Loading [MathJax]/extensions/tex2jax.js

gorenstein_nonci

Interests

Description

Binomial ideal $I$ of $S=\mathbb{k}[x_1,x_2, x_3]$ generated by $$ x_1^2, x_2^2, x_1x_3, x_2x_3, x_3^2 -x_1x_2 $$
Numerical properties

- no. of variables : 3
- dimension $S/I$ : 0
- height of $I$ : 3
- projdim $S/I$ : 3
- depth $S/I$ : 0
- degree of generators : 2
- h-vector : (1,3,1)
- Betti table
0 1 2
total: 5 5 1
2: 5 5 .
3: . . 1

Further properties

- radical no
- prime no
- complete intersection no
- $S/I$ Gorenstein yes
- $S/I$ level yes
- $S/I$ Cohen-Macaulay yes
- $S/I$ Buchsbaum yes
- $I$ connected in codim one  yes


Primary decomposition

Computer algebra code

For simplicity, we use $\mathbb{Z}_n$ with $n=101$ as field of coefficients.

Macaulay 2:

S=ZZ/101[x_1..x_3]
I=ideal(x_1^2, x_2^2, x_1*x_3, x_2*x_3, x_3^2 -x_1*x_2)

CoCoA:

Use S::=ZZ/(101)[x[1..3]];
I:=Ideal(x[1]^2, x[2]^2, x[1]x[3], x[2]x[3], x[3]^2 -x[1]x[2]));


Singular:

ring S = 101, x(1..3), dp;
ideal I=x(1)^2, x(2)^2, x(1)x(3), x(2)x(3), x(3)^2 -x(1)x(2);


References

D. Eisenbud, Commutative Algebra with a View towards Algebraic Geometry, Example 21.7, p. 532