients” are less likely to be log-canonical. This vague assertion can be made precise
as follows: there exists a rational number w = lctx(Y,∆), such that we have that the pair (X,λ∆)
is log-canonical near x if and only if λ ≤ w. Let’s record this as a definition.

Definition 1.2. We define lctx(Y,∆) to be sup{λ ∈ Q |(Y, λ∆) is log-canonical}.

A simple computation shows that a log-resolution h : Ỹ //Y induces the following upper bound

lctx(∆) ≤ min{ νi
Ni
|Ei intersects h−1(x)}.

It is a bit of a miracle that this a priori estimate is in fact an equality. In particular this minimum
is the same for every log-resolution. A proof of this fact can be given using the C-analogue of Igusa
zeta-functions.
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2 A crash course on the MMP

This section is a short introduction to the minimal model programme, told from the perspective
that is relevant to us. The motivation given in the next subsection isn’t actually the reason why
this programme has been created in the first place. In this section we are intentionally reluctant
concerning technicalities. The standing assumption is that our varieties need not be too singular,
but in large places we won’t specify what we actually mean by this. We only try to mentally prepare
the reader for what lies ahead.

2.1 Why we need the minimal model programme

At the end of the day proving that a certain number equals the log-canonical threshold is about
establishing certain inequalities for coefficients in various divisor. To us the minimal model pro-
gramme is a blackbox which assigns to a projective variety Y a chain of birational maps Y = Y0 99K
· · · 99K Ym 99K · · · , such that each birational map Yi 99K Yi+1 is of a rather simple shape. The
MMP is not guaranteed to terminate, if it does, then the output Ym has one of the two properties:

(a) the canonical divisor KYm
is nef, that is for every curve U ⊂ Y the intersection U · KY is

non-negative,

(b) or Ym is fibred in Fano varieties (admitting singular fibres).

Case (b) will never arise in the situations we consider in this paper. In fact, for us the main
reason for running the MMP is to turn a given divisor on a variety into a nef divisor. But more on
this later.

The MMP does not respect the class of smooth varieties. In order to run this “algorithm”
it is necessary to permit certain types of singularieties (so-called terminal singularities). This
property itself is defined in terms of inequalities for the discrepancies of a certain resolution. These
inequalities are another important ingredient in the proof of Theorem 0.1.

If KY isn’t nef, then one can find a rogue curve U , such that U ·KY < 0. It therefore makes

sense to consider a proper morphism Y
π // Y1, such that π(U) is a point, that is, U is contracted

by π.

Definition 2.1. Recall that N1(X) denotes the real vector space generated by integral proper curves
on X, modulo the relation that x · D = y · D for all Cartier divisors D implies x = y ∈ N1(X).
Elements in N1(X) are also called 1-cycles. We denote by NE(X) the cone of 1-cycles which have
an effective representative.

In all honesty the minimal model programme is working by contracting “extremal rays” in the
cone NE(X). It turns out that these contractions g : Y // Z exist in a minimal way (that is,
contracting precisely R), and there are three possible cases which can arise:

(a) g is a proper birational map, such that its exceptional locus is a divisor,

(b) g is a proper birational map, such that its exceptional locus is of codimension ≥ 2 (small
contraction),

(c) g is a Fano fibration.
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Cases (a) and (c) are nice. The first one is also known as a divisorial contraction. The last one
arises precisely when Y is fibred in Fano varieties. It is one of the two possible outputs of the MMP.
The middle case (b) is somehow cumbersome. Due to the smallness of the exceptional locus of g,
the singularities of Z are usually quite bad. It is therefore necessary to find an appropriate proper

birational morphism Z
g+←−− Y +, which is an isomorphism away from codimension 2. The resulting

birational map

Y //

��

Y +

~~

Z

is called a flip. It is this flipped variety which is then fed back to the algorithm (because it’s
singularities are not as bad as those of Z).

Remark 2.2. The reason for this terminology is that a flip flips the sign of the canonical divisor
of Y . If g : Y // Z is a small contraction then −KY can be shown to be g-ample. If a flip exists
(and in fact that’s usually taken to be part of the definition), then KY + is g+-ample.

Flips are the Achiles’ heel of the MMP. Their existence is not known in general, and the existence
of pathological examples where running the MMP leads to a never ending sequence of flips cannot
be ruled out in general. Luckily the actual geometry of flips will not play a role in the proof of
Theorem 0.1. We only care about the curves contracted by the map g : Y // Z.

2.2 Variants of the MMP

Since we aim to understand the log-canonical threshold, our main concern isn’t actually the canon-
ical divisor KY , but rather KY + D, where D is an effective Q-divisor on Y . The minimal model
programme is amenable to this kind of generality. A pair (Y,D) is called a log-variety, and we
regard the sum KY + D as the canonical divisor of the log-variety (Y,D). This is of course only
terminology (or philosophy!).

In the log-case the minimal model programme produces a sequence of birational maps of pairs
(Y0, D0) 99K · · · 99K (Ym, Dm) 99K · · · , and if it terminates we either have that KYm

+ Dm is nef,
or we obtain a log-Fano fibration.

Another important version of MMP works with varieties Y which are proper over a base variety
X. In this relative set-up we only work with curves (or 1-cycles) which are contracted by the
structural morphism Y //X. Running the MMP leads to a sequence of properX-varieties Y0, Y1, . . .
and birational maps Y0 99K · · · between these varieties, which are maps of X-schemes.

The proof of Theorem 0.1 requires us to combine these two varieties of MMP into one: relative
log-MMP.

2.3 More on divisors

In this subsection we will recall the definition of various properties a pair (X,D) can satisfy. But
at first we introduce a piece of terminology which will be useful now and when discussing the proof
of Theorem 0.1.

Definition 2.3. Let g : Q // Q be an arbitrary function. For a Q-divisor D =
∑k
i=1 aiEi on a

variety X, we write g(D) to denote the Q-divisor
∑k
i=1 g(ai)Ei.
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Next we have to recall what discrepancies are. We denote by h : Z // Y a proper birational
morphism, where Y is normal. We assume that KY +D is Q-Cartier.

Definition 2.4. For each prime divisor E ⊂ Z of the exceptional divisor of h there exists a unique
rational number aE(X,D), such that we have

KY + D̃ = f∗(KX +D) +
∑
E

aE(X,D)E.

We call the minimum of the rational numbers aE where E runs through the prime components of
the exceptional divisor of h, the discrepancy of (Y,D) along h. We write discrY,D(h).

We can now define three properties of (X,D) which are of interest to us: klt, dlt, and lc.

Definition 2.5. Let (Y,D) be a log-variety, consisting of a normal variety Y and an effective
Q-divisor D.

(a) The pair (Y,D) is said to be Kawamata log-terminal (klt), if for every h we have discrY,D(h) >
−1, and bDc ≤ 0.

(b) The pair (Y,D) is log-canonical (lc) if for every h as above we have discrY,D(h) ≥ −1.

(c) If D is effective, and 0 ≤ D ≤ 1, then (X,D) is said to be divisorially log-terminal (dlt), if
there exists a log-resolution h, such that discrY,D(h) > −1.

Our definition of dlt is somehow non-standard, and does not apply to all log-varieties (but to
those we care about in this note!). See [KM08, Theorem 2.44] for why this is equivalent to the
usual definition.

2.4 The Negativity Lemma

Let us recall the following well-known theorem from the theory of complex algebraic surfaces.

Lemma 2.6. Let Y be a normal projective surface and h : Ỹ // Y a resolution of singularities.
We denote by {Ei}i=1,...,k ⊂ Ỹ the exceptional divisors of this morphism (they are curves!). The
matrix (Ei · Ej)ij is negative-definite.

A very special case is given by the blow-up of a point in P2. The exceptional divisor has precisely
one prime component (which is a rational curve), which intersects itself with multiplicity −1.

Although this is a result in the theory of algebraic surfaces, it leads to the following higher-
dimensional statement.

Lemma 2.7 (Negativity Lemma). Assume that h : Z //Y is a proper birational morphism between
two normal varieties. We assume that D is an h-nef divisor (that is for every curve U contracted
by h, we have U ·D ≥ 0).

(a) Then −D is effective if and only if −h∗D is effective.

(b) If −D is effective, then for every y ∈ Y we either have that h−1(y) lies completely inside the
support of D, or h−1(y) does not intersect the support of D.

We will not prove this lemma. The reader is referred to [KM08, Lemma 3.39] for more details.
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3 The weight function and the log-canonical threshold

3.1 The set-up and the theorem

We can now state Theorem 0.1 using only MMP terminology. From now on we will use the notation
of [NX+16, Section 2].

(a) X is a smooth variety and ∆ an effective Q-divisor.

(b) h : Y //X is a log-resolution of (X,∆), such that h is an iso over X \∆.

(c) For every prime component E of the exceptional divisor of h we writeNE for the E-multiplicity
of h∗∆.

(c) We denote by νE − 1 the multiplicity of KY/X = KY − h∗KX along E.

(d) The ratio νE
NE

is denoted by wt∆(E). It depends only on the valuation vE : k(X) // R induced
by the divisor E ⊂ Y .

(e) For a finite subset I ′ ⊂ I of the set of prime divisors, we write EI′ to denote the intersection⋂
i∈I′ Ei.

The following is Theorem 2.4 in [NX+16]. We have already seen it stated in the language of
Berkovich spaces in Theorem 0.1 above.

Theorem 3.1. Let J ⊂ I be a a non-empty subset of the set of prime divisors of h∗∆, and let
C be a connected component of EJ , such that h−1(x) ∩ C 6= ∅, and that J ⊂ I is maximal with
respect to this property. If wt∆(Ej) = wt∆(Ej′) = w for all j, j′ ∈ J , then the value w equals the
log-canonical threshold lctx(X,∆).

As indicated previously the proof the relative log-case of the minimal model programme. The
need to work relatively arises because we have already fixed a log-resolution h : Y //X. The strict
transform of the divisor ∆ will then be appropriately modified to yield a divisor ∆0 on Y . This
modification step will be explained in detail below. It is necessary to replace ∆̃ by another divisor
for a multitude of reasons. Foremost since the paper which guarantees termination of the MMP
algorithm assumes certain estimates on the coefficients of the divisors which our divisor ∆ wouldn’t
satisfy. This assumption goes by the name klt, that is, Kawamata log-terminal.

3.2 The proof in a nutshell

It’s all about choosing the right divisor ∆0 on Y . Our choice is constrained by the following:

(1) The relative minimal model programme for (Y,∆0) over X has to terminate with a model.

(2) The divisor ∆0 should bear some relation to the strict transform ∆̃, the relative canonical
divisor KY/X , and the number w which shows up in the statement of the theorem.

Let α : Q // Q be the function

α(λ) =

{
wλ, if λ ≥ 1

w

1, otherwise.
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We define a divisor ∆′ = α(∆) on X, where we use the convention introduced in Subsection 2.3.
Subsequently we set

∆0 = ∆̃′ + (KY/X)red. (1)

Why did we do this? Well, the theorem guaranteeing that relative MMP for (Y,∆0) terminates
with a model requires a klt pair (Y,∆0) as input (see [BCHM10]). As we have seen, for the klt
assumption to be satisfied, we need the coefficients of a divisor to be striclty < 1. So applying the
function α above we get at least a non-strict inequality ≤ 1. It turns out that this is good enough
for our purposes, since one can further consider a small perturbation of ∆0 which does not affect
the output of the MMP algorithm.

So in order to satisfy condition (1) above we had to work with some kind of cut-off function. In
order to satisfy (2) we have included the linear part of slope w.

MMP produces a chain of birational maps Y = Y0 99K Y1 99K · · · 99K Ym over X, such that each
Yi is a Q-factorial normal scheme over X, and with respect to the strict transform ∆i of ∆0 the
pair (Yi,∆i) is divisorially log-terminal (dlt). Furthermore, we have that KYm

+ ∆m is nef over X.
The key lemma which underlies the proof of 3.1 asserts that these birational maps are actually

open immersions around C ∩ h−1(x). This is only holds because of we have carefully chosen the
divisor ∆0.

Lemma 3.2 (Key Lemma). For every 0 ≤ ` ≤ m there exists an open neighbourhood U of C ∩
h−1(x), such that the rational map Y0 99K Y` is an open immersion after restriction to U .

We will return to the proof of this crucial fact in the next subsection. For now we will take it for
granted and continue the proof. Let f : Ym //X denote the structural morphism of the X-scheme
Ym. By abuse of notation we write Ej ⊂ Ym for the image of Ej ⊂ Y in Ym. We begin with an
easy observation.

Lemma 3.3. The divisor D = KYm
+ ∆m − f∗(KX + w∆) is nef over X.

Proof. Recall that a divisor D on Ym is nef over X, if for every curve U ⊂ Ym, contracted by f , we
have U ·D ≥ 0. Since (Ym,∆m) is the minimal model for (Y,∆0) produced by running the MMP,
we have that KYm + ∆m is nef over X. We have f∗D′ · U = 0 for every divisor pulled back from
X. Indeed, f∗D′ · U is defined to be

degU nf
∗D′

n
,

where n is a positive integer, such that nD′ is Cartier. Since the curve U is contracted by U ,
restricting nf∗D′ to U is equal to the trivial divisor. This implies that the degree is 0. We conclude
that the divisor D is nef over X.

As a next step we apply the Negativity Lemma 2.7 to show that the divisor ∆′ = α(∆) (involving
the cut-off function of the linear function λ 7→ wλ) is a posterio just w∆ (locally around x).

Lemma 3.4. There exists an open neighbourhood U ⊂ X of x, such that D|f−1(U) = 0 and
w∆|U = ∆′|U .

Proof. We let D denote the divisor of Lemma 3.3. We decompose ∆ as A + B, where A and B
are effective divisors, such that wA = α(A) and B > α(B). According to the Key Lemma we can
choose a small open neighbourhood V ⊂ Ym of f−1(x) ∩ C, such that the pair (V,∆m|U ) can be
identified an open subset of the pair (Y0,∆0). Restricting to this open subset we compute

D = KYm + ∆m − f∗(KX + w∆) = KY0 + ∆0 − f∗(KX + w∆) = Dexc − f−1
∗ (wB −Bred), (2)
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where Dexc denotes an f -exceptional divisor. Why? Because KY0 −f∗KX = KY0/X is f -exeptional

(since f is an isomorphism away from ∆), and ∆0 − w∆̃ = Bred − wB by definition of B.
It follows from the Negativity Lemma 2.7 that −D is effective, and that if the intersection of

f−1(x) is non-empty, then f−1(x) is in fact entirely contained in the support of D. Now this is the
point where we use our assumption on the maximality of J ⊂ I. Indeed, this assumption implies
that f−1(x)∩C ∩Ei = ∅ for i′ ∈ I \ J . So only the divisors Ej for j ∈ J can show up in D (locally
around x). We can exclude this easily by computing the multiplicity of Ej in D. By definition it is
equal to

νj − 1︸ ︷︷ ︸
KY

+ 0︸︷︷︸
∆̃′

+ 1︸︷︷︸
(KY )red︸ ︷︷ ︸

∆m

− 0︸︷︷︸
f∗KX

− wNj︸︷︷︸
f∗w∆

= 0.

So in order for D to satisfy the conclusion of the Negativity Lemma we must have D = 0, at least
over some open neighbourhood U of x. Equation (2) implies B|U = 0 (since wB−Bred is effective).
By definition of B this shows that w∆ = ∆′ over this open neighbourhood U .

Now we can conclude the proof of Theorem 3.1. A porism of the application of the Negativ-
ity Lemma above is that the divisors f∗(w∆) − KYm

− f∗KX and ∆m are equal over an open
neighbourhood of x. Since (Ym,∆m) is the output of the MMP the pair (Ym,∆m) is dlt. That is,

choosing a log-resolution h : Ỹm // Ym of (Ym,∆m) we only obtain discrepancies > −1. Viewing
the composition f ◦ h as a log-resolution of (X,∆) we therefore obtain:

(f ◦ h)∗(KX + w∆) = h∗f∗(KX + w∆) = h∗ (f∗KX + f∗w∆) = h∗
(
KYm

−KYm/X + f∗w∆
)
.

Since D|U = 0 we see that ∆m = f∗w∆ −KYm/X over U . Restricting to U the right hand side is
thus equivalent to

h∗ (KYm
+ ∆m) = K

Ỹm
+ ∆̃m +

∑
i∈I′′

aiEi = K
Ỹm

+ w∆̃ + (∆̃m − w∆̃) +
∑
i∈I′′

aiEi.

In order to prove that (X,w∆) is log-canonical, it suffices to show that the discrepancy coefficients
are ≥ −1. By the dlt property of (Ym,∆m) the discrepancies ai for i ∈ I ′′ even satisfy the strict

inequality ai > −1. The coefficients arising from the divisor −∆̃m are ≥ −1, since all the coefficients
of ∆m are bounded by 1 by construction. Furthermore we know that 1 shows up as a coefficient of
Ej for j ∈ J , which shows that for λ > w the pair (X,λ∆) can’t be log-canonical in a neighbourhood
of x. By the definition of the log-canonical threshold this shows that w = lctx(X,∆).

3.3 Proof of the key lemma

We will now turn to the proof of the key lemma. That is, we have to verify that the rational maps
Y = Y0 99K Y` are actually open immersions in a sufficiently small neighbourhood of C ∩ h−1(x)
(recall that C denotes the intersection EJ). This is a case for induction. The base case ` = 0 is
manifestly true, since it’s the identity map. Let’s assume that we have established this property
for a general 0 ≤ ` ≤ m, and choose a point y ∈ Y` which lies in the image of C ∩ h−1(x) under the
rational map Y0 99K Y`.

Remark 3.5. Note that this image is not well-defined without the induction hypothesis, since a
priori Y0 99K Y` is not everywhere well-defined as a morphism. This is the reason why this argument
has to be written up inductively.
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To conclude the proof we will check that Y` 99K Y`+1 is an open immersion in a neighbourhood
of y. Since this rational map is produced by running the MMP there exists an extremal ray R in
the cone of relative curves, such that we have a strict inequality

R · (KY`
+ ∆`) < 0. (3)

Let g : Y` // Z be the contraction of this ray R. That is, either we have Z = Y`+1, or Y`+1 is
obtained as the flip of Y` // Z.

If g contracts a curve U through y then R is generated by U . We want to show that this is not
possible by exhibiting a contradiction with inequality (3).

Lemma 3.6. If R is generated by a curve U passing through y, then the intersection number
R · (KY`

+ ∆`) equals 0.

Proof. Once more we use that the intersection number of an X-relative curve with a pull-back of a
divisor on X is 0 to obtain

R · (KY`
+ ∆`) = R · (KY`

+ ∆` − f∗(KX + w∆)).

By virtue of the definition of ∆` as a strict transform of ∆0 = ∆̃′ + (KY/X)red we can rewrite the
right hand side as

R ·
(
KY`/X + (KY`/X)red + ∆̃′ − f∗w∆

)
=

∑
j∈J

(νj − wNj)︸ ︷︷ ︸
=0

Ej + B̃red − wB̃

 ,

where we use again B to denote the maximal part of the effective Q-divisor ∆, such that wB > B.
If the intersection of R with B̃red−wB̃ wasn’t 0, then the curve U would actually have to intersect
the support of B. Arguing with so-called log-canonical centres one can show that this would
contradict the maximality assumption of J . An introduction to log-canonical centres is given in the
survey [Amb11]. We only remark that a log-canonical centre is itself a connected component of an
intersection of divisors, where only those prime divisors are admitted which arise with multiplicity
1. This provides the link between these objects with the maximality assumption on J .

This lemma implies that Y` // Z does not contract a curve passing through y. Therefore it
follows that restricted to suitable open subsets, g is a birational proper morphism between normal
varieties which is bijective. We conclude from Zariski’s main theorem that g is an open immersion.
Since Y` 99K Y`+1 agrees with g away from the exceptional locus of g this shows that the latter map
is as well an open immersion in a neighbourhood of y.
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