3. ÜBUNG ZUR MENGENLEHRE

Sabine Koppelberg Ausgabe: 3. 11. 2011 Besprechung am 10. 11. 2011

Aufgabe 9. X und Y seien wohlgeordnete echte Klassen. Beweisen Sie, dass X und Y dann isomorph sind. Welches Axiom geht dabei massiv ein?

Aufgabe 10. $(X, <_X)$ und $(Y, <_Y)$ seien wohlgeordnete Klassen und $X \cap Y = \emptyset$. Auf $X \cup Y$ definieren wir die Relation < durch

 $x < y \leftrightarrow (x \in X, y \in Y)$ oder $(x, y \in X, x <_X y)$ oder $(x, y \in Y, x <_Y y)$. Ist $(X \cup Y, <)$ dann Wohlordnung?

Aufgabe 11. (X,<) und (Y,<) seien total geordnete Klassen. Finden Sie heraus, in welchen Fällen $X\times Y$, mit der lexikographischen Ordnung, wohlgeordnete Klasse ist! (Dazu sollten Sie unterscheiden, ob X bzw. Y Menge oder echte Klasse ist.)

Hier setzen wir Aufgabe 8 fort.

Aufgabe 12. Wir arbeiten weiter mit der Struktur $\mathcal{M} = (\mathbb{N}, \varepsilon)$ aus Aufgabe 8.

- (a) Berechnen Sie für $a=10 \in \mathbb{N}$ alle Elemente und alle Teilmengen von a im Sinne von \mathcal{M} und daraus $\bigcup a$ und P(a) im Sinne von \mathcal{M} .
- (b) Zeigen Sie, dass $\mathcal M$ Modell des Vereinigungs- und des Potenzmengenaxioms ist.

Aufgabe 12'. Konstruieren Sie

- (a) zwei verschiedene Wohlordnungen $<_1$ und $<_2$ auf der Menge $\mathbb Q$ der rationalen Zahlen, so dass $(\mathbb Q,<_1)$ und $(\mathbb Q,<_2)$ isomorph sind
- (b) zwei Wohlordnungen $<_1$ und $<_2$ auf \mathbb{Q} , so dass $(\mathbb{Q},<_1)$ und $(\mathbb{Q},<_2)$ nichtisomorph sind
- (c) eine Wohlordnung auf der Menge S aller endlichen geordneten Folgen über der Menge $\mathbb{N}=\{0,1,2,\dots\}$ der natürlichen Zahlen.