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1. Berkovich spaces

Throughout, k is a non-archimedean field.
Let’s recall some definitions. An affinoid algebra A is a quotient of k{r−1

1 T1, . . . , r−1
n Tn} for

some r1, . . . , rn > 0. Its Berkovich spectrum is the topological space

X =M(A) =

{
bounded multiplicative

seminorms on A

}
=

{
(equivalence classes of) bounded
maps from A to a valuation field

}
.

A domain D ⊆ X is a closed subset that admits a bounded homomorphism A→ AD universal
for the property thatM(AD)→M(A) has image inside D. For such D one has D =M(AD).
The map A→ AD is flat. Domains form systems of neighborhoods at each point of X. In other
words, domains behave exactly like the standard opens D( f ) ⊆ Spec A do for schemes.

A subset Z ⊆ X is special if it is a finite union of domains. If Z = D1 ∪ . . . ∪ Dn is such a
presentation, then we write AZ = ker

(
∏i ADi ⇒ ∏i,j ADi∩Dj

)
. Define

OX(U) = lim
Z ⊆ U special

AZ.

Now (X,OX) is a locally ringed space, satisfying OX(X) = A.

Remark 1.1. The functor M : {affinoid algebras} → {locally ringed spaces} is faithful, but
not full. This problem, together with the lack of localizations, warrants the somewhat involved
definition below. �

A quasi-affinoid space is a locally ringed space U equipped with the data of an affinoid algebra A
and an open immersion U ↪→M(A). A morphism of quasi-affinoid spaces f : (U, A) → (V, B)
is a map of locally ringed spaces such that for all domains D ⊆ U, E ⊆ V with f (D) ⊆ E the
restriction f : D → E is affinoid, i.e. comes from a bounded map BE → AD.

Definition 1.2. A Berkovich space is a locally ringed space X equipped with the equivalence
class of an analytic atlas {(Ui, Ai) : i ∈ I} where the Ui form an open covering of X, each
(Ui, Ai) is a quasi-affinoid space, and the identity maps (Ui ∩ Uj, Ai) → (Ui ∩ Uj, Aj) are
morphisms of quasi-affinoid spaces. A morphism of Berkovich spaces is a morphism of locally
ringed spaces that is locally a morphism of quasi-affinoid spaces. �

Berkovich spaces are locally Hausdorff, locally compact, and locally path-connected [2].

Example 1.3. Consider the Berkovich spectrum of k{r−1T} = k{r−1
1 T1, . . . , r−1

n Tn}. We assume
that k is algebraically closed. Let E = E(a, s) ⊆ k be a closed disk contained in E(0, r). Then the
rule

∣∣∑n cn(T − a)n
∣∣
E = maxn |cn|sn defines a point of M(k{r−1T}). It is of type I if s = 0, of

type II if s ∈ |k×|, and of type III otherwise. The type II point | · |E(0,r) is called the Gauss point.
Each point of M(k{r−1T}) is either of type I–III, or a limit of such points along a decreasing
sequence of disks E0 ⊇ E1 ⊇ ... with empty intersection; then it is of type IV. See figure (1) for
a picture. The quasi-affinoid subspace D(0, r) =

{
x ∈ M(k{r−1T}) : |Ti|x < ri

}
is indicated in

the picture as well. Observe also that for s ≤ r one hasM(k{s−1T}) ⊆M(k{r−1T}). �
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Example 1.4. The n-dimensional Berkovich affine space is

An,an =

{
multiplicative seminorms on k[T1, . . . , Tn]

extending the given norm on k

}
with the weakest topology that renders all functions An,an → R, x 7→ | f |x continuous. Let
OAn,an be the sheaf of analytic functions on An,an, i.e. the sheaf of functions that are locally
limits of rational functions. Then An,an is a Berkovich space. Indeed, An,an =

⋃
r∈Rn

>0
D(0, r)

where D(0, r) is the quasi-affinoid space from example 1.3. �

2. Géometrie algébrique et géométrie analytique

Here is the main result of this talk.

Theorem 2.1. Let S be a scheme locally of finite type over k. The functor

Berk/k→ Set, X 7→ HomLRS/k(X, S)

is representable by a Berkovich space San.

Proof. In other words, there should be a Berkovich space San and a canonical map π : San → S
such that every map of locally ringed spaces f : X → S factors uniquely as

San

X S

π∃! g

f

where g is a morphism of Berkovich spaces. We proceed in several steps.
Case 1: S = An. Then π : An,an → An, x 7→ ker | · |x does the job, with An,an the Berkovich

affine space from example 1.4. Indeed, HomLRS/k(X, An) = OX(X)n = HomBerk/k(X, An,an).
The last identity holds by reduction to X affinoid, since a mapM(A)→ An,an corresponds to
a bounded map k{r−1T} → A for some r ∈ Rn

>0.
Case 2: T ⊆ S open. Suppose that π : San → S is a Berkovich analytification, i.e. satisfies the

statement of the theorem. Then Tan = π−1(T) is a Berkovich space and Tan → T is a Berkovich
analytification.

Case 3: T ⊆ S closed. Suppose that π : San → S is a Berkovich analytification. Let I be the
quasi-coherent sheaf ofOS-ideals defining T. Then π∗I is a quasi-coherent sheaf ofOSan -ideals.
If Tan ⊆ San is the corresponding closed subspace, then Tan → T is a Berkovich analytification.

Case 4: S general. If S is affine, then S may be realized as a closed subscheme of affine space,
so the theorem holds by combining cases 1 and 3. The general situation follows by glueing,
using case 2. �

Due to the universal property, the construction S 7→ San is functorial.

Example 2.2. Let A be a finitely generated k-algebra and S = Spec A. Then

San =

{
multiplicative seminorms on A
extending the given norm on k

}
with the weakest topology that renders all functions San → R, x 7→ | f |x continuous. The
canonical map π : San → S is given by x 7→ px = ker | · |x. �
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Here is an alternative description of San. In the example, x ∈ San extends to a multiplicative
norm on the residue field κ(π(x)) = Frac(A/px). Conversely, if | · | : κ(s)→ R is a multiplica-
tive norm, then | · | induces a multiplicative seminorm on A. Hence, as a set,

(2.3) San =

{
(s, | · |) : s ∈ S, | · | : κ(s)→ R absolute

value extending the norm on k

}
,

with π : San → S the forgetful map. The topology is the weakest for which π as well as all
maps π−1(U)→ R, (s, | · |) 7→ | f (s)| for U ⊆ S open and f ∈ OX(U) are continuous.

Proposition 2.4. Let S be a scheme locally of finite type over k.
I π : San → S is faithfully flat.
I Set S0 = {s ∈ S : [κ(s) : k] < ∞} and, for X a Berkovich space, X0 = {x ∈ X : [H(x) : k] < ∞}.

Then π restricts to a bijection (San)0 → S0.
I For x ∈ (San)0, the map OSan,x → OS,π(x) becomes an isomorphism after completion.

Proof. A morphism of locally ringed spaces is faithfully flat if has flat stalk maps and is surjec-
tive. Flatness of π can be deduced from the proof of theorem 2.1. Surjectivity and the second
statement are an immediate consequence of the description of San in (2.3). The last item is
again a consequence of the proof of theorem 2.1. �

The Berkovich analytification San shares many properties of S. We omit the proofs. Some more
details may be found in section 3.4 of [2].

Proposition 2.5. Let S be a scheme locally of finite type over k. Then S is reduced, Cohen–Macaulay,
regular, or smooth if and only if San has the same property. �

Proposition 2.6. Let f a morphism of schemes locally of finite type over k. Then f is flat, unramified,
étale, smooth, separated, injective, surjective, an open immersion, an isomorphism, or a monomorphism
if and only if f an has the same property. If f is quasi-compact, then f is dominant, a closed immersion,
proper, or finite if and only if f an has the same property. �

The dimension of a Berkovich space X is the smallest natural number n such that every finite
open covering of X has a finite refinement (Ui)i∈I such that if i0, . . . , im ∈ I are distinct and the
intersection Ui0 ∩ . . . ∩Uim is non-empty, then m ≤ n.

Proposition 2.7. Let S be a scheme locally of finite type over k. Then
I S is separated if and only if San is Hausdorff,
I S is proper if and only if San is compact Hausdorff,
I S is connected if and only if San is connected, and
I dim S = dim San. �

As in complex geometry, there are comparison theorems for coherent sheaves.

Theorem 2.8. Let S be a scheme locally of finite type over k. The functor

OS-Mod→ OSan -Mod, F 7→ F an = π∗F

is faithful, exact, and preserves coherence. If S is proper, the restriction (−)an : Coh S → Coh San is
an equivalence. �

Theorem 2.9. Let f : S → T be a proper morphism of schemes locally of finite type over k. Let F be a
coherent OS-module. There are canonical isomorphisms (Ri f∗F )an ∼= Ri f an

∗ (F an). In particular, if S
is a proper k-scheme and F a coherent OS-module, then Hp(S,F ) ∼= Hp(San,F an). �

Corollary 2.10. Let S be a proper scheme over k. The functor T 7→ Tan from finite S-schemes to finite
San-Berkovich spaces is an equivalence. In particular, every proper Berkovich curve is algebraic. �

3



3. Tate elliptic curves

Recall that every elliptic curve over C has a uniformization E = C/Λ where Λ = Z⊕Zτ with
Im τ > 0. A similar approach over Qp or Cp cannot work, for instance because p-adic fields
have no non-trivial discrete subgroups. There is, however, another perspective in complex ge-
ometry. Write q = e2πiτ . The convention Im τ > 0 implies 0 < |q| < 1. There is an isomorphism
of complex spaces

C/(Z⊕Zτ)→ C×/qZ, z 7→ e2πiz.

The latter description has a non-archimedean analogue due to Tate.
As usual, let k be a non-archimedean field. Fix an element q ∈ k with 0 < |q| < 1. We define

σm(n) = ∑d|n dm, the series sm(q) = ∑n≥1 σm(n)qn, and

a4(q) = −5s3(q), a6(q) = −
5s3(q) + 7s5(q)

12
.

Both a4(q) and a6(q) lie in Z[[q]], so converge to elements of k.

Theorem 3.1. Let Eq ⊆ P2 be the elliptic curve with affine equation y2 + xy = x3 + a4(q)x + a6(q).
It has discriminant ∆(q) = q ∏n≥1 (1− qn)24 and j-invariant j(q) = 1

q + 744+ . . .. For any algebraic
extension K of k, there is a Galois-equivariant isomorphism of rigid spaces K×/qZ ∼= Eq(K). �

Note that |∆(q)| = |q|, hence ∆(q) is non-zero and Eq is truly an elliptic curve. On the other
hand, |∆(q)| < 1 implies that Eq has bad reduction over the residue field k̃ of k. Therefore its
reduction over k̃ is either a nodal curve or a cusp; equivalently, its connected Néron model is
either a form of Gm or a form of Ga. In the former case we speak of multiplicative reduction, in
the latter of additive reduction. It turns out that the inequality |j(q)| = |q|−1 > 1 implies that Eq
always has multiplicative reduction.

Theorem 3.2. Let E/k be an elliptic curve with |j(E)| > 1. There is a unique element q ∈ k satisfying
0 < |q| < 1 such that the elliptic curves E and Eq become isomorphic over the algebraic closure of k.
There is an isomorphism E ∼= Eq over k if and only if E has split multiplicative reduction. �

See chapter V of [3] for proofs.
Let’s now construct the Berkovich space Ean

q . Consider first the complex case. If q is a
complex number satisfying 0 < |q| < 1, the quotient C×/qZ may be constructed as follows:
take in C the closed annulus centered at 0 with outer radius 1 and inner radius |q|, then identify
the outer and inner boundaries. See figure (2).

In the setting of Berkovich spaces we take the same approach. The complex closed unit disk
corresponds to the affinoid Berkovich spaceM(k{T}). It naturally contains the quasi-affinoid
D(0, |q|). Now Ean

q arises by identifying the outer and inner boundaries ofM(k{T}) \D(0, |q|).
InM(k{T}) a canonical path connects the Gauss points | · |E(0,1) and | · |E(0,|q|). This path maps
to a loop in Ean

q . This loop will later be called the skeleton of Ean
q and is a deformation retract

of the whole Berkovich space. See figure (3) and section 5.2 from [1].

Remark 3.3. We can now point out another reason why lattice uniformization of elliptic curves
does not work for Berkovich spaces. Recall that a complex elliptic curve E is a torus, hence has
fundamental group Z×Z. The map C× → C×/qZ = E is a covering space with group Z. The
exponential C → C× is also a covering space with group Z. Indeed, C is simply connected
and C→ E is a universal covering space.

On the other hand, the Berkovich space Ean
q deformation restracts to a circle, hence has

fundamental group Z. The first uniformization step Gan
m → Ean

q still applies. But the Berkovich
space Gan

m = An,an \ {0} is already simply connected, so C→ C× cannot have an analogue. �
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