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1 Notations and setting

We fix a complete DVR R, with maximal ideal m, fraction field K and residue
field k. We fix a uniformizer π of R. The discrete valuation on K× will be
denoted by vK , and the associated norm | − |K := exp(−vK(−)). We also fix a
smooth connected separated K-variety X.

Example 1.1. Let N1, N2 ≥ 0. Assume for simplicity N1, N2 relatively prime
and fix a1, a2 ∈ Z with a1N1+a2N2 = 1. The running example for this talk will
be

Y = Spec(K[T1, T2]/(T
N1
1 TN2

2 − π).

Note that, as a K variety, it is isomorphic to Gm,K = Spec(K[W,W−1]) via
the maps

T1 7→ πa1WN2 , T2 7→ πa2W−N1 ;W 7→ T a21 T−a1
2

but we are using this presentation because it suggests a specific formal model.
Note that, if N1, N2 are not relatively prime, the variety Y is not geometrically
connected.

1.1 Generic fiber and Berkovich analytification

We can associate to X its Berkovich analytification; this is a Berkovich space
Xan together with a map ι : Xan → X of locally ringed spaces, which is universal
for this property. As as set, we have

Xan = {(x, |−|x)| x ∈ |X|, |−|x : κ(x) → R≥0 multiplicative semi-norm extending |−|K}

and the topology is the weakest topology which is finer than the Zariski topology
(via ι) and such that, for all U ⊂ X open and f ∈ OX(U), the function

Xan → R≥0, (x, | − |x) 7→ |f(x)|x
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is continuous. The space Xan is path-connected and locally compact; it is
compact iff X is proper.

Let (x, | − |x) ∈ Xan. We define H(x) to be the completion of the residue
field κ(x) with respect to the semi-norm | − |x; we extend the semi-norm to the
completion, and we define H(x)◦ as the value ring of | − |x, i.e. X (x)◦ = {y ∈
H(x)||y|x ≤ 1}. The subset Xbir of birational points of Xan is by definition
ι−1(θ) with θ the generic point of X.

Example 1.2. The Berkovich space Y an is isomorphic to Gan
m , hence can be

described as the set of multiplicative seminorms on K[W,W−1] which extend
| − |K . We have a closed cover by affinoid annuli

Gan
m = ∪r>0M(K{r−1T, rT−1}).

1.2 Models, rigid generic fiber, skeleton

Let X be an sncd model of X, that is, a flat separated finite type regular R-
scheme together with a fixed isomorphism XK ≃ X and such that (Xk)red is
a strict normal crossings divisor. We write {Ei}i∈I for the regular irreducible
components of (Xk)red, and write Ni for the multiplicity of Ei in Xk. The
combinatorics of the reduced special fiber are encoded in the dual complex
∆(Xk), a ∆-complex (small generalization of a simplicial complex, in which a
set of vertices can bound several distinct faces) whose vertices are in bijection
with I and the higher dimensional faces correspond to connected components
of the EJ for J ⊂ I.

Remark 1.3. If R is of equal characteristic 0, such a model always exists by
resolution of singularities in its strong form. In general, we assume the existence
of such a model.

The formal completion of X along m is a formal scheme X̂ over Spf(R), which
is flat, separated and topologically of finite type. To such a formal scheme, we
can associate its rigid analytic generic fiber X̂η, which is also a Berkovich space.
Unlike Xan, this Berkovich space is always compact. Because the formal scheme
came from the model X , there is an injective continuous quasi-compact map of
Berkovich spaces

X̂η → Xan

(actually an immersion in the Berkovich sense; we will not use this), which is an

isomorphism if X is proper over R. We will always identify X̂η with its image
in Xan, which as a set is simply

X̂η = {(x, | − |x)| Spec(H(x)) → X extends to Spec(H(x)◦) → X}.

Remark 1.4. For a formal scheme Z of the type above, not necessarily coming
from a R-model, the construction of the rigid generic fiber goes as follows. If
Z ≃ Spf(A) with A topological R-algebra, with A flat topologically of finite type,
then A⊗RK has a natural structure of K-affinoid Banach algebra, and we have
Zη ≃ M(A⊗R K). In general, Zη is defined by a gluing procedure.
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Because of the definition of X̂η ⊂ Xan, there is a specialisation map

spX : X̂η → |Xk|

which is anti-continuous.

Example 1.5. The model

Y = Spec(R[T1, T2]/(T
N1
1 TN2

2 − π)).

is an sncd model if N1 and N2 are coprime (otherwise, several components
of the generic fiber come together in the special fiber). Its special fiber has
two irreducible components Ei = V (Ti) with multiplicities Ni, and intersection
point O. The dual complex is just an interval. The rigid generic fiber is then
the affinoid annulus

Ŷη = {(x, |− |x)|x ∈ Spec(K[T1, T2]/(T
N1
1 TN2

2 −π)), |T1(x)|x ≤ 1, |T2(x)|x ≤ 1}.

Note that the equation implies exp(−1/Ni) ≤ |Ti|x ≤ 1. The specialisation map
sends points with |Ti|x = 1 to points in Ei \ 0, while it sends all points with
|T1|x < 1, |T2|x < 1 to O.

1.3 Monomial points and skeleton

Using sncd models, we can define two subsets Xdiv ⊂ Xmon of Xbir: the subsets
of divisorial and monomial points. A divisorial point is the valuation on κ(X)
attached to an irreducible component E of an sncd model X . Monomial points
are more complicated to define. Such a point is attached to the datum (X , J ⊂
I, (αj)j∈J , C) with X sncd model, J a subset of the irreductible components of
the special fiber, αj a family with

∑
j∈J αjNj = 1 and C a connected component

of the intersection EJ .
The set of all monomial points associated to a given model X is called the

skeleton of X and denoted by Sk(X ) ⊂ Xmon ∩ X̂η. We write iX : Sk(X ) → X̂η.
We equip it with the induced topology from Xan. By construction of monomial
points, there is a map

Φ : |∆(Xk)| → Sk(X )

which was shown, in the previous talk, to be an homeomorphism. For a point
z ∈ Sk(X ) attached to the datum (X , J ⊂ I, (αj)j∈J , C), the point spX (z) is
the generic point of C.

Example 1.6. For the sncd model Y, the homeomorphism

Φ : {(λ, 1− λ) ∈ R2
≥0} → Sk(Y)

sends (0, 1) to the divisorial point associated to (Y, E1), (1, 0) to the divisorial
point associated to (Y, E2), and (λ, 1−λ) to the monomial point associated with
(Y, (E1, E2), (

λ
N1
, 1−λN2

), O).

3



2 Retraction

We can now state the main theorem of this talk.

Theorem 2.1. [NX16] There exists a continuous retraction

ρX : X̂η → Sk(X )

which makes Sk(X ) into a strong deformation retract of X̂η.
In particular, if X is a proper R-scheme, then Sk(X ) is homotopy equivalent

to Xan, and in particular the homotopy type of |∆(Xk)| is independent of the
proper sncd model.

Let us mention an important related result.

Theorem 2.2. [Ber99] The Berkovich space Xan is locally contractible (i.e.,
every point has a system of contractible neighbourhoods). More generally, any
Berkovich space which is locally embeddable in a smooth Berkovich space is
locally contractible.

Remark 2.3. The proof of this theorem of Berkovich is closely related to the
one of the main theorem here, and in fact inspired it. The proof of 2.2 also
involves retractions onto skeleta of models, contructed as in the proof of 2.1
below via actions of analytic tori.

If X is a curve, then 2.2 follows essentially from 2.1, since the latter implies
that Xan is uniquely path-connected.

In higher dimensions, the main difference is that for 2.2 one uses the theory
of “polystable reduction” by alterations of de Jong (hence the result does not de-
pend on resolution of singularities), and that local contractibility requires more
careful geometric arguments since having a strong deformation retract to a lo-
cally contractible space like a ∆-complex does not guarantee local contractibility,
only the existence of “big” contractible neighbourhoods.

In this section, we discuss the construction and basic properties of ρ. Let z ∈
X̂η. By definition, z̄ := spX (z) ∈ Xk is well-defined. We put J := {i ∈ I|z̄ ∈ Ei},
and we define ξ as the generic point of the connected component of EJ containing
z̄. Choose local equations Ti of Ei at ξ. The data (X , J, (vx(Ti))i∈J , ξ) defines
a monomial point in Sk(X ), and we define ρX (z) to be this point.

Alternatively, ρX (z) is the unique monomial point in Sk(X ) such that the
same irreducible components of the special fiber pass through spX (z)) and
spX (ρX ), we have spX (z)) ∈ spX (ρX ) and with the same valuations of the
local equations.

Lemma 2.4. The map ρX is a continuous retraction of iX .

Example 2.5. We prove the lemma in our running example.

• Let ]a, b[ be an open interval strictly contained in [0, 1]. Then we have

ρ−1
Y (]a, b[) = {(x, |−|x)|x ∈ Spec(K[T1, T2]/(T

N1
1 TN2

2 −π)), exp(−b/N1) < |T1(x)|x < exp(−a/N1), |T2(x)|x ≤ 1}.

which is an open annulus, open in the closed annulus Ŷη.
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• Let [0, c[ be an open interval in [0, 1] containing 0, with c < 1. We have

ρ−1
Y ([0, c[) = {(x, |−|x)|x ∈ Spec(K[T1, T2]/(T

N1
1 TN2

2 −π)), exp(−c/N1) < |T1(x)|x ≤ 1, |T2(x)|x ≤ 1}

which is open in the closed annulus Ŷη.

We look at the dependency of the skeleton and the retraction in the model.

Proposition 2.6. Let h : X ′ → X be a morphism of sncd models. Then

1. We have X̂ ′
η ⊂ X̂η inside Xan. Moreover, ρX ◦ ρX ′ = ρX on X̂ ′

η.

2. If h is proper, then X̂ ′
η = X̂η and Sk(X ) ⊂ Sk(X ′).

Proof. We clearly have X̂ ′
η ⊂ X̂η, and if h is proper the equality follows from

the valuative criterion of properness. Let z ∈ X̂ ′
η, put y = ρX ′(z). We want to

show that ρX (z) = ρX (y). By construction, we have spX ′(z) ∈ {spX ′(y)} in X ′
k.

We have a commutative diagram

X̂ ′
η

��

spX′
// |X ′

k|

��

X̂ ′
η spX

// |X ′
k|

where the vertical maps are continuous, which shows that spX (z) ∈ {spX (y)}.
By a similar argument, the irreducible components of Xk passing through spX (z)
and spX (y) are the same.

It remains to show that for every such component E with local equation T ,
we have vz(T ) = vy(T ). Write h∗E =

∑r
i=1 aiE

′
i. If T ′

i are local equations of
the E′

i, then we have T = u
∏r
i T

ai
i in κ(X) with u unit, so that

vz(T ) =
r∑
i=1

aivz(T
′
i ) =

r∑
i=1

aivy(T
′
i ) = vy(T ).

This concludes the proof of 1).
We now assume h proper. Let z ∈ Sk(X ). Put ξ = spX (z) ∈ Xk, z′ = ρX ′(z)

and ξ′ = spX ′(z′) ∈ X ′
k. We need to show that z = z′. It is enough to show that,

for all f ∈ OX ,h(ξ′), we have vz(f) = vz′(f). Write an admissible expansion of
f with respect to the model X .

f =
∑
β

cβT
β

We can choose local parameters T ′
1, . . . T

′
s in OX ′,ξ′ with u

∏s
j=1(T

′
j)
N ′

j uni-
formizer in R. We have Ti ∈ OX ′,ξ′ , hence we can write

Ti = vi

s∏
j=1

(T ′
j)
γi,j
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with vi unit and γi,j positive integer. We write

f =
∑
β

cβv
β(T ′)

∑r
i=1 βiγi

We want to show that this is an admissible expansion of f for X ′ at ξ′.
In fact, it turns out that the multi-exponents

∑r
i=1 βiγi are all distinct,

so that the property that all coefficients are units or zero is preserved (note
that units in OX ,h(ξ′) are mapped to units in OX ′,ξ′)).. Assume

∑r
i=1 βiγi =∑r

i=1 β
′
iγi. This exactly says that the monomials T β and T β

′
have the same

multiplicity along each components of X ′
k. Using properness of h and normality

of the models, one can compute the Stein factorisation of h locally around ξ and
show

OX ,ξ ≃ O(X ′ ×X Spec(OX ,ξ)).

Computing in the right hand side and using the equality of multiplicities, we see
that zβ−β

′
has to be a unit in OX ,ξ, which implies β = β′. This proves that the

expansion of f is admissible, and from this it is clear that vz(f) = vz′(f).

Example 2.7. If we blow up Y at a closed point y ∈ Yk, we obtain a proper
morphism of sncd models h : Y ′ → Y of Y with an extra component in the
special fiber. There are two possibilities:

• The point y is O. Then Sk(Y) = Sk(Y ′) (as dual complexes, this is a
barycentric subdivision of an interval).

• The point y is not O. Then Sk(Y) ⊊ Sk(Y ′), obtained by extending the
interval on one side.

We suggest, as an exercise, to go through the proof of the previous proposition
for the blow up at O, paying particular attention to the middle point of the
interval.

3 Strong deformation retract

The proof in [NX16] of the main theorem on the strong deformation property
of ρ requires a stronger hypothesis.

Hypothesis 3.1. There exists a smooth algebraic curve C over k and a point
O ∈ C such that R ≃ ÔC,O (so that, in particular, we are in the equal charac-

teristic case), and a model X̃ of X over C.

Theorem 2.1 should hold in the stated generality, but the proof, using loga-
rithmic geometry, is unpublished.

The strategy of the proof goes as follows.

• One first constructs the required homotopy H in the case where the pair
(X̃ ,Xk) is of toric type, i.e. X̃ is a toric variety over k, and the Xk is the
toric boundary (=complement of the dense open torus). The construction
in this case is quite explicit and uses the torus action.

6



• One then proves that the pair (X̃ ,Xk) is Zariski locally of toric type. This
is a standard property of scnd divisors, and we sketch the argument.

• One finally shows that the homotopies constructed on the so-called relative
étale charts, can be glued down to an homotopy on X̃ .

3.1 The toric case

We look at the toric construction in our running example. Since everything is
explicit, no knowledge of toric geometry is required. We consider the following
variety

Ỹ = Spec(k[π, T1, T2]/(T
N1
1 TN2

2 − π)) ≃ A2
k.

which is an sncd model of its generic fiber Y . We denote by Ei the component
given by Ti = 0. The skeleton Sk(Y) is simply a 1-simplex. Assume N1, N2

coprime for simplicity, and choose a1, a2 integers with a1N1 + a2N2 = 1.
Enters toric geometry. The variety Ỹ is toric, with dense torus

T̃ ′ = Spec(k[π, π−1, T1, T
−1
1 , T2, T

−1
2 ]/(TN1

1 TN2
2 − π))

Let us write an explicit isomorphism of T̃ ′ with G2
m:

k[π, π−1, V, V −1] ≃ k[π, π−1, T1, T
−1
1 , T2, T

−1
2 ]/(TN1

1 TN2
2 − π),W 7→ T a21 T−a1

2

This toric variety comes with a natural toric morphism given by π:

ϕπ : Ỹ → A1
k.

such that the special fiber Yk is ϕ−1
π (0) There is a natural subtorus

T̃1 = V (π − 1) = Spec(k[T1, T
−1
1 , T2, T

−1
2 ]/(TN1

1 TN2
2 − 1) ≃ Spec(k[V, V −1])

which acts on the fibers of ϕπ; we can promote this action to an action of the
constant group scheme over A1

k on Ỹ → A1
k given

T̃ = Spec(k[π, T1, T
−1
1 , T2, T

−1
2 ]/(TN1

1 TN2
2 − 1)

We have the notion of fiber product over K of Berkovich spaces and of fiber
product over R of formal schemes, with

Zan ×K (Z ′)an ≃ (Z ×K Z ′)an

and
Ẑη ×K Ẑ ′

η ↪→ (Ẑ×̂RẐ ′)η

We deduce an action of the Berkovich group variety over K

GK := T̂η = {t ∈ T an| |T1(t)| = |T2(t)| = 1}

on
Ŷη = {z ∈ Y an| |T1(z)| ≤ 1, |T2(z)| ≤ 1}.
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We have to be careful about what such an action means, because as with
schemes, the underlying topological space of the fiber product is not the product
of the topological spaces. We only look at the action at the level of the rational
points of Ŷη, i.e., the points with H(x) = K. We write Ŷη(K) for that set. Since
we want to act on all points, we need to extend scalars. Let L be a complete
valued field extension of K. We thus have an action map

GL × Ŷη(L) → Ŷη

such that, whenever I fix an L-rational point y, the induced map GL → Ŷη is
continuous.

For t ∈ [0, 1], we define a point γL(t) ∈ GL which is the sup-norm on the
closed disk of radius t around the identity. More concretely, for all f ∈ L[V ],
written as

f(V ) =
∑
i≥0

ci(V − 1)i

we have

|f(γL(t))| = max
i≥0

|ci|Lti.

We do have |T1(γL(t))| = |V N2(γL(t))| = 1 hence γL(t) lies in GL. The
induced map

[0, 1] → GL, t 7→ γL(t)

is clearly continuous since the formula for the norm is continuous in t. We have
γL(0) = 1, whereas γL(1) is the Gauss point of the affine line (since the closed
disk on radius 1 around 1 is the closed disk of radius 1 around 0!).

Let x ∈ Ŷη. The point x induces a unique rational point in Ŷη ×K H(x),
which is in the x-fiber of the continuous projection map

πH(x)Ŷη ×K H(x) → Ŷη.

We put
H(x, t) = πH(x)(γH(x) · x)

This defines a map
H : Ŷη × [0, 1] → Ŷη

which can be shown to be continuous (it is, at least, clearly continuous separately
in both variables).

More explicitely, for f ∈ K[T1, T2], we write

f(|T1(x)|V N2 , |T2(x)|V −N1) =
1

V j

∑
i≥0

ciV
i

and we have
|f(H(x, t))| = max

i
|ci|ti

so that in particular
|f(H(x, t))| ≥ c0 = |f(x)|.
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Proposition 3.2. The map H is an homotopy which makes ρ a strong defor-
mation retract of Ŷη onto Sk(Y).

Proof. We have to establish that, for y ∈ Ŷη and t ∈ [0, 1],

• H(y, 0) = y,

• H(y, 1) = ρY(y) and

• H(y, t) = y if y ∈ Sk(Y).

The first point is obvious. For the second, we use the fact that the closed disk
centered at 1 of radius 1 is the closed disk centered at 0 of radius 1, hence for
every g ∈ H(x)[V ], we have

|g(γH(x))| = max
i

|ci|x

hence for f =
∑
i,j di,jT

i
1T

j
2 in K[T1, T2], we have

|f(H(x, 1))| = max
i,j

|di,j |x|T1(x)|ix|T2(x)|jx

which caracterizes the monomial point on Y an associated to (Y, (E1, E2), (vx(T1), vx(T2), O),
which is precisely ρY(y).

We omit the proof of the last property, which follows from the easy compu-
tation

|Ti(H(x, t))| = |Ti(x)|,
the inequality

|f(H(x, t))| ≥ c0 = |f(x)|
and a minimality property of valuation attached to monomial points which we
have not discussed.

One can show from the formula forH that, for a point in y ∈ Ŷη∩Y bir (which
implies , there exists a t0 > 0 such that for all t ≤ t0, we have H(y, t) = y.

3.2 Sncd models and relative toroidal embeddings

Definition 3.3. Let k be a field, and X be a normal variety together with a
function ϕ : X → C to a smooth curve C. Put Z = f−1(0) and X0 = X \ Z.
The pair (X,ϕ) is a (simple) relative toroidal embedding if for all x ∈ X, there
exists compatible open neighbourhood V of x and W of ϕ(x) and a commutative
diagram

V
γ

//

ϕ

��

Y

ψ
��

W
γ′

// A1

with γ, γ′ étale morphisms, Y affine toric variety (with Y0 dense open torus),
ψ toric morphism such that ψ−1(0) is the toric boundary Y \ Y0 of Y , and
γ−1(Y0) = V ∩X0. Such a diagram is called a relative étale chart.
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Proposition 3.4. Let ϕ : X̃ → C be an sncd model of its generic fiber X.
Assume that k is perfect. Then (X̃ , ϕ) is a relative toroidal embedding.

Proof. We only do check the condition for a closed point x ∈ X̃ ; the general
case follows by a specialisation argument. Let T1, . . . , Td−1 be a regular system
of parameters in OX̃ ,x such that (Xk)x is defined by the equation TN1

1 . . . TNd

d .
There exists an open neighbourhood V of x such that Ti ∈ OX̃ (V ). Write
J = {i|Ni > 0}. We define γ : V → Adk (with coordinates Ui) by

γ∗(Ui) =

{
Ti, i ∈ I

Ti + 1, i /∈ I
}

Because the field extension k(x)/k is separable by perfection of k and by the
Jacobian criterion, the morphism γ is étale at x. We restrict V such that γ is
everywhere étale and the sections Ti + 1 for i /∈ I are all invertible on V . We
define ψ : Ank → A1

k (with coordinate U) by

ψ∗(U) = UT1
1 . . . UTd

d

We also define W = ϕ(V ) (open since an sncd model is flat). It is easy to see
that, up to restricting V , there is an étale map γ′ completing the commutative
diagram, and that γ−1(Gdm) = V ∩X0.

In fact, we see that the result is more precise and that we get the smooth
toric variety Adk together with the function TN1

1 . . . TNd

d as the étale local model.
This is, up to some extra notational complexity, exactly the example we have
treated above.

3.3 Gluing homotopies

By the previous step, one can find a Zariski open cover Ũi of X̃ together with
relative étale charts

Ũi γ
//

ϕ

��

Yi

ψ

��

Wi
γ′

// A1

We have seen in Pedro’s talk that the open covering {Ui} of the model X induces
a closed covering {Sk(Ui)} of the skeleton Sk(X ).

By the first step of the proof, we have homotopies Hi, defined via the actions
of rigid generic fibers of formal tori acting on Ŷi, which make ρUi into a strong

deformation retract of Ŷi,η onto Sk((Yi)R). We have to show that the homotopies
can be lifted along the étale charts, and that the retractions and the lifted
homotopies are compatible on the closed covering {Sk(Ui)} and finish the proof.

We will not say anything about this aspect of the proof, except that, in
[Thu07], descending the formal torus action along an étale chart is handled by
using the following kind of observation.
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Proposition 3.5. Let G an R-group scheme acting on an R-scheme Z. For
γ : U → Z an étale morphism, there exists an action of the formal group scheme
Ĝ on Û , compatible with the induced action on Ẑ.

4 Affine structure

The skeleton Sk(X ) is not just a topological space, but inherits from its em-
bedding in Xan a canonical integral affine structure, which also encodes the
multiplicities of the components of the special fiber. This structure can be de-
scribed in two different ways: one intrinsic in terms of rational functions on X,
and one using the ∆-complex structure on Sk(X ) coming from ∆(Xk) through
the homeomorphism Φ. We use the second perspective as our definition.

Definition 4.1. Let U ⊂ Sk(X ) be any subset, and f : U → R be a continuous
function. The function f is

• (integral) affine if for every closed face σ of Sk(X ), we can cover σ ∩ U
by open sets V such that fV is an affine function with coefficients in Z in
the variables wi/Ni with wi the barycentric coordinates of σ. Note that,
in many cases (say U open and σ ∩U connected), there is no need to pass
to a cover and the whole of fσ∩U has the required shape.

• (integral) piecewise affine if we can cover each face of Sk(X ) by finitely
many polytopes P such that the vertices of P have rational barycentric
coordinates and fP is affine.

We now come to the second description.

Proposition 4.2. Let h be a non-zero rational function on X. Then the func-
tion

fh : Sk(X ) → R, z 7→ vz(h)

is piecewise affine. Conversely, a function f : U → R is piecewise affine if it is
possible to find an open cover of U by V ⊂ U such that the fV can be written
as (fh)V for some rational function h.

Proof. Let us prove that fh is piecewise affine. Let σ be a face of Xk corre-
sponding to a generic point ξ. We can reduce easily to the case where h lies in
OX ,ξ. Choose an admissible expansion of h with respect to ξ:

h =
∑
β

cβT
β

Then for every z ∈ σ, we can compute

vz(h) = min{
∑
i

vz(Ti)βi|cβ ̸= 0}.

This is a minimum of integral affine functions, hence a concave integral piecewise
affine function.
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The proof actually establishes some more precise properties of fh.

Corollary 4.3. Let h be a non-zero rational function on X, and σ a face of Xk
corresponding to a generic point ξ of an intersection of irreducible components
of Xk. The function (fh)σ is

• concave if ξ is not contained in the closure of the locus of poles of h on
X.

• convex if ξ is not contained in the closure of the locus of zeros of h on X.

• affine if ξ is not contained in the closure of the locus of zeros and poles of
h on X.

Another corollary is

Corollary 4.4. Let X and X ′ be two sncd models of X. Then the map

ρX : X̂η ∩ Sk(X ′) → Sk(X )

is compatible with the piecewise affine structures. As a corollary, the notion of
piecewise affine function is independent of the model, in a suitable sense.
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