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Abstract

The point-set registration problem seeks the transformation that optimally
aligns a point set A to a reference point set B, and has numerous applications in
computer graphics, computer vision, and robotics. Proposed by Besl and McKay,
the iterative closest point (ICP) algorithm has seen wide adoption as a heuristic
solution to this problem, with good performance in practice. In this bachelor’s
thesis we review and illustrate results from the literature about the convergence
characteristics of ICP, focusing primarily on complexity bounds. We first explain
in detail some of the results by Ezra, Sharir, and Efrat that bound the number
of iterations performed by the algorithm, and then explore work by Arthur and
Vassilvitskii that improves on the earlier results. In the process we build an intu-
ition for geometric properties of the algorithm on which the presented ICP point
configurations used to prove the complexity bounds rely. Finally, we propose
a tool for exploratory analysis by creating convergence diagrams that visualise
the final cost value the ICP algorithm converges on when run on (A+t0,B), for
initial offsets t0 on a grid of arbitrary resolution.
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1. Introduction

1 Introduction

The iterative closest point (ICP) algorithm proposed by Besl and McKay [2] is widely
used to match and align a geometric objectA to a reference object B, a problem known
in robotics, computer vision, and pattern recognition as point-set registration. Despite
a wealth of empirical studies, with hundreds of published variations of the ICP al-
gorithm [6, 7], rigorous theoretical analysis has been comparatively sparse given the
significance and empirically proven effectiveness of ICP in applications. In this bach-
elor’s thesis we will review results from the literature, visualise geometric construc-
tions therein, and lay out proofs and arguments in an expanded form that we hope
aids intuitive understanding. Ezra, Sharir, and Efrat [3] laid important groundwork
for the theoretical study of the algorithm, giving insights on geometric properties and
convergence characteristics of ICP, as well as bounds on the number of iterations. We
will review and explain in detail some of their results, including an Ω(n log n) lower
bound construction for the one-dimensional case. From this construction we move
on to an elaborate Ω(n2) lower bound construction by Arthur and Vassilvitskii [1]
that improves on the earlier result, and is then built upon to prove a lower bound
of Ω(n/d)d+1 in d dimensions. Shifting our view from the algorithm’s complexity to
the quality of its output, we conclude by proposing our own method for exploratory
analysis in the form of convergence diagrams that visualise the final value of the cost
function for a grid of initial offsets of A .

2 Point-set registration

Given two finite subsets A,B of a finite-dimensional real vector space Rd, the rigid
point-set registration problem seeks both the point correspondences (a, b) ∈ A×B and
the spatial transformation T that align A most closely with B, where alignment is
typically defined as minimising the distances between corresponding points (a, b).
This is formally stated as a continuous optimisation problem in which a cost function
Φ is minimised globally over all possible point correspondence mappings A → B
and all possible transformations T. A common choice for Φ is the root mean square
cost function

RMS(T) =
1
| A | ∑

a∈A
‖T(a)− b‖2 ,

where b ∈ B is the point that corresponds to a ∈ A and ‖·‖ denotes the Euclidean
norm. Depending on the number of dimensions d and the specific formulation of
the problem, the spatial transformation T(a) := s · R(a) + t may be composed of
translation t, rotation R, and scaling s, or use merely a subset of these. The original
ICP algorithm proposal was inspired by the most common formulation which seeks to
find the translation and rotation that best align two three-dimensional point sets, often
referred to as point clouds, without taking scaling into account (i.e. implicitly assuming
an optimal scaling factor of 1). Rigid point-set registration is used for a wide range
of computer vision applications in areas such as (mobile) robotics, augmented reality,
and medical imaging [9, 10], where it helps to align 3D scans of physical objects or
environments. As an example, an autonomous vehicle can build up a coherent map of
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3. The Iterative Closest Point Algorithm

its environment for navigation by continuously aligning partially overlapping LiDAR
scans that update at a rate between 10 and 30 times per second [4].

The more difficult problem of non-rigid point-set registration additionally asks for a
deformation of A, but in the context of ICP and this thesis we are interested in rigid
transformations, and will further narrow our focus on the problem under translation
only by assuming R = Id and s = 1.

3 The Iterative Closest Point Algorithm

The ICP algorithm is a heuristic solution to the rigid point-set registration problem
that in each iteration greedily minimises its cost function, and eventually converges to
a (local) minimum. Given two point clouds A,B ⊂ Rd, ICP optimises for the minimal
average distance between corresponding point pairs (a, b) ∈ A×B by alternating
between assigning each point a to its nearest neighbour b ∈ B, and translating the
points of A in a way that minimises the average distance between corresponding
points. While the original formulation calculates both a translation vector t and a
rotation matrix R, the theoretical analyses in this thesis and the literature on which
they are based use a simplified version in which A and B are aligned via translation
only. We write ∆ti to denote the relative translation by which the points of A are moved
in iteration i, and ti = ∑i

j=1 ∆tj for the cumulative translation by which they have been
translated at the end of iteration i. In each iteration the ICP algorithm performs three
steps to minimise the aforementioned root mean square cost function, which for the
remainder of this thesis we restate as

RMS(∆ti) :=
1
| A | ∑

a∈A
‖a + ti−1 + ∆ti −NB(a + ti−1)‖2 ,

where ‖·‖ denotes the Euclidean norm as mentioned before, and NB(a + ti−1) rep-
resents the nearest neighbour b ∈ B of the translated point a + ti−1. That is, point
NB(a + ti−1) is the nearest neighbour of point a at the beginning of iteration i before
it is translated further by ∆ti in the current iteration (for a cumulative translation of
ti). To achieve this minimisation, the algorithm optimises two quantities: the point
correspondences (a, b) and the relative translation ∆ti, as follows.

Start with t0 = 0. At each iteration i:

1. For each point a ∈ A, set NB(a + ti−1) to the nearest neighbour of a + ti−1 in B.
Cases of equidistance can be resolved either way, as long as the same principle
is applied consistently.

2. Find the relative translation ∆ti that minimises the cost function for the current
point correspondences:

∆ti = arg min
∆t

1
|A| ∑

a∈A
‖a + ti−1 + ∆t−NB(a + ti−1)‖2

3. Translate all points of A+ti−1 := {a + ti−1 | a ∈ A} by the new relative transla-
tion ∆ti to obtain A+ti.
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3.1 The optimal translation

Algorithm 1 Iterative Closest Point (ICP) algorithm

Require: A,B ⊂ Rd, | A |, | B |, d < ∞
t0 ← 0
i← 0
do

i← i + 1

for each a ∈ A do
NB(a + ti−1)← arg minb∈B ‖a + ti−1 − b‖

end for

∆ti ← arg min∆t
1
|A| ∑a∈A ‖a + ti−1 + ∆t−NB(a + ti−1)‖2

ti ← ∑i
j=1 ∆tj

while ∆ti 6= 0
return ti

The algorithm repeatedly performs these steps and terminates in iteration T once a
relative translation ∆tT = 0 has been determined, which we will show to be the first
iteration in which no point in A has changed its nearest neighbour in the previous
iteration. The final cumulative translation tT = ∑T

i=1 ∆ti is the ICP result for aligning
A with B . See Algorithm 1 for a formal description in pseudocode.

Note that ICP only guarantees local optimality and does not necessarily produce a
result that is optimal over all possible point correspondences. Since the correspon-
dences between points a and b at each iteration are dictated by the nearest neighbour
property, the algorithm is susceptible to local minima and the quality of its final result
critically relies on the initial position of A with respect to B . There exist variants of
ICP that guarantee global optimality (at the expense of significant computation). [11]

3.1 The optimal translation

While determining the nearest-neighbour correspondences in step 1 can easily be
achieved by either exhaustively checking all | A | · | B | pairings or more efficiently
by using a k-d tree of B, it is not immediately obvious which relative translation ∆ti
should be chosen in step 2 to minimise the cost with respect to those correspondences.

To simplify the following calculation, let y := a + ti−1 −NB(a + ti−1). Note that y
does not depend on ∆ti. We can then write our RMS cost function as

RMS(∆ti) =
1
| A | ∑

a∈A
‖∆ti + y‖2

=
1
| A | ∑

a∈A
(∆ti + y) · (∆ti + y)

=
1
| A | ∑

a∈A

(
∆t2

i + 2y · ∆ti + y2) .
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3.2 The momentum interpretation

We obtain the optimal relative translation ∆ti under the convex RMS measure by
taking the first derivative of this last form and setting it equal to zero:

0 =
d

d∆ti
RMS(∆ti)

=⇒ 0 =
1
|A| ∑

a∈A
(2∆ti + 2y)

=⇒ 0 = 2∆ti +
2
|A| ∑

a∈A
y

=⇒ 0 = 2∆ti +
2
|A| ∑

a∈A
(a + ti−1 −NB(a + ti−1))

=⇒ ∆ti =
1
|A| ∑

a∈A
(NB(a + ti−1)− (a + ti−1)) . (1)

The optimal translation vector is therefore the mean difference between points of B
marked as nearest neighbours and their corresponding points in A+ti−1. Equiva-
lently, we can interpret it as the difference b0 − a0, where b0 = 1

| A | ∑a∈ANB(a + ti−1)

is the centroid (mean) of nearest neighbours, and a0 = 1
| A | ∑a∈A(a + ti−1) is the cen-

troid of A+ti−1. This is intuitive, as the contribution of any individual point a ∈ A
to the total cost becomes 0 if the relative translation perfectly aligns a + ti−1 with its
nearest neighbour, which is the case for ∆ti = NB(a + ti−1) − (a + ti−1). The opti-
mal relative translation for all points a, rather than for any individual point of A, is
consequently the average of these vectors from a + ti−1 to NB(a + ti−1).

3.2 The momentum interpretation

An alternative interpretation and derivation of ∆ti in iterations i ≥ 2 that shall prove
useful for the subsequent complexity analyses was noted by Ezra, Sharir, and Efrat [3].

Lemma 1. At each iteration i ≥ 2 of the algorithm, the relative translation vector ∆ti satisfies

∆ti =
1
| A | ∑

a∈A
(NB(a + ti−1)−NB(a + ti−2)). (2)

Proof. Using equation (1) for the optimal translation, we can derive the lemma with
the following algebraic manipulation by starting with an index shift.

∆ti−1 =
1
| A | ∑

a∈A
NB(a + ti−2)− (a + ti−2)

=⇒ |A |∆ti−1 = ∑
a∈A

NB(a + ti−2)− ∑
a∈A

(a + ti−2)

=⇒ ∑
a∈A

NB(a + ti−2) = ∑
a∈A

(a + ti−2) + | A |∆ti−1

=⇒ ∑
a∈A

NB(a + ti−2) = ∑
a∈A

(a + ti−2) + ∑
a∈A

∆ti−1

=⇒ ∑
a∈A

NB(a + ti−2) = ∑
a∈A

(a + ti−2 + ∆ti−1)
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3.3 Convergence guarantee

=⇒ ∑
a∈A

NB(a + ti−2) = ∑
a∈A

(a + ti−1)

=⇒ 1
| A | ∑

a∈A
(NB(a + ti−1)−NB(a + ti−2)) =

1
| A | ∑

a∈A
(NB(a + ti−1)− (a + ti−1))︸ ︷︷ ︸

=∆ti

From (1) we know that the right side is equal to ∆ti, which confirms that the optimal
relative translation for every iteration i ≥ 2 is the mean difference between the current
and previous nearest neighbour of each point in A .

In a slight abuse of terminology we refer to definition (2) of the relative transla-
tion as the “momentum interpretation”, as it defines ∆ti not primarily in terms of the
current relative positions of A and B, as is the case for (1), but in terms of nearest-
neighbour changes for points a that were moved far enough in the previous iteration
to escape the “pull” of their nearest neighbour. This unveils a perhaps non-obvious
understanding of which points contribute to the relative translation at any given it-
eration. Lemma 1 implies that any point a that did not change its nearest neigh-
bour after the previous translation contributes a zero term to ∆ti, meaning any a for
which NB(a + ti−1) = NB(a + ti−2). The ICP algorithm terminates once no point a has
changed its nearest neighbour, in which case ∆ti = 0. Figure 1 demonstrates this on
a simple example. To understand this intuitively, recall that the optimal translation
∆ti−1 moves the centroid a0 of A on top of the centroid b0 of all nearest neighbour
points. If any point a changed its nearest neighbour after being translated by ∆ti−1,
the new optimal position for a0 is the new centroid b0 of the updated set of nearest
neighbours. Each new neighbour b contributes its own position to b0 divided by | A |.
The difference between the new and previous nearest-neighbour centroids is defined
entirely by the contributions of the neighbours that changed. This implies that the
optimal relative translation is equal to the average difference between the current and
previous nearest neighbour of each point a.

Note that a point a that has not changed its nearest neighbour in the previous iteration
may still contribute to ∆ti with respect to (1), i.e. through its distance from its nearest
neighbour, and that it always affects ∆ti by contributing to | A |. However, equation
(2) allows us to focus our attention solely on those points ofA that have changed their
neighbours, and to explain the relative translation fully as a result of these changes.
It is worth internalising this observation, as it allows us to intuitively design point
constructions (A,B) in which points of A change their nearest neighbour from a
point b to a point b′, triggering a contribution of (b′ − b)/| A | to the next relative
translation. By carefully constructing the initial placement of these points a, b, and b′,
we can control the sequence of relative translations in order to prove lower bounds on
the algorithm’s complexity.

3.3 Convergence guarantee

In their original publication of the ICP algorithm, Besl and McKay [2] show that the
ICP algorithm converges monotonically to a (local) minimum. Intuitively, this follows
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3.3 Convergence guarantee

Figure 1: Momentum interpretation. Points of A are red, those of B are violet. The centroid a0 of A is
marked by the red star, the centroid b0 = 1

| A | NB(a) of all nearest neighbours is marked by the violet star.
The optimal relative translation moves a0 to b0, which in turn moves when a nearest-neighbour change
occurs. When no points change their neighbour, the algorithm terminates in the following iteration.

from the fact that in each iteration, the algorithm performs two actions that each at-
tempt to reduce the value of its cost function, but in any case cannot increase it. The
nearest-neighbour assignment pairs each point a ∈ A with its closest point b ∈ B and
the relative translation is derived directly from the cost function to minimise the aver-
age distance between corresponding points (a, b). Based on the new positions of the
points a that have been moved closer to their respective nearest neighbour on average,
the new nearest-neighbour assignment in the following iteration will necessarily lead
to new point correspondences that are no further apart than the previous pairs (again,
on average). The following explanations formalise these arguments.

Theorem 1 (Convergence). The ICP algorithm always converges monotonically to a local
minimum with respect to the RMS cost function.

Proof. In each iteration i ≥ 1, the ICP algorithm first determines the nearest-neighbour
assignments

NNAi(A,B) = {(a, b = NB(a + ti−1)) | a ∈ A}

between point pairs (a, b), where

NB(a + ti−1) = arg min
b∈B

‖a + ti−1 − b‖

is the point b ∈ B closest to the current position of a. Initially, the translation is t0 = 0.
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3.4 Angles between consecutive translations

The error for these correspondences before calculating and applying the next relative
translation ∆ti is

e1(i) =
1
|A| ∑

a∈A
‖a + ti−1 −NB(a + ti−1)‖2 .

The updated error after calculating and applying the optimal translation ∆ti but before
determining the new correspondences based on the new position of A+ti−1 will be

e2(i) =
1
|A| ∑

a∈A
‖a + ti −NB(a + ti−1)‖2 .

These values always satisfy e2(i) ≤ e1(i), because if it were the case that e2(i) > e1(i),
then ti = ti−1 would yield a smaller error e′2(i) < e2(i), which contradicts the optimal-
ity of ti. Based on ti, the new nearest-neighbour correspondences NNAi+1(A,B) are
determined at the beginning of the next iteration i + 1. It is clear that

‖a + ti −NB(a + ti)‖ ≤ ‖a + ti −NB(a + ti−1)‖

for each point a ∈ A because NB(a + ti−1) was the nearest-neighbour of a + ti−1

in B prior to translation ti. If the distance between NB(a + ti−1) and a + ti were
lower than that between NB(a + ti) and a + ti, this would directly contradict the
nearest-neighbour property of NB . From this and the fact that mean square errors
are bounded from below by 0, it follows that for all i the errors must satisfy

0 ≤ e2(i + 1) ≤ e1(i + 1) ≤ e2(i) ≤ e1(i),

and since this sequence of errors is non-increasing and bounded from below, the ICP
algorithm must converge monotonically to a minimum cost value.

3.4 Angles between consecutive translations

Figure 2: Change of neigh-
bour. The vector b′ − b from
the old to the new nearest
neighbour of point a has a pos-
itive inner product with the
relative translation causing the
neighbour change.

Another property that will be used in our later construc-
tions, noted in [3], is the fact that angles between consec-
utive relative translation vectors ∆ti and ∆ti+1 are always
acute, and so the angles between adjacent edges in the
polygonal path they form are obtuse. Let b = NB(a + ti)

and b′ = NB(a + ti+1). Since in order for point a to have
changed its nearest neighbour from b to b′ in iteration
i+ 1, the relative translation ∆ti must have moved it across
the bisector of b and b′ from the side of b to the side of b′,
as depicted in Figure 2. Hence we have

(b′ − b) · ∆ti = (NB(a + ti+1)−NB(a + ti)) · ∆ti ≥ 0,

and since according to Lemma 1 the relative translation
is the average difference between current and previous
nearest neighbours, it follows that ∆ti+1 · ∆ti ≥ 0 for each
i ≥ 1. If we concatenate all relative translation vectors ∆ti to a polygonal path π such
that the tail of ∆ti+1 starts at the head of ∆ti, the angles between adjacent edges of π

are obtuse.
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4. Polynomial upper bound

Figure 3: Voronoi diagram. A is red, B is violet.
Each cell V(b) contains the points in Rd for which
no point b′ 6= b is closer than b.

Figure 4: Shifted Voronoi diagram. When ti lies
on the boundary between two cells of V(B)− a,
translating a by ti can change the NNA.

4 Polynomial upper bound

Ezra, Sharir, and Efrat [3] begin their analysis of the ICP algorithm with the observa-
tion that the number of iterations is bounded from above by the number of possible
nearest-neighbour assignments NNA : A → B that can occur in an ICP execution.
While crucial details of the following arguments about the number of these assign-
ments rely on a result by Koltun and Sharir [5] that exceeds the scope of this thesis
(that is, the full understanding of its author), we include and illustrate this sketch of
an upper bound proof to complement the later sections about lower bounds.

Theorem 2. Let m = | A | and n = | B | for the ICP configuration (A,B) ⊂ Rd ×Rd. The
maximum possible overall number of nearest-neighbour assignments, over all translated copies
of A, is Θ(mdnd).

Sketch of proof. Let V(B) = {V(b) | b ∈ B} denote the Voronoi diagram of B, where
each cell V(b) =

{
p ∈ Rd

∣∣ b = arg minb′∈B ‖p− b′‖
}

contains the points p to which
no point of B is closer than b, as illustrated in Figure 3. Whenever the cumula-
tive translation ti translates a point a from one cell V(b) into another cell V(b′), this
point changes its nearest neighbour from b to b′, thus changing the overall nearest-
neighbour assignment (NNA). For each a ∈ A (before any translation), consider the
shifted copy V(B)− a of the Voronoi diagram. If the cumulative translation t lies on
the boundary between any two cells of V(B)− a, translating point a may change its
nearest neighbour, and therefore the overall NNA (see Figure 4). If we now consider
the overlay M(A,B) of the m shifted diagrams V(B)− ai for all i ∈ {1, ..., m}, we can
see that each cell of this overlay consists of translations with a common NNA, and
so the number of possible nearest-neighbour assignments is equal to the number of
cells in this overlay M(A,B). A result from [5] implies that this number of cells is in
O(mdnd).
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5. Linearithmic lower bound on the line

Figure 5: Voronoi overlay.
V(B)− a1 and V(B)− a2 form
the overlay M(A,B). The ver-
tical boundaries of V(B) − a2
split the cells of V(B) − a1
marked yellow, adding the new
cells marked green.

We now demonstrate a construction that shows that this
bound is tight for any d ≥ 1. Let B consist of O(n) points
such that b1 is at the origin and on each of the d coordi-
nate axes

⌊ n−1
d

⌋
points are lined up in intervals of uniform

distance `. For d = 2 this resembles an L-shape. Let b̂j de-
note the point in B that is furthest from the origin along
dimension j, i.e. at a distance of `(n− 1)/d from b1. Then
A consists of points {a1, ..., am} with a1 = b̂1−∑d

j=2 b̂j and
ai = i · a1 for i ≥ 2. Figure 5 illustrates this construction
for the two-dimensional case. For each dimension, the
Voronoi diagram V(B) contains (n − 1)/d hyperplanes
perpendicular to the axis of that dimension. In the two-
dimensional case these are (n− 1)/2 horizontal and ver-
tical half lines, respectively. For clarity of exposition and
without loss of generality we will illustrate the remaining
details on the construction in two dimensions. For each
point ai, the Voronoi diagram V(B)− ai is moved up and

to the left, creating (n− 1)/d new horizontal and vertical half lines, respectively (as
well as other diagonal half lines and line segments). After k such copies, their over-
lay M(A,B) contains k(n− 1)/d horizontal half lines, and the next copy V(B)− ak+1
will add (n − 1)/d new vertical half lines that will intersect the existing horizontal
lines to create k(n− 1)d/dd new rectangular cells. The total number of cells is hereby

∑m
k=1 k

( n−1
d

)d ∈ Ω(mdnd).

It follows from theorems 1 and 2 that the ICP algorithm reaches each NNA at most
once, and so the number of iterations is at most O(mdnd). While Ezra et al. state that
it is unclear whether this bound is tight in the worst case, the Ω(n2) lower bound
construction we will explore in section 6 will resolve this question at least for d = 1.

5 Linearithmic lower bound on the line

Ezra, Sharir, and Efrat present an Ω(n log n) lower bound ICP construction. In this
section, we will begin to build an intuition for the behaviour of the ICP algorithm by
exploring this construction, laying out the proof in greater detail than in their original

Figure 6: Ω(n log n) lower bound construction. Example for n = 4. For clarity A,B ⊂ R are visualized
with a vertical offset despite all being on the line. Gray lines connecting (ai, bi) pairs emphasise nearest
neighbour correspondences, vertical violet lines demark cell boundaries βi and their corresponding
round j, and vertical gray lines illustrate the 1/n spacing between points ai.
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5. Linearithmic lower bound on the line

formulation, and fixing minor mistakes in its arguments (described in Appendix A).
The section after this one will build on these intuitions to illustrate the improved
Ω(n2) lower bound construction by Arthur and Vassilvitskii. [1]

Theorem 3. There exist point sets A,B of arbitrarily large common size n on the real line, for
which the number of iterations of the ICP algorithm is Θ(n log n) under the RMS measure.

Let A,B ⊂ R be two finite point sets of equal cardinality n, such that B consists of
the points bi = i− 1 for i ∈ {1, ..., n}, and A consists of the points ai, where

a1 = −n− (n− 1)δ,

ai =
bi

n
− 1

2
+ δ,

for i ∈ {2, ..., n}, and δ = o(1/n) is some sufficiently small offset. For many of the
following arguments we can and will safely ignore the far left point a1, so we define
A := {a2, ..., an} to be the subset of equally spaced points in A. Moreover, let the
Voronoi cell V(bi) denote the set of points on the line to which no point in B is closer
than bi, which in our simple one-dimensional case with integer values i− 1 for each
bi simply describes the open interval V(bi) = (bi − 0.5, bi + 0.5) . Figure 6 illustrates
this construction. Because the n − 1 points of A are spaced at intervals of 1/n and
so the extrema a2 and an are n−1

n < 1 apart, clearly the points of A can be in at most
two consecutive Voronoi cells at any given time. Two adjacent cells V(bi) and V(bi+1)

are separated by their common boundary βi =
1
2 (bi + bi+1). Given | B | = n, there exist

n− 1 such boundaries. We define round j as the sequence of iterations starting from
the iteration in which boundary βn−j+1 is crossed for the second time by any point,
up to and including the last iteration in which that boundary is crossed for the last
time. That is, round j begins with the first iteration at the start of which βn−j+1 has
points of A to its left and its right. Figures 7 and 8 illustrate the notion of a round on
an example.

Figure 7: First iteration of round j = 3 for n = 8. We show the point in time after calculating the relative
translation ∆ti, drawn as a green arrow of length 3/n = j/n, and before this translation is applied to A .
Since an is already to the right of β6, this boundary will be crossed for the second time in this iteration.

Figure 8: Last iteration of round j = 3 for n = 8. Two iterations after the one depicted in Figure 7, the
relative translation ∆ti moves an and an−1 across β7, making this the first crossing of that boundary.

12



5. Linearithmic lower bound on the line

As point a1 6∈ A does not cross any boundary throughout the execution of ICP on
this construction, we always refer to points of A when talking about points crossing
a boundary, and we call any occurrence of the relative translation moving points of A
across the boundary a crossing.

The goal of this proof is to show that over the full execution of ICP on this con-
struction, the points of A will all translate to the right of bn, and that each boundary
βn−j+1 takes between

⌈
n−1

j

⌉
− 2 and

⌈
n−2

j

⌉
+ 1 crossings. To do so, we introduce the

following properties.

(i) In each iteration of round j the relative translation is j
n .

(ii) In each iteration of round j, other than the last one, only boundary βn−j+1 is
crossed, and exactly j points cross it.

(iii) In the last iteration of round j one of three cases occurs:

(a) Exactly j− 1 points cross a boundary, at least one of which crosses βn−j+2.

(b) Exactly j− 1 points cross βn−j+1 and no other boundary is crossed.

(c) Exactly j points cross βn−j+1 and no other boundary is crossed.

In cases (b) and (c), the last iteration of round j is followed by a single transition
iteration that belongs to no round and in which j − 1 points cross the next
boundary βn−j+2.

We will show that properties (i) and (ii) hold for all j′ ≥ j, and then show that property
(iii) follows for j, and that (i) and (ii) hold for j− 1. Initially, each point a ∈ A has b1

assigned as its nearest neighbour. The initial translation satisfies

∆t1 =
1
n

n

∑
i=1

(NB(ai + ti−1)− (ai + ti−1))

=
1
n

n

∑
i=1

(b1 − ai)

=
1
n

(
b1 − a1 +

n

∑
i=2

(
b1 −

bi

n
+

1
2
− δ

))

=
1
n

(
n + (n− 1)δ− 1

n

n−1

∑
i=1

i +
n

∑
i=2

1
2
−

n

∑
i=2

δ

)

=
1
n

(
n + (n− 1)δ− n− 1

2
+

n− 1
2
− (n− 1)δ

)
= 1

and moves all points of A across the first boundary β1, changing the nearest neighbour
for each point in A to b2. This also means that round j = n consists of no iterations,
and properties (i) - (iii) are vacuously true.

From the second iteration on, we can use Lemma 1 to determine the next relative
translation. For this construction with distance 1 between adjacent points in B, this

13



5. Linearithmic lower bound on the line

implies that if a point a crossed one boundary βi in the last iteration, the difference
NB(a + ti−1)−NB(a + ti−2) between its current and previous neighbour is 1, and so
point a contributes 1/n to the relative translation. For iterations i ≥ 2 the relative
translation satisfies ∆ti = k/n, where 0 ≤ k ≤ n is the number of points in A that
crossed a boundary in the previous iteration. We may therefore frame the translation
of A as all points a taking k steps along a grid spaced in intervals of 1/n as visualized
in Figure 6. Since in the first iteration, all n− 1 points of A crossed β1, we get ∆t2 =
n−1

n , which moves all points of A across the second boundary β2 and shows round
j = n− 1 to also be empty of iterations, trivially satisfying properties (i) - (iii) for the
second and last time.

At the beginning of the third iteration, the distance between a2 and the boundary β1

to its left is

(a2 + t2)− β2 =

(
b2

n
− 1

2
+ δ

)
+

(
1 +

n− 1
n

)
− 1.5

=
1
n
+ δ +

n− 1
n
− 1

= δ

and the distance between an and the boundary β3 to its right is

β3 − (an + t2) = 2.5−
((

n− 1
n
− 1

2
+ δ

)
+

(
1 +

n− 1
n

))
= 2− 2

n− 1
n
− δ

=
2
n
− δ.

Once again we had n− 1 points crossing a boundary in the previous iteration i = 2,
from which it follows that ∆t3 = n−1

n , or n− 1 steps. The equal spacing of 1 between
two adjacent boundaries means that point a2 is 1 − δ > ∆t3 away from the next
boundary β3, and does not cross it in iteration i = 3. With that, j = n − 2 marks
the first round that consists of at least one iteration.

Let us suppose now, that the induction hypothesis holds for all j′ ≥ j + 1, for some
3 ≤ j + 1 ≤ n − 1, and consider the next round j. It then follows that for the first
iteration i of round j, the relative translation is j/n, which moves exactly j points of
A across βn−j+1, each time leading to the same relative translation in the following
iteration. This continues up to (and excluding) the last iteration of round j, at the
beginning of which all but ` points of A have crossed βn−j+1 in previous iterations,
for some 1 ≤ ` ≤ j.

In the last iteration of round j, point a2 is slightly less than ` steps away from its closest
boundary βn−j+1, i.e. its distance from the boundary is `

n − δ. This in turn leads to a
distance of `+2

n − δ between point an and the next boundary βn−j+2. Keeping in mind
the relative translation of j steps, what follows is one of three cases, depending on the
value of `.

14



6. Quadratic lower bound on the line

Case (a) 1 ≤ ` < n− 1 : Boundary βn−j+1 is crossed by the ` points to its left, and
boundary βn−j+2 is crossed by the j− `− 1 rightmost points of A. This follows because
an is translated from a position `+2

n − δ on the left of the next boundary by j/n to a
position j−`−2

n + δ to the right of it, and that new distance fits the j− `− 1 rightmost
points of A, equally spaced apart by 1/n. Overall, j − 1 points cross a boundary,
and the next iteration will be the first of round j− 1, with a corresponding relative
translation j−1

n .

Case (b) ` = j − 1 : Boundary βn−j+1 is crossed by the j − 1 points to its left, but
no point crosses another boundary as an remains to the left of βn−j+2 and merely re-
duces its distance to the next boundary from j+1

n − δ to 1
n − δ. The following transition

iteration translates j− 1 points across βn−j+2, but belongs to neither round.

Case (c) ` = j : This case is analogous to case (b) except that boundary βn−j+1 is
crossed by j points and an is 2

n − δ to the left of βn−j+2. In the following transition
iteration this difference in distance is compensated for by the relative translation of j

n ,
and so j− 1 points of A cross βn−j+2 as well.

These observations establish the inductive step. For an annotated visualisation of a
complete ICP execution that demonstrates all three cases, see Figure 9.

The highest possible number of iterations for all points of A to cross any boundary
βn−j+1 is

⌈
n−2

j

⌉
+ 1, and occurs in the case that βn−j+1 is first crossed by only a single

point, after which the remaining n − 2 points of A cross it, j at a time. The lowest
possible number of crossing iterations occurs when during the first crossing of βn−j+1,

a full j points cross it, so that the remaining n− 1− j points take
⌈

n−1−j
j

⌉
=
⌈

n−1
j

⌉
− 1

additional iterations. Leaving out the first and last iteration in which in addition to
βn−j+1 also the previous boundary βn−j or the next one βn−j+2 could be crossed, we

arrive at a minimum iteration count of
⌈

n−1
j

⌉
− 2 for each of the n− 1 boundaries.

To obtain the asymptotic complexity, we ignore constants and arrive at n · Hn itera-
tions, where Hn = ∑n

x=1
1
x is the nth harmonic number. Given that

ln(n) =
∫ n

1

1
x

dx < Hn < 1 +
∫ n

1

1
x

dx = ln(n) + 1,

we see that Hn ∈ Θ(ln n), and so for the total number of iterations the result Θ(n ln n)
follows. Figure 10 compares theoretical complexity to experimental measurements.

6 Quadratic lower bound on the line

Arthur and Vassilvitskii [1] improved on the result from theorem 3 with a creative
composition of point configurations that we will explain and illustrate next. At its
most fundamental, their construction consists of a combination of “widgets”, each
of which is an ICP configuration (Aj, Bj) engineered to cause a particular behaviour

when the algorithm is executed on the overall construction (A,B) =
(⋃

j Aj,
⋃

j Bj

)
.

The Ω(n2) lower bound is then obtained by ensuring that Θ(n) points among those
in A will each take Ω(n) iterations to move across a subset of B .
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6. Quadratic lower bound on the line

Figure 9: Full ICP execution for n = 7, δ = 1/n2. For better visual clarity the axis range was chosen to
focus on A = {a2, ..., an} since a1 never changes its nearest neighbour from the initial NB(a1) = b1 and
can be ignored for most of the presented arguments. Green arrows represent the relative translation
∆ti at each iteration, annotated with the number of 1/n-steps by which they translate A . Boundaries
β1 and β2 are fully crossed by A in iterations 1 and 2, respectively. Iteration 4 marks the last iteration
of round j = 5 and an example of case (a) wherein boundary βn−j+1 = β3 is crossed by ` = 1 point
and βn−j+2 = β4 is crossed by 3 points for a total of 4 = j− 1. Iteration 5 is the last iteration of round
j = 4 and exemplifies case (b) with ` = j − 1 = 3 points crossing βn−j+1 = β4. This is followed by
transition iteration 6, in which the relative translation moves 3 = j− 1 points across βn−j+2 = β5. Case
(c) is demonstrated by iteration 7, the last iteration of round j = 3. Here we see ` = 3 points cross
βn−j+1 = β5, and in the subsequent transition iteration 8, 2 = j − 1 points cross βn−i+2 = β6. The
algorithm terminates in iteration 12 after no point has changed its nearest neighbour in the previous
iteration.
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6.1 Region-decomposition

Figure 10: Experimental measurements for the Θ(n log(n)) construction. For nontrivial values of n,
the empirically measured number of ICP iterations on the construction from section 4 is very closely
approximated by n(Hn − 1), which is equivalent to n/j iterations per boundary.

6.1 Region-decomposition

Definition 1 (Region decomposition). Let A =
⋃̇

j Aj and B =
⋃̇

jBj be a partitioning
of point sets. We refer to a pair (Aj, Bj) as region j, and to {(Aj, Bj) | j ∈ {1, ..., r}}
as a region-decomposition if the shortest (a, b) distance between any two points from
distinct regions is greater than three times the longest (a, b) distance

δ = max
j

max
a∈Aj,b∈Bj

‖a− b‖

within any region, that is, greater than 3δ. Intuitively, a partitioning of A, B is a
region decomposition if all regions are sufficiently far apart from each other so that
nearest neighbour (a, b) correspondences stay within regions over the entirety of an
ICP execution, as we will show next.

Lemma 2. Suppose (A,B) has region-decomposition {(Aj, Bj) | j ∈ {1, ..., r}}, and sup-
pose the ICP algorithm is executed on (A,B). If a ∈ Aj, then NB(a + ti) remains in the
corresponding Bj throughout the execution of ICP.

Proof. Let a ∈ Aj, b ∈ Bj, and b′ ∈ Bk with k 6= j. Consider an iteration i at the start
of which the points of A have been translated by a cumulative translation ti−1 that
satisfies ‖ti−1‖ ≤ δ. With δ denoting the greatest (a, b)-distance within any region, no
point a + ti−1 can be more than 2δ from the farthest point b in its region. Moreover,
ti−1 can have decreased the distance of a to the closest b′ from a different region at most
to 3δ + ε− δ = 2δ + ε, for some ε > 0, which means that a + ti−1 is still farther from b′

than from b and thus still has a point b from its own region as its nearest neighbour.
Recall that ti = ti−1 + ∆ti translates A to the optimal position with respect to the
nearest-neighbour assignment (NNA) for iteration i. Since NB(a + ti−1) for each point
a stays in the corresponding Bj, and the next cumulative translation ti moves A to the
optimal position with respect to the newest NNA, ti also satisfies ‖ti‖ ≤ δ.
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6.2 The Linear Shifter

The crucial relationship between a, b, and b′ is formally described by the inequality

‖a + ti−1 − b‖ ≤ ‖a− b‖+ ‖ti−1‖
≤ 2δ

<
∥∥a− b′

∥∥︸ ︷︷ ︸
>3δ

−‖ti−1‖

≤
∥∥a + ti−1 − b′

∥∥ .

In the following constructions we assume that whenever an ICP configuration (A,B)
is augmented with new regions, these are added at a distance greater than 3δ from
any other region so that the region-decomposition property is maintained. In doing so
we ensure that the new regions can exert their intended influence on the global trans-
lation without ever directly interacting with points from other regions with regard to
cross-region nearest-neighbour correspondence.

6.2 The Linear Shifter

The Linear Shifter is the first and most central widget in the construction. It is a point
configuration (A, B) (to be augmented later for an ICP construction (A,B)) with A
consisting of the single point a = 0, and B of b0 = 0 and bi = ∑i−1

j=0
1
kj for i ∈ {1, ..., n}.

Note that this means each bi = bi−1 +
1

ki−1 . See Figure 11 for an illustration. Assume
the Linear Shifter is part of an ICP configuration such that k = | A | and we run ICP
on it with a first translation ∆t1 = 1. In section 6.3 we will show how to achieve these
starting conditions. In the first iteration point a moves to a + t1 = 0 + 1 = b1, which
implies ∆t2 = 1

k (NB(a + ti−1)−NB(a + ti−2)) =
1
k (b1 − b0) =

1
k .

This is the beginning of a sequence in which each iteration i translates point a by

∆ti =
1
k
(NB(a + ti−1)−NB(a + ti−2))

=
1
k
(bi−1 − bi−2)

=
1
k

(
i−2

∑
j=0

1
kj −

i−3

∑
j=0

1
kj

)

=
1

ki−1

from a + ti−1 = bi−1 to a + ti = bi, changing its nearest neighbour accordingly. Point
a altogether traverses each point in B of the Linear Shifter for a total of |B|+ 1 ∈ O(n)
iterations. The algorithm terminates once point a has passed bn without changing its
nearest neighbour. We refer to this sequence of iterations in which a point a moves
across each point bi as the Linear Shifter sequence.

6.3 The Starter

On its own the Linear Shifter does not cause the ICP algorithm to move a at all. To
initiate the sequence described above, we require an additional widget that induces an
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6.4 The Redirector and Booster

Figure 11: The Linear Shifter for n = 4 and k = 2. If we ran ICP on the Linear Shifter alone, nothing would
happen because ∆t1 = NB(a)− a = b0 − a = 0 would cause the algorithm to terminate immediately.

Figure 12: The Linear Shifter from Figure 11 with a Starter region added to the left. As the Linear Shifter
by itself has an initial translation of zero, we set b′ = a′ + k(1− t′1) = a′ + 2(1− 0) = a′ + 2. This induces
a new first translation t1 = 1

2 ∑a∈A(NB(a)− a) = 1
2 ((b

′ − a′) + (b0 − a)) = 1, which moves a to b1 and
thus starts the Linear Shifter sequence.

initial translation of 1. We call this the Starter, and it consists of a region ({a′}, {b′})
with b′ = a′ + k(1− t′1), where t′1 is the total contribution of all other points to the first
translation t1, and k is the total number of points in the fully augmented A including
a′. The Starter is the last widget that gets added to an ICP construction for the final
construction, and the process of adding it goes as follows.

1. Calculate the first ICP translation

t′1 =
1
k ∑

a∈A\{a′}
(NB(a)− a)

that would apply on the configuration (A, B) without the Starter.

2. Set b′ = a′ + k(1− t′1), which will add 1− t′1 to the first ICP translation for the
augmented construction (A,B) = (A ∪ {a′}, B ∪ {b′}) that includes the Starter.

3. Add the Starter to the configuration to obtain the augmented (A,B) and ensure
a′ is chosen to ensure sufficient distance between regions to maintain the region-
decomposition property.

Figure 12 illustrates an example for a construction consisting of the Linear Shifter and
the Starter. The Starter ensures a starting translation of 1 and thus sets in motion the
Linear Shifter sequence of iterations.

6.4 The Redirector and Booster

So far, we have established the widgets required for an ICP construction of linear
complexity. In order to achieve quadratic running time, we will augment the Linear
Shifter’s A with n additional points that are spaced such that once the first point has
completed the sequence in Ω(n) iterations, the next point begins its own Linear Shifter
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6.4 The Redirector and Booster

Figure 13: Redirector / Booster. The points a, b1, and b2 make up Booster, a simplification of the Redirector
in [1] that contains the additional region 2 ({a′}, {b′}) drawn faintly on the left that turns out to be
unnecessary for the one-dimensional construction. Point a is y to the left of the (b1, b2) midpoint, so that
once it changes its nearest neighbour to b2, it will contribute 1

k (b2 − b1) = v to the next translation.

sequence. To facilitate this transition between Linear Shifter sequences, we introduce
the following widget.

Definition 2 (Redirector and Booster). The Redirector is a widget (A, B) with two
parameters: a shift v and a threshold y. Once the cumulative translation ti exceeds
y, the Redirector contributes an additional v to the next cumulative translation. It
achieves this by ensuring that a point a changes its nearest neighbour to one that is
positioned at kv from its initial neighbour. More precisely, the Redirector consists of
the following two regions: region 1 consists of A1 = {a = 1

2 (b1 + b2)− y} and B1 =

{b1, b2 = b1 + kv}, whereas region 2 consists of A2 = {a′} and B2 = {b′ = a′+ 1
2 kv− y}.

For this one-dimensional construction, we will use a simplification of this widget that
we refer to as the Booster. It differs from the Redirector by Arthur and Vassilvitskii
insofar as it omits region 2 entirely. The purpose of region 2 is to balance out the
initial pull of point a towards b1, so that the Redirector contributes nothing to the first
translation t1. This turns out to be unnecessary because the Starter compensates for
this pull either way, and always sets t1 to 1. We consider the name Booster somewhat
more instructive for the widget’s purpose in the one-dimensional construction, as it
will be used to give the cumulative translation the necessary boost to ensure that, after
one point ai has completed the Linear Shifter sequence, the point ai+1 to its left will
translate to the correct position to begin its own traversal of the Linear Shifter. See
Figure 13 for an illustration of the Booster for the one-dimensional construction. We
will later also use the Redirector for a construction in higher dimensions, shown in
Figure 17.

Lemma 3. Suppose the ICP algorithm is run on an ICP configuration containing the Redi-
rector/Booster. Once the cumulative translation ti satisfies ti ≥ v, then the Redirec-
tor/Booster contributes v to the next relative translation ∆ti+1.

Proof. The result follows from Lemma 1 and the fact that point a is initially placed
y to the left of the (b1, b2) midpoint. Initially, NB(a) = b1 and once point a is trans-
lated to the right by y, it changes its nearest neighbour to b2. This change triggers a
contribution of 1

k (b2 − b1) = v to the next translation.

The original formulation in [1] claims that the Redirector contributes nothing to the
relative translation of any iteration except the one in which it triggers. This is techni-
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6.5 Full construction and lower bound

cally incorrect, or might at least be somewhat misleading, as it suggests that an ICP
configuration that contains the Redirector leads to the exact same sequence of relative
translations as a configuration that does not contain the Redirector but is otherwise
identical. For the first iteration with ti−1 = t0 = 0 the “pull”

1
| A | ((b1 − (a + ti−1)) + (b′ − (a′ + ti−1)))

=
1
| A |

(
0−

(
1
2

kv− y + ti−1

)
+

(
a′ +

1
2

kv− y− (a′ + ti−1)

))
=

1
| A |

(
−1

2
kv + y− ti−1 +

1
2

kv− y− ti−1

)
=− 2ti−1

| A |

of point a and that of point a′ to their respective nearest neighbour balance out to
−2t0/| A | = 0 but in later iterations this is no longer the case. What holds true is
that the points of the Redirector (and Booster) experience no nearest-neighbour changes
except in the iteration in which the widget triggers, and since the proposed construc-
tions are designed to control the translation by triggering specific nearest-neighbour
changes (using Lemma 1), this minor inaccuracy does not affect the overall arguments.

6.5 Full construction and lower bound

Now that we have introduced all the necessary components, we can proceed to assem-
ble them into the complete ICP construction (A,B), on which the ICP algorithm will
require Ω(n2) iterations to converge. As remarked previously, whenever we place a
new region in the construction, it is important that we ensure sufficient (a, b)-distance
(> 3δ) between regions to maintain the region-decomposition property. The finalised
construction will satisfy | A | = 2n + 2, and this is the value k = | A | for all widgets
that get added in the assembly process, which goes as follows.

1. We begin with the Linear Shifter with n points.

2. Let ` = ∑n
i=0

1
ki be the position of a point a ∈ A after it has completed the Linear

Shifter sequence. The Linear Shifter has only n + 1 points in its B but if we were
to add a point bn+2, according to the definition of bi in section 5.2, it would
satisfy bn+2 = `. We now augment the set A of the Linear Shifter with additional
n points by setting it to A = {a0, ..., an | ai = −2i`}. Note that, while for B we
have bi > bi−1, for A we now have ai < ai−1.

3. Next we add a Booster with yi = (2i+ 1)` and v = `+ 1 for each i ∈ {0, ..., n− 1}.
Each Booster will make sure that once point ai has completed its Linear Shifter
sequence, the next point ai+1 will begin its own such sequence.

4. Finally, we add the Starter to ensure t1 = 1.

See Figure 14 for an illustration of the complete construction. Using this construction
we can prove the following lower bound.
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7. Lower bound in higher dimensions

Figure 14: This example for n = 4 shows the complete Ω(n2) lower bound construction, comprised
of n + 2 regions. Note that the Linear Shifter’s points b0, ..., bn are so close together that they cannot be
clearly discerned visually in this true to scale diagram.

Theorem 4. There exist point sets A,B ⊂ R with | A |, | B | = O(n) for which the ICP
algorithm requires Ω(n2) iterations.

Proof. Suppose we run ICP on the aforementioned construction. Initially, all Boosters
are untriggered and each point ai of the Linear Shifter has b0 assigned as its nearest
neighbour. The Starter ensures t1 = 1, which will cause a0 to go through the Linear
Shifter sequence. Whenever point ai finishes its Linear Shifter sequence after n + 1
iterations, it will have been translated to position ` by a cumulative translation of
tn = (2i + 1)`, and the next point ai+1 will be at position ai+1 + (2i + 1)` = −2(i +
1)`+ (2i + 1)` = −` with NB(ai+1 + tn) = b0. The current total cumulative translation
of (2i + 1)` meets the threshold yi for Booster i to trigger and contribute its shift
v = ` + 1 that moves ai+1 to b1 = 1 and thus starts another Linear Shifter sequence
that takes n + 1 iterations. This process repeats until all Boosters have triggered and
all n + 1 points ai of the Linear Shifter have completed their Linear Shifter sequence.
The algorithm then terminates after (n + 1)2 + 1 ∈ Ω(n2) iterations.

Figure 15 shows the relative translations ∆ti at each iteration for n = 4. An impor-
tant practical side note is that this construction relies on increasingly small distances
between points bi and bi−1 of the Linear Shifter that in practice would quickly lead to
floating point precision issues. Let F1 = 2−1022 denote the smallest positive normal-
ized IEEE-754 double precision (64) floating point number, and let F2 = 2−52 · 2−1022

denote the smallest positive subnormal IEEE-754 double precision (64) floating point
number. It is straightforward to verify that the smallest distance between points
bn − bn−1 = 1

ki−1 = (2n + 2)1−n quickly becomes too small to be represented in stan-
dard software using IEEE-754 floating point arithmetic, namely for n ≥ 129 in the
case of F1, and for n ≥ 134 in the case of F2. Unless a setup using arbitrary preci-
sion arithmetic is used, the specific conditions that induce Ω(n2) running time in the
demonstrated construction will not occur in applications of nontrivial problem size.

7 Lower bound in higher dimensions

With the widgets we introduced and the understanding gained from using them to
produce the Ω(n2) lower bound construction in the previous section, we can now
build on this one-dimensional configuration to inductively prove the following expo-
nential lower bound for point configurations in d ≥ 1 dimensions.
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7.1 Resetting ICP

Figure 15: Relative translations. We show ∆ti for each iteration for a complete ICP run on the quadratic
lower bound construction for n = 4. Note the logarithmic scale on the ∆ti axis. Starting with ∆t1 = 1, as
ensured by the Starter, point a0 goes through the Linear Shifter sequence in n + 1 = 5 iterations. Booster 0
triggers in iteration 6, starting the sequence for the next point of A . The algorithm terminates in iteration
26 when all points a0, ..., an have moved through the Linear Shifter sequence.

Theorem 5. There exist point sets A,B ⊂ Rd with |A|, |B| = O(n) for which the ICP
algorithm requires Ω(n/d)d+1 iterations.

Suppose that after a full ICP execution we could “reset” the position of A, and thus
force ICP to go through the same sequence of translations a second time, doubling its
run time. In this case we could repeatedly apply such a reset to achieve even greater
run times. Recall that theorem 1 implies that a previous position of A, once aban-
doned for a more optimal one, cannot be recovered later in the same ICP execution.
Geometrically, we can interpret this with the observation by Ezra, Sharir, and Efrat [3]
that “the polygonal path π, obtained by concatenating all the relative translations that
are computed during the execution of the algorithm, does not intersect itself.” While
this rules out the possibility of the exact reset described just now, it does allow for a
variation in which the A is reset in d − 1 dimensions but shifted to a new position
in dimension d. This is the idea upon which Arthur and Vassilvitskii [1] build their
proof for theorem 5, which we will now discuss.

7.1 Resetting ICP

Let A, B ⊂ Rd−1 be two point sets of an ICP configuration on which the algorithm
takes T iterations. The idea is to lift this (d− 1)-dimensional configuration to Rd and
to augment it with O(n/d) points that repeatedly reset the position of A in all dimen-
sions < d, resulting in a running time of T n

d iterations. Performing this augmentation
repeatedly on the one-dimensional Ω(n2) construction yields the theorem.

We denote Rd−1 × {0} as the “base space,” and {0, ..., 0} ×R as the “lift dimension.”
A point or vector t ∈ Rd−1 lies in the base space whereas t ∈ Rd describes the same
point or vector embedded in a higher dimensional space. When specifying vectors
in terms of their components, we use the two-component notation (x, y) to represent
the concatenation of the (d− 1)-dimensional base space translation vector x with the
coordinate y in the lift dimension d.

The aim is to construct a Reset Widget that, once ICP has gone through T iterations on
the (d− 1)-dimensional configuration, triggers a translation of the points of A up into
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7.1 Resetting ICP

dimension d, and that also resets their position in all d− 1 lower dimensions to the
initial state. This will lead to another T iterations in which the ICP algorithm repeats
the base space movement of the first T iterations, merely offset in dimension d. Figure
16 visualises the polygonal translation path π behind this reset and the following T
iterations as a S-shaped movement.

To begin our construction, we embed (A, B) from the base space into Rd with lift
coordinate 0 to get the lifted ICP configuration (A, B). Since this changes nothing
about the relative positions of points, ICP clearly still requires T iterations on this
lifted configuration, with ∆ti = (∆ti, 0), and thus also ti = (ti, 0), for all i ∈ {1, ...T}.

Suppose now that we could augment (A, B) with a Reset Widget that only in iteration
T + 1 contributes (−tT, H) to the relative translation ∆tT+1, translating A by −tT in
the base space (effectively negating all movement from the first T iterations), and by
H in the lift dimension. The widget contributes nothing to the relative translation of
other iterations.

As ICP is run on the augmented (A,B) that includes this Reset Widget, the points of
A will have been translated by tT = (tT, 0) at the beginning of iteration T + 1. This
triggers the widget to contribute its shift for a combined cumulative translation of
tT+1 = (0, H). The nearest-neighbour correspondences at the beginning of iteration
T + 2 are then identical to those in the first iteration, since the points of A initially
had a lift coordinate of 0 before all being translated equally along the lift dimension.
All points of B of course stayed at rest, with lift coordinate 0. This results in ∆tT+2 =

(∆t1, 0), and subsequently ∆tT+1+i = (∆ti, 0) for i ≥ 2, so that ICP now takes 2T + 1
iterations on this augmented reset configuration.

If we can find a widget with these properties, this will enable a doubling of the
number of iterations required by an ICP configuration (A,B), and the repeated use
of this mechanism will allow us to prove theorem 5.

Figure 16: The idea behind the Reset Widget. Once the cumulative translation reaches the threshold tT
in the (d− 1)-dimensional base space, A gets translated up H in dimension d and is reset by −tT to its
initial position in the base space. Since all points in A and B initially have lift coordinate 0, this reset
recovers the nearest-neighbour correspondences from the first iteration between all points except those
of the Reset Widget itself. Thus, T more iterations follow in which A gets translated further by (tT , 0).
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7.2 The Reset Widget

To construct such a Reset Widget, we will use the Redirector described in section 6.4.
Recall that a Redirector triggers once its point a changes its nearest neighbour from b1

to b2. This happens once the cumulative translation ti exceeds a threshold y, which
is the case once ti satisfies ti · v ≥ y · v. The difference kv = b2 − b1 between the new
and the previous nearest neighbour of a, averaged over k = | A |, is then contributed
to the following iteration’s translation. The previously described behaviour of the
Reset Widget would require point a of its Redirector to change its nearest neighbour
from b1 to b2 and trigger a shift of v = (−tT, H) once A has been translated by a
threshold y = tT in the base space. As it turns out, for a single Redirector configured
with the required shift v and threshold y, we would have b2 = b1 + k(−tT, H) and a =
1
2 (b1 + b2)− (tT, 0), and so a would start out with b2 as its nearest neighbour instead
of the desired b1. It would also be impossible for a to be closer to b2 than to b1 after
moving by (tT, 0). The corollary discussed in section 3.4 that states “In any dimension
d ≥ 1, the angle between any two consecutive edges of π is obtuse.” [3] implies
that an iteration with relative translation ti = (−tT, H) cannot directly follow an
iteration with ti−1 = (ti−1, 0) for positive ti−1. While this prevents us from achieving
the previously outlined reset within a single iteration, we can instead implement
the Reset Widget using three Redirector widgets that trigger, one at a time, in three
consecutive iterations. Figure 17 conveys the general shape of these Redirector regions
for the two-dimensional case. Assume there exists a vector v0 such that ti · v0 < tT · v0

for all iterations i < T. For the one-dimensional base case this holds for v0 = 1. We
construct the three Redirectors that make up the Reset Widget as follows.

Augment (A, B) with Redirector 1 with shift v = (v0, H) and threshold y = (tT, 0).
It follows from our assumption about v0 that (ti, 0) · (v0, H) < (tT, 0) · (v0, H) for all
i < T, and so Redirector 1 will first trigger in iteration T + 1. Ignoring the lift dimension
shift of H, the base space shift v0 induced by this Redirector could lead to changes in
the nearest neighbour correspondences of (A, B), which would result in an additional
base space shift ∆t′T+2 in the following iteration T + 2. Note that ∆t′T+2 denotes solely
the part of the relative base space translation that is due to nearest-neighbour changes
in iteration T + 1. The next Redirector we add will negate the cumulative translation
t′T+2 = tT+1 + ∆t′T+2 to reset the base space position of A.

Augment (A, B) with Redirector 2 with v = (−t′T+2, H) and y = (tT + v0, H). For
sufficiently large H we have

(ti, 0) · v < y · v
=⇒ (ti, 0) · (−t′T+2, H) < (tT + v0, H) · (−t′T+2, H)

=⇒ −tit′T+2 < −t′T+2(tT + v0) + H2

=⇒ t′T+2(tT + v0 − ti) < H2

for all i < T + 1, and so Redirector 2 will trigger in iteration T + 2 and reset the
cumulative translation to tT+2 = (0, 2H). At the end of iteration T + 2 (and the start of
T + 3), all points of (A, B), except those in the Reset Widget, will have the same nearest-
neighbour correspondences as they did initially (before any translation). Finally, we
restart the base space movement with a third Redirector.
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7.2 The Reset Widget

Figure 17: Reset Widget. Once point a of Redirector 1 has been translated by threshold (tT , 0), it changes
its nearest neighbour from b1 to b2, triggering a contribution of shift (v, H) to the next relative translation
∆tT+1. This proceeds analogously for the other two Redirectors. The three of them trigger in sequence, for
a total contribution of (t1 − tT , 3H) to the translation. When augmenting an ICP configuration with the
Reset Widget, its six regions are positioned such that the region-decomposition property 6.1 is maintained.
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7.2 The Reset Widget

Augment (A, B) with Redirector 3 with v = (t1, H) = (∆t1, H) and y = (0, 2H). This
third Redirector will trigger in iteration T + 3. Changing the cumulative base space
translation from 0 to t1 causes the same changes in nearest-neighbour correspon-
dences as t1 did in the first iteration, and thus initiates a repeat of the translation
sequence of the initial T iterations in the base space, with ∆tT+2+i = (∆ti, 0) for each
2 ≤ i ≤ T.

To ensure that no adverse translation in the lift dimension interferes with the follow-
ing Ω(n2) iterations our Reset Widget has initiated, let us for check how the translation
in the lift dimension unfolds next. Recall that each of the three Redirectors has two
regions, each of which contributes one point to A for a total contribution of 6 points
to |A|. This leaves k− 6 points in A that are not part of the Reset Widget.

For the following considerations it is helpful to consult Figure 17 for an overview of
the Reset Widget’s structure. At the beginning of iteration T + 4, all points of A will
have moved by 3H in the lift dimension, and since their respective nearest neighbours
in B still have lift coordinate 0, each of the (k − 6) points of A contribute a “pull”
of 3H “down” in the lift dimension towards their respective nearest neighbour. This
is countered by the six points in A that are part of the Reset Widget, each of which
continues to “push up” in the lift dimension towards its respective nearest neighbour.
Recall that each Redirector’s point a is initially assigned to its b1, but at iteration T + 4
all three Redirectors have triggered because their respective point a changed its nearest
neighbour to b2.

• Before Redirector 1 triggers in iteration T + 1, both its points a and a′ are at a lift
dimension distance of kH/2 from points b2 and b′, respectively. At the beginning
of iteration T + 4, points b2 and b′ have become the respective nearest neighbour
of a and a′, which will by then have moved up by a total lift translation of 3H
so that the lift dimension distances have been reduced to (k/2− 3) H each.

• Points a and a′ of Redirector 2 are initially at (k/2 + 1) H and (k/2− 1) H lift dis-
tance from their respective nearest neighbour b2 and b′. Moving by 3H reduces
these distances to (k/2− 2)H and (k/2− 4)H at the beginning of iteration T + 4.

• Similarly, points a and a′ of Redirector 3 start out at lift dimension distances of
(k/2 + 2) H and (k/2− 2) H, and are translated by 3H, for reduced lift distances
of (k/2− 1) H and (k/2− 3) H from b2 and b′ by the start of iteration T + 4.

Together with the k − 6 points that are not part of the Reset Widget, and are each
pulling along a vector of −3H in the lift dimension towards their nearest neighbour,
the sum of lift dimension components of all vectors NB(a + tT+3)− (a + tT+3) is

(k− 6)(−3H) Non-Reset Widget points

+

(
k
2
− 3
)

H︸ ︷︷ ︸
Redirector 1

Region 1

+

(
k
2
− 3
)

H︸ ︷︷ ︸
Redirector 1

Region 2

+

(
k
2
− 2
)

H︸ ︷︷ ︸
Redirector 2

Region 1

+

(
k
2
− 4
)

H︸ ︷︷ ︸
Redirector 2

Region 2

+

(
k
2
− 1
)

H︸ ︷︷ ︸
Redirector 3
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+

(
k
2
− 5
)

H︸ ︷︷ ︸
Redirector 3
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=

(
18− 3k +

6k
2
− 18

)
H = 0.
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7.3 Proving the reset theorem

Figure 18: Reset path. Redirector i of the Reset Widget
triggers in iteration T + i for 1 ≤ i ≤ 3. The translation
path of a single reset describes an S-curve.

Figure 19: Reset in d dimensions. Example
for d = 3 with four Reset Widgets in each lift
dimension. H is not to scale.

This implies a lift dimension component of 0 for ∆tT+4 and is consistent with the
momentum interpretation from Lemma 1, since in iteration T + 3 the only nearest-
neighbour changes occur among points with lift component 0, i.e. points other
than those of the Reset Widget. Since all three Redirectors of the Reset Widget re-
main triggered (because their point a keeps b2 as its nearest neighbour), we arrive
at tT+3+i = ti = (ti, 0) for i ≥ 2, and thus repeat the base space movement of the
first T iterations. This shows that the Reset Widget successfully resets the ICP config-
uration to increase the number of iterations from T to 2T + 2. Figure 18 conveys the
translation path of a single reset.

7.3 Proving the reset theorem

Proof. We prove theorem 5 inductively by repeatedly augmenting (A, B) with Reset
Widgets. This augmentation requires the existence of a vector v0 such that ti · v0 <

tT · v0 for all i < T. As mentioned before, this holds for v0 = 1 in the one-dimensional
base case. Suppose ICP takes T′ iterations on an augmented ICP configuration (A,B)
for which such a v0 exists, and let tT′ denote the final cumulative translation when
ICP is run on (A,B). Then ti · (v0, H) < tT′ · (v0, H) for all i < T′. Therefore, after
augmenting an ICP configuration with a Reset Widget, we can augment it again in
arbitrarily many lift dimensions to obtain a lower bound of Ω(2d−1n2). This follows
from the fact that adding one Reset Widget in each of the d− 1 possible lift dimensions
doubles the number of iterations d− 1 times. Instead of merely using a single Reset
Widget per lift dimension, we will add Ω(n/d) Reset Widgets per lift dimension.
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7.3 Proving the reset theorem

In a single lift dimension we can add m Reset Widgets that trigger in sequence to reset
(A, B) but will not reset each other. We achieve this by configuring widget i to trigger
when the global translation reaches a lift coordinate of 3H. Doing so yields a running
time of at least mT iterations for the augmented configuration. Figure 19 illustrates
the polygonal translation path π for d = 3 and m = 4 in the case that we perform
m resets in each lift dimension. By choosing m = Θ(n/d) we induce Ω(n/d) resets
in each of the d− 1 lift dimensions. Adding Θ(n/d) · (d− 1) Reset Widgets maintains
|A|, |B| ∈ O(n), and so the total running time becomes

Ω(n2) · n
d
· · · · · n

d︸ ︷︷ ︸
d−1 times

= Ω
(

nd+1

dd−1

)
⊂ Ω(n/d)d+1,

from which theorem 5 follows immediately.

We conclude the main part of this thesis dedicated to complexity bounds with this re-
sult that significantly tightens the gap between the lower bound and the upper bound
from section 4 and offer a brief look at the effects of initialisation on convergence next.

Figure 20: Convergence diagrams. Four randomly generated point sets B for n = 5 with their respective
discrete initialisation regions. For all t0 with pixels of the same colour, ICP converges to the same final
cost. Blue represents a cost of 0, a global minimum. Each shown diagram uses a different resolution.
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8. Exploratory analysis with convergence diagrams

8 Exploratory analysis with convergence diagrams

Whether the ICP algorithm converges to a local or global minimum depends on the
initial position of A relative to B . In this final section we propose and demonstrate
a visualisation method for exploratory analysis that may aid further study of these
initialisation effects. The following ICP convergence diagrams for d = 2 assume that
A is a shifted copy of B, that is, ai = bi + t0, where t0 ∈ Rd is an offset. Moreover,
we reduce B by its mean so that the centroid b0 = 1

n ∑b∈B b lies on the origin. For
each initial offset t0 on a point grid of arbitrary resolution, we run the ICP algorithm
on the configuration (A+t0,B). The resulting convergence diagram is a pixel grid
of the chosen resolution, where each pixel with centre t0 is drawn in a colour that
represents the final value of the cost function that ICP converges on. This means that
each offset (and pixel centre) t0 represents the centroid a0 of A at the start of the first
ICP iteration. Each region drawn in a single colour on the diagram depicts initial
offsets t0 from which the algorithm’s cost function converges to the same value. It is
notable that these regions are often quite irregular and do not follow an immediately
obvious pattern, nor do they seem to display a clear visual connection to the Voronoi
diagram of B . In Figure 20 we show four examples for arbitrary point clouds B that
were generated at random from a normal distribution. A higher resolution does not
generally coincide with a more gradual transition of colours (i.e. final cost values)
even when n is increased considerably above the values depicted here.

Some point clouds B result in highly irregular and noisy diagrams, as depicted in
Figure 21. In these cases, even the largest cost values (drawn as a red pixel) tends to
be miniscule, which suggests that these patterns can be explained by floating point
imprecision. These noisy diagrams occur more frequently for higher values of n.

Figure 22 shows that already for the simple case n = 2, a seemingly minor change
of t0 can lead to substantial differences in the convergence behaviour even when the
initial nearest-neighbour correspondences are identical for both initialisations. It is
therefore unclear whether a (non-trivial) initial offset t0 that guarantees convergence
to a global minimum can be determined visually.

Figure 21: Precision noise. For A = B+t0, higher values of n increase the likelihood of reaching a
global minimum, and that of noisy diagrams. Even red pixels correspond to very small cost values here.
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Figure 22: Initialisation matters. Star-shaped markers indicate the centroid (mean) of A and B, re-
spectively. The star in each convergence diagram on the left indicates the initial offset t0 for which the
respective right diagram shows the ICP execution on (A+t0,B). Relative translations ∆ti are drawn as
green arrows between centroids of A in consecutive iterations. The points of A are drawn in their initial
position and are represented by their centroid in later iterations. A global minimum is reached if the red
centroid of A lies on top of the purple centroid of B . For the initial offset on the top (in a red region),
ICP does not converge to the global minimum, for the offset on the bottom (in the blue region) it does.

Even though these diagrams did unfortunately not lead us to immediate, generalis-
able insights about the dynamics of the ICP algorithm, we include them in this thesis
in the hope that they be of interest, and potentially influence further visual exploration
of the ICP algorithm’s geometric properties and behaviour.

9 Discussion and open problems

In this thesis we have explored convergence characteristics of the ICP algorithm, with
a primary focus on upper and lower bound constructions. The polynomial bounds
shown here seem somewhat at odds with the considerable popularity of the ICP al-
gorithm in applications that are both data-intensive and performance-critical. This
leads Arthur and Vassilvitskii to ask “What can be said when an algorithm is known
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to be fast in practice but slow in the worst case?” [1] In their effort to reconcile their
Ω(n/d)d+1 lower bound with the observed speed of ICP, they perform a smoothed
analysis following the work by Spielman and Teng [8], and achieve a smoothed com-
plexity of

O
(
| A |3| B |8 · d

(
D
σ

)2

p−2/d

)
with probability at least 1− 2p, when all points of A and B have been independently
perturbed by a d-dimensional normal distribution with variance σ2, and D is the max-
imum diameter of these sets A and B . While this smoothed complexity is polynomial
independent of the dimensionality d of the data, Arthur and Vassilvitskii remark that
the large exponent “could use improvement.” This is true especially in light of the
fact that many applications of the ICP algorithm use low-dimensional data for which
the non-smoothed upper bound is lower than the smoothed one. The arguments and
constructions presented here examine a simplified version of the original ICP algo-
rithm. In addition to finding the translation that aligns A optimally to B, the full ICP
algorithm and its numerous variations also take into account rotation. Based on the
observations in section 4 that the number of ICP iterations is bounded from above by
the number of possible nearest-neighbour assignments, we would expect the addition
of d− 1 degrees of freedom (in the form of rotation) to raise the upper bound in the
worst case noticeably. Despite its deceptive simplicity, the ICP algorithm displays
many fascinating and subtle properties, and this thesis discussed merely a fraction of
the known results. We hope these explanations may illuminate and clarify what we
know, and inspire further study of both its complexity and geometric properties.
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A. Errata

A Errata

The following excerpts contain minor inaccuracies we found in [3]. They are remedied
in section 5. The Ω(n log n) lower bound proof defines round j and the properties
used for induction as follows.

Assume that the points of A, except for the leftmost one, are assigned to
bn−j+1 and bn−j+2, for some 1 ≤ j ≤ n [. . .], and consider all iterations
of the algorithm, in which some points of A cross the common Voronoi
boundary βn−j+1 of the cells V(bn−j+1),V(bn−j+2). We call the sequence of
these iterations round j of the algorithm. Then, [. . .] (iii) at the last iteration
of the round, the overall number of points of A that cross either βn−j+1 or
βn−j+2 is exactly j− 1.

This definition of round j is equivalent to the one we give except for the minor detail
that for j = 1 the point bn−j+2 = bn+1 does not exist. Instead of 1 ≤ j ≤ n the authors
likely meant to write 2 ≤ j ≤ n. More importantly however, their property (iii) fails to
take into account what we refer to as case (c) in section 5, where in the last iteration
of round j, exactly j rather than j− 1 points of A cross a boundary. Refer to iteration
i = 7 shown in Figure 9 for an example case in which the authors’ property (iii) does
not hold. We introduced the notion of a transition iteration between such rounds to
cover this case and ensure the inductive step holds for all possible cases.

Let us now consider the last such iteration [of round j]. In this case, all the
points of A, except ` of them, for some 0 ≤ ` < j (and the leftmost point,
which we ignore), have crossed βn−j+1 in previous iterations.

The case 0 = ` would contradict the fact that the iteration in question is the last
iteration of round j, and since ` = j does occur in case (c) the inequality in the excerpt
above needs to be corrected to 0 < ` ≤ j.

It now follows, using the above properties, that the number of iterations
for all the points of A to cross βn−j+1 is

⌈
n
j

⌉
, where in the first (last) such

iteration some of the points may cross βn−j (βn−j+2) as well.

The fact that βn−1 is crossed in a single iteration (i = 2) serves as a counterexample to
the first claim in this excerpt, given that

⌈ n
n−1

⌉
6= 1 for n ∈N.

A small mistake in the following excerpt from [1] is remedied in section 6.2.

Define B = {b0, b1, ..., bm} by setting b0 = 0 and bi = 1 + 1
k + · · ·+

1
ki−1 for

i > 0.

This definition for point set B of the Linear Shifter accidentally adds a term of 1 that
implies b1 = 2, and so the initial translation of t1 = 1, induced by what we refer to
as the Starter in section 6.3, does not lead to the desired property that a + t1 = b1.
Omitting this initial term of 1 and defining bi := ∑i−1

j=0
1
kj corrects this.

In section 6.4 we remark on a potentially misleading claim in the original formulation
of Lemma 3 after the corresponding proof.
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