Für die Berechnung von \(\kappa^n \) für \(\kappa \geq 2, \lambda \geq \omega \) hat man keine allgemeinen Formeln. Man weiß nur:
\[\kappa \times \kappa = \kappa \]
und
\[2^{\kappa \times \lambda} = 2^\kappa \kappa \lambda \]

Für jede Kardinalzahl \(\kappa \). In Kapitel 14 werden wir eine weitere Umformung für \(2^\kappa \) gegenüber \(\kappa \) herleiten. Da \(\kappa < 2^\kappa \), ist für wendliche \(\kappa \) \(\kappa^+ \leq 2^\kappa \).

Die folgende Aussage wird als „Allgemeine Kontinuumshypothese“ (GCH = “generalized continuum hypothesis”) bezeichnet:

(GCH) Für jede wendliche Kardinalzahl \(\kappa \) ist \(2^\kappa = \kappa^+ \) für jede \(\kappa \in \text{Ord} \) ist \(2^\kappa = \kappa^+ \).

Die spezielle Kontinuumshypothese ist:

(CH) \(2^\omega = \aleph_1 \).

Weder GCH (bzw. CH) noch die Negationen von GCH (bzw. CH) lassen sich aus den EF- Axiomen beweisen. Man kann zeigen: falls EF widerspruchsfrei ist, d. h. falls es keine Axiome von EF gibt, gilt, dass:

a) Modelle von EF im Zuge von GCH gibt (Gödel)

b) Modelle von EF, in denen GCH auf vorgestellte Weise vertrüge (z. B. Modell in denen \(2^\kappa = \kappa^+ \) für jede \(\kappa \geq \omega \), das regulär ist

(siehe Kapitel 13) (Cohen, Easton).

Die Frage, wie weit GCH für reguläre \(\kappa \) (siehe Kapitel 13) vertrüge, wird im Kapitel 17 behandelt werden kann, wird uns in Kapitel 17 beschäftigen.

12.5. Folgerung Sind \(\kappa, \mu \) Kardinalzahlen mit \(2 \leq \mu \leq 2^\kappa \), \(\omega \leq \kappa \) so ist \(\mu^\kappa = 2^\kappa \). Insbesondere ist \(\kappa^\kappa = 2^\kappa \).

Beweis. \(2^\kappa \leq \mu^\kappa \leq (2^\kappa)^\kappa = 2^{\kappa \kappa} = 2^\kappa \) nach 12.1, 12.3.

13. Reguläre und unreguläre Kardinalzahlen

Da FEW sei die Klasse aller Limit ordinalzahlen. Ist \(\alpha \in \text{Ord} \) mit \(\alpha > 1 \) sei der Ordinaltyp von \(\alpha \) die Ordinalzahl \(\beta = \text{ot}(\alpha) \) mit \(\beta > \omega \). Man kann dann \(M \) in der Form \(M = \{ m : f(\beta) \rightarrow (\beta, \varepsilon) \} \) mit \(f(\beta) \) die monoton wachsende Funktion von \(\beta \) haben. Ist \(\alpha \in \text{Lim} \) und \(\alpha \leq \omega \) so ist die Kardinalzahl \(\alpha \) selbst.

\(2^\alpha = \alpha^+ \), d. h. es existiert \(\beta > \alpha \) mit \(\beta \notin \alpha \).

Sei \(\lambda \in \text{Ord} \) für \(\lambda \in \text{Lim} \) und \(f : \lambda \rightarrow 2^\omega \). Statt \(f \) notieren wir auch \(\langle f(\beta) \rangle_{\beta < \lambda} \), wo \(f(\beta) = \{ f(\beta) \} \) ist eine Folge von Typ \(\lambda \).

- 54 -
13.1. Lemma (a) Für jede Ordnungszahl \(\alpha \) ist \(cf(\alpha) \leq \alpha \).

(b) Ist \(M \subseteq \alpha \) kofinal, so ist \(cf(M) \geq cf(\alpha) \).

(c) Ist \((\beta_\nu)_\nu\) eine kofinale Folge \(\nu < \alpha \), so \(cf(\beta) = cf(\alpha) \).

(d) \(cf(\text{cf}(\alpha)) = \text{cf}(\alpha) \).

Beweis:

(a) \(\alpha \leq \beta \) gilt für jede Ordinalzahl \(\alpha \), \(cf(\beta) \leq \beta \) zeigt wir durch Induktion eine kofinale Abbildung \(f: \lambda \to \beta \) mit \(\lambda < \nu \) - dann gilt \(cf(\alpha) \leq \lambda \leq \beta \).

Da \(\alpha = \beta \), sei \(x = \sup\{\gamma \mid \gamma < \beta\} \).

Setze \(\nu < \kappa \), und für \(\eta < \nu \) sei \(f(\eta) \) definiert mit \(\eta < \eta' < \nu \Rightarrow f(\eta') < f(\eta) < \alpha \).

Setze

\[
\begin{align*}
f(\nu) &= \begin{cases}
\sup \{ \eta \mid \eta < \nu, \eta \in \gamma \} + 1, & \text{wenn } \nu \text{ unendlich ist}, \\
\sup \{ \eta \mid \eta < \nu \} & \text{wenn } \nu \text{ endlich ist}.
\end{cases}
\end{align*}
\]

(b) Ist \(f = (\gamma_\nu) \) die monotone Aufzählung von \(M \), so ist \(f: \beta \to \alpha \) kofinal, also \(\beta = \text{cf}(\beta) \geq \text{cf}(\alpha) \).

(c) Wir konstruieren kofinale Abbildungen \(f: \alpha \to \beta \) und \(g: \text{cf}(\beta) \to \beta \); dann ist \(\text{cf}(\alpha) \leq \text{cf}(\beta) \) und \(\text{cf}(\beta) \leq \text{cf}(\alpha) \).

Setze \(\beta = (\beta_\nu)_\nu \) und wähle \(h: \text{cf}(\beta) \to \beta \) kofinal. Damit ist \(f \circ h: \text{cf}(\beta) \to \beta \) kofinal; setze man für \(\xi \in \text{cf}(\beta) \)

\[
g(\xi) = \min \{ \eta < \beta \mid f(h(\xi)) = \beta \}
\]

(außer \(\beta \) existiert da \((\beta_\nu)_\nu \) in \(\beta \) kofinal, \(\nu \leq \beta \)).

(d) Wähle in (c) \(f = \text{cf}(\beta) \) und \((\beta_\nu) \subseteq \text{cf}(\beta) \) kofinal in \(\alpha \).
Zusatz zu 13.1.

\[f : \lambda \to 2 \] heißt stetig, falls
\[f(\xi) = \sup_{v < \xi} f(v) \quad \text{für } \xi \in \lambda \cap \mathbb{R}. \]

Normalfunktion, falls \(f \) stetig und streng monoton ist.

13.1, e) Es gibt eine kobinale Normalfunktion \(f : cfd \to 2 \).

Beweis. Sei \(\lambda = \text{cfd} \) und \(\{ \beta, v \mid v < \lambda \} \) eine kobinale Teilmenge von \(\lambda \).

Setze
\[f(0) := 0. \]

Sei \(\xi \in \lambda \) eine reellen und \(f(v) \) für \(v < \xi \) definiert. Wegen \(\xi < \lambda = \text{cfd} \) kann \(f(v) \) für \(v < \xi \) nicht kobinale von \(\lambda \) sein. Daher ist \(\sup_{v < \xi} f(v) \) existent, und man setzt
\[f(\xi) := \sup_{v < \xi} f(v). \]

Ist \(f(v) \) definiert, so sei
\[f(v+1) := \max \{ f(v), \beta_v \} + 1. \]

Damit wird \(f \) stetig, streng monoton und wegen \(\beta_v < f(v+1) \) auch kobinale.
Beweis. Sei $\alpha \in \text{Ord}$, $\beta \in \text{Ord}$ und $\alpha + \beta = \sup \{ \alpha + \gamma \mid \gamma < \beta \}$. Die Existenz solcher Ordinalzahlen ist klar. Es gilt $\alpha + 0 = \alpha$, $\alpha + (\beta + 1) = (\alpha + \beta) + 1$ und $\alpha + \omega = \sup \{ \alpha + \gamma \mid \gamma < \omega \}$.

Es gilt $\omega_0 < \omega_1 < \omega_2 < \cdots$ und deshalb $\omega_\beta = \sup \{ \omega_\gamma \mid \gamma < \beta \}$, da ω_β eine Ordinalzahl ist. Insbesondere gilt es, dass jede Kardinalzahl κ ein singuläres λ mit $\kappa < \lambda$.

13.3. Satz. Sei κ eine unendliche Kardinalzahl. Dann ist $\text{cf}(\kappa)$ die kleinste Kardinalzahl λ, so dass eine Folge $(\lambda_n)_{n < \omega}$ von Teilmengen von κ existiert mit $\kappa = \bigcup_{n < \omega} \lambda_n$, $\lambda_0 < \kappa$, und $\lambda_{n+1} < \lambda_n$ für alle $n < \omega$.

Beweis. Sei $f : \lambda \rightarrow \kappa$ kofinal, und definieren $S_\lambda = \{ f(\xi) \mid \xi < \lambda \}$ und $S_\gamma = \{ f(\xi) \mid \xi < \gamma \}$, $\gamma < \lambda$, $S_\gamma \subseteq \kappa$. Für $\xi < \lambda$ und $\gamma < \lambda$ ist $\xi \in S_\gamma$ genau dann, wenn $f(\xi) \in S_\gamma$, also S_γ kofinal ist. Wir setzen $S_\lambda = \bigcup_{\gamma < \lambda} S_\gamma$. Dann ist S_λ eine Ordinalzahl und jede kardinaler als κ.

Seien $\kappa < \lambda$ und $\lambda < \gamma$, $\gamma < \lambda$. Dann ist $\lambda \in S_\gamma$ genau dann, wenn $f(\lambda) \in S_\gamma$. Wir setzen $S_\lambda = \{ f(\xi) \mid \xi < \lambda \}$ und $S_\gamma = \{ f(\xi) \mid \xi < \gamma \}$ für $\xi < \gamma$ und $\gamma < \lambda$.

Folgerung. Folgende Eigenschaften sind für eine unendliche Kardinalzahl κ äquivalent: a) κ ist singulär, b) κ ist kofinal, c) κ ist regulär, d) κ ist regulär und $\kappa = \text{cf}(\kappa)$.

Folgerung. Füre jede unendliche Kardinalzahl κ ist κ^+ regulär und $\text{cf}(\kappa^+) = \kappa$. Es gilt $\kappa^+ = \sup \{ \kappa + \gamma \mid \gamma < \kappa \}$. Beachte, dass κ^+ regulär ist, was man aus 13.3 folgt. Also ist κ^+ regulär und $\kappa^+ = \sup \{ \kappa + \gamma \mid \gamma < \kappa \}$.
Eine Kardinalzahl \(x \) heißt schwach unendlich, falls \(2^x \leq x \), \(x \) regulär, falls \(x \)客厅kardinalzahl stark.

Jeder stark unendlich \(x \) ist also schwach unendlich; jetzt man \(GCH \) voraus, so gilt auch die Umkehrung. Die Existenz ein (schwach) unendlicher Kardinalzahl ist also in \(ZFC \) nicht beweisbar.

Beweis: Sei \(J \) eine beliebige Ordinalzahl und

\[
X := \{ \alpha < \omega \mid \alpha < J \}
\]

also \(X = J \), durch Angabe von Umgebungsbasen für die Punkte von \(X \) definieren wir auf \(X \) eine Topologie, die \(J \)- Ordinatentopologie: \(x \in X \) keine lineare ordinalzahl, \(X = \{ \alpha \mid \alpha < J \} \) Basis für die Umgebungen von \(\alpha \), d.h. \(x \in \text{innerster Punkt von } X \). Ist \(\lambda \in X \) linearezahl,

\[
\forall \alpha \in \lambda \mid \alpha < \lambda \text{ mit } U_{\alpha} (\lambda) := \{ \xi \in X \mid \alpha < \xi < \lambda \}
\]

Umbgebungsba\(s\) für \(X \). Mit dieser Topologie wird \(X \) Hausdorffraum, \(X \) ist genau dann kompakt, wenn \(X \) ein leeres Element hat, d.h. wenn \(J \) keine linearezahl ist. Für den Rest des Beweises nennt

\[
J := \omega + 1, \quad X := \{ \alpha < \omega \mid \alpha \in J \} \text{ ist kompakter } T_2 \text{-Raum.}
\]

\[p := \omega \text{ ist der 'letzte' Punkt von } X. \]

Da \(\omega \) = \(\omega^+ \) regulär, ist für jede Folge \((\alpha_n) \) in \(X \) mit \(\sup \alpha_n =: \omega < p \).

Daraus folgt:
1. Es gibt keine abzählbare Folge \((\alpha_n) \) in \(X \) mit \(\omega \), die gegen \(\omega \) konvergiert - denn wäre \(\omega := \sup \alpha_n =: \omega \), \(U \omega (\omega) \) ist Umgebung von \(\omega \), die kein \(\omega \) enthält.
2. \(\omega \) hat keine abzählbare Umgebungsbasis (folgt aus 1.).
3. Ist \(f : X \to \mathbb{R} \) stetig, so gibt es eine Umgebung \(U \) von \(p \), auf der \(f \) konstant ist, d.h. es ist \(f \) stetig in Punkt \(p \), solange man für \(n \in \mathbb{N} \) \(\alpha_n < p \) mit

\[
X \in U_{\alpha_n} (p) := \{ x \in X \mid | f(x) - f(p) | < \frac{1}{n} \}
\]

\[\omega := \sup \alpha_n. \quad \text{Für } x \in X : U_x (\omega) := U_{\alpha_n} (p) \text{ ist } f(x) = f(p) \text{ in } U_x (\omega) \text{ für } x \in U_{\alpha_n} (p), \]

\[| f(x) - f(p) | < \frac{1}{n}. \quad \text{Da dies für alle } n \in \mathbb{N} \text{ gilt, muß } f(x) = f(p) \text{ sein.} \]