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TALK 1: INTRODUCTION

MARTA PIEROPAN

1. Aim

In the seminar we are going through Nicaise-Xu proof of the following conjecture.

Conjecture 1 (Veys). : Let k be a field of characteristic 0, let f ∈ k[x−1, . . . , xn]
be a nonconstant polynomial such that f(0) = 0. If α is a pole of order n of the
motivic zeta function Zmot(f ; s), then α = − lct0(f).

The aim of this talk is to introduce the objects appearing in the conjecture,
namely, motivic zeta functions and the log canonical threshold, and to sketch its
proof, that is the relation with Berkovich geometry.

The content of Section 2 is based on [Mus12], the content of Sections 3 and 4 is
based on [Nic10], the content of Section 5 is based on [NX15].

2. Invariants of singularities

Let k be a field of characteristic 0, let f ∈ k[x1, . . . , xn] be a nonconstant poly-
nomial. Then {f = 0} defines a divisor ∆ in X := Ank . Let x ∈ ∆ be a k-point.

Notation 2. For us, a pair is given by a smooth variety and a divisor, for example
(X,∆). Let h : Y → X be a log resolution of the pair (X,∆), that is, h is a
birational morphism, Y is a smooth k-variety and the union of the exceptional
locus of h with the support of h∗∆ form a simple normal crossing divisor in Y . We
denote by ∆̃ the strict transform of ∆ under h. We write

KY + ∆̃ = h∗(KX + ∆) +
∑

E exc. prime

aEE,

h∗∆ = ∆̃ +
∑

E exc. prime

NEE,

KY = h∗(KX) +
∑

E exc. prime

(νEE − 1)E,

where the sums run over the set of prime exceptional divisors E of h. We recall
that the pair (X,∆) is log canonical if there is a log resolution h : Y → X such
that all aE ≥ −1. We say that (X,∆) is log canonical around x ∈ ∆ if there exists
an open neighborhood U of x in X such that (U,∆|U ) is a log canonical pair.

Here are some invariants if the singularity x ∈ ∆:

• multiplicity :

ordxf := min{
n∑
i+1

αi : α = (α1, . . . , αn) ∈ Zn≥0,
∂αf

∂xα
(x) 6= 0} ≥ 1,

equality holds if and only if x ∈ ∆ is smooth;
• Milnor number (for isolated singularities):

µxf := dimk

(
OX , x/(

∂f

∂x1
, . . . ,

∂f

∂xn
)

)
≥ 0,

equality holds if and only if x ∈ ∆ is smooth;
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• log canonical threshold :

lctx(f) := sup{λ ∈ R>0 : (X,λ∆) is a log canonical pair around x},
see Notation 2 for the definition of log canonical pair.

Example 3. For f = xe11 + · · ·+ xenn and x = 0 ∈ An, we have

ord0f = min
1≤i≤n

ei, µ0f =

n∏
i=1

(ei − 1), lct0 f = min{1,
n∑
i=1

1

ei
}.

The log canonical threshold can be considered as “a refinement of the reciprocal of
the multiplicity.”

Properties of the log canonical threshold.

(1) The log canonical threshold is a rational number.
(2) If x ∈ ∆ is smooth, then lctx f = 1. But the converse does not hold: take

n = 3, e1 = e2 = e3 = 3 in Example 3.
(3) The log canonical threshold can be computed in terms of a log resolution

h : Y → X of (X,∆): lctx f = min{ νeNE
: E exc. prime, x ∈ h(E)}.

(4) The log canonical threshold can be computed in terms of jet schemes

[Mus02]: minx∈∆ lctx f = dimX − supm≥0
dimk Lm(∆)

m+1 , where the m-th

jet scheme of ∆ is characterized by Lm(∆)(A) = ∆(A[t]/(tm+1)) for all
k-algebras A.

(5) There is a notion of F-pure threshold in positive characteristics. Let f ∈
Z[x1, . . . , xn] and x ∈ {f = 0}. Denote by fp the reduction mod p of f for
every prime p, and by fptx fp the F -pure threshold of fp at the reduction
mod p of x. Then fptx fp ≤ lctx f for p >> 0, and limp→∞ fptx fp = lctx f .
It is conjectured that fptx fp = lctx f for infinitely many primes p.

The log canonical threshold find numerous applications within the Minimal
Model Program. This section is based on [Mus12], to which we refer the reader for
further information.

3. Igusa’s p-adic zeta functions

Assume that f ∈ Z[x1, . . . , xn] is nonconstant and satisfy f(0) = 0. For every
prime p we denote by fp the polynomial f considered as an element of Zp[x1, . . . , n].
For every r ≥ 0, let

Nfp(r) := #{x ∈ (Z/pr+1Z)n : f(x) = 0 mod p}.
The Igusa-Poincaré series associated to fp is

Qfp(T ) :=
∑
r≥0

Nfp(r)T r+1 ∈ Z[[T ]].

It is related to the Igusa zeta function of fp at 0 by the following formula

Z(fp; s) = 1 +
(p−s − 1)Qfp(p−s−n)

p−s
,

where the Igusa zeta function of fp at 0 is defined as the p-adic integral

Z(fp; s) :=

∫
Zn
p

p−vp(f)sdµ,

where s is a complex variable and dµ is the Haar measure on Qp that satisfy
µ(Zp) = 1.

Igusa proved that Qfp(T ) is a rational function by proving that Z(fp; s) is a
rational function in p−s. Moreover Igusa proves that the candidate poles for Z(fp; s)
can be computed in terms of a log resolution h : Y → AnQp

of (AnQp
, {fp = 0}).
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Theorem 4 (Igusa).

Z(fp; s) ∈ Z
[

p−NEs−νE

1− p−NEs−νE

]
,

where E run over the set of prime exceptional divisors of a log resolution of (AnQp
, {fp =

0}), NE and νE are defined in Notation 2.

Denef gave an explicit expression of Z(fp; s) in terms of a log resolution of
(ANQp

, {fp = 0}).

Conjecture 5 (Igusa monodromy conjecture). Let f ∈ Z[x1, . . . , xn], then for al-
most all primes p, if α is a pole of Z(fp; s), then e2πi<(α) is a monodromy eigenvalue
of f for some x ∈ {fp = 0}.

The conjecture is known to hold in dimension 2, in dimension 3 it is known for
homogeneous polynomials. It is also proven for some families of hypersurfaces, but
it is open in general.

4. Motivic zeta functions

We can think of the motivic zeta function of a polynomial as a generalization
of its Igusa p-adic zeta functions. We start with a rough introduction to motivic
integration. Let k be a field of characteristic 0.

Idea beyond motivic integration: replace Qp by k((t)), and replace p = #Fp =
#A1

Fp
(Fp) by L := [A1

k] ∈ K0(V ar/k), where K0(V ar/k) is the Grothendieck ring

of k-varieties.
We recall that the m-th jet scheme Lm(X) of a k-variety X is characterized by

Lm(X)(A) = X(A[t]/(tm+1)) for all k-algebras A. The arc space of X is L(X) :=
lim←−m Lm(X).

Motivic integration: integrate over L(Ank ) with value inMk := K0(V ar/k)[L−1]
using the motivic measure.

Let f ∈ k[x1, . . . , xn] be a nonconstant polynomial such that f(0) = 0. Let ∆
be the hypersurface of Ank defined by f = 0.

The “naive” motivic zeta function of f at 0 is defined as the motivic integral

Zmot(f ; s) :=

∫
L(An

k )

L−ordt(f)s ∈Mk[[L−s]],

where s is a complex variable. It is related to the series

Qmot(f ;T ) :=
∑
m≥0

[Lm(∆)]Tm+1 ∈ K0(V ar/k)[[T ]],

analogous to the Igusa-Poincaré series. The motivic zeta function of f is rational
in L−s as the following theorem shows.

Theorem 6 (Denef-Loeser).

Zmot(f ; s) ∈Mk

[
L−NEs−νE

1− L−NEs−νE

]
,

where E run over the set of prime exceptional divisors of a log resolution of (Ank ,∆),
NE and νE are defined in Notation 2.

Denef and Loeser gave an explicit formula for Zmot(f ; s) in terms of a log res-
olution of (Ank ,∆) which is analogous to the one for the p-adic zeta functions of
Igusa. Moreover, they prove that if f ∈ Z[x1, . . . , xn], then Zmot(f ; s) specializes
to Z(fp; s) for almost all primes p.
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Conjecture 7 (Motivic monodromy conjecture by Denef-Loeser). Let f ∈ k[x1, . . . , xn],
if α ∈ Q is a pole of Zmot(f ; s), then e2πiα is a monodromy eigenvalue of f for some
x ∈ {f = 0}.

The motivic monodromy conjecture implies Igusa’s monodromy conjecture, via
a specialization argument. Both conjectures are open.

5. Veys’ conjecture

Let k be a field of characteristic 0, f ∈ k[x1, . . . , xn] a noncostant polynomial
such that f(0) = 0.

Conjecture 8 (Veys). If α is a pole of order n of the motivic zeta function
Zmot(f ; s), then α = − lct0(f).

Vey’s conjecture has been proven by Nicaise-Xu as follows.
Setting: Let R := k[[t]] and K := k((t)). The polynomial f induces a morphism

f : Ank → A1
k, let ∆ := f−1(0) = {f = 0} ⊆ Ank =: X and x := 0 ∈ Ank . Let

h : Y → X be a log resolution of (X,∆). We define the R-schemes X and Y via
the following square diagrams

Y //

��

X //

��

SpecR

��

Y
h // X

f
// Spec k[t].

Then the special fiber of X → SpecR is Xk = ∆, the generic fiber XK is smooth,
and hence, XK = YK .

Let X̂ be the t-adic completion of X , and (XK)an the Berkovich analytification

of XK . Then, the generic fiber of the completion X̂K satisfies X̂K ⊆ (XK)an with
equality if X is proper over R.

Skech of proof: Up to shirinking X around the point x we can assume that
XK admits a global pluricanonical form. Nicaise-Xu use such a pluricanonical form

of XK to define a weight function wt∆ : X̂K → R ∪ {+∞}, that depends on the
special fiber Xk = ∆.

They define the Berkovich skeleton Sk(Y ) ⊆ ŶK = X̂K of Y , and show that
Sk(Y ) is isomorphic to the dual complex of the strict normal crossing divisor
Supp(h∗(∆)) (the vertices of the dual complex correspond to the prime divisors
in the support of h∗(∆), the m-dimensional faces correspond to connected compo-
nents of intersections of m prime divisors in the support of h∗(∆), see example an
page 6). They prove that the weight function wt∆ restricts to a piecewise affine
function on the skeleton Sk(Y ) which is computable in terms of h: wt∆(vE) = νE

NE

if vE is the valuation point of Sk(Y ) associated to a prime exceptional divisor E
of h. We observe that those points are vertices of Sk(Y ).

Nicaise-Xu expect that the weight function wt∆ induces a flow on Sk(Y ). Some
evidence is provided by the following result. For w ∈ R, let Sk(Y )≤w := {ξ ∈
Sk(Y ) : wt∆(ξ) ≤ w}.

Theorem 9. There exists a collapse of Sk(Y ) to the essential skeleton Skess(Y ),
which collapses each Sk(Y )≤w to Skess(Y ).

Here by collapse we mean a sequence of elementary collapses, where an elemen-
tary collapse is the following operation: If τ is a maximal face of Sk(Y ) and σ is a
maximal face of τ which is not a face of any other face of Sk(Y ), and elementary
collapse is obtained by deleting the interiors of τ and σ from Sk(Y ). See example
at page 6.
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Let Sk(Y , x) be the union of faces of Sk(Y ) that correspond to intersections I
of exceptional divisors for h such that x ∈ h(I). Up to shrinking X around x we
can assume that Sk(Y , x) = Sk(Y ).

Nicaise-Xu prove Veys’ conjecture by combining the following theorem with
Denef-Loeser’s explicit formula for Zmot(f ; s) in terms of the log resolution h.

Theorem 10. If τ is a maximal face of Sk(Y , x) and wt∆ is constant on τ with
value w, then w is minimal and w = − lct0 f .
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