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Abstract

Over the past few years, machine learning has revolutionized fields
such as computer vision, natural language processing, and speech recog-
nition. Much of this success is based on collecting vast amounts of data,
often in privacy-invasive ways. Federated Learning is a new subfield
of machine learning that allows training models without collecting the
data itself. Instead of sharing data, users collaboratively train a model
by only sending weight updates to a server. While this better respects
privacy and is more flexible in some situations, it does come at a cost.
Naively implementing the concept scales poorly when applied to mod-
els with millions of parameters. To make Federated Learning feasible,
this thesis proposes changes to the optimization process and explains
how dedicated compression methods can be employed. With the use of
Differential Privacy techniques, it can be ensured that sending weight
updates does not leak significant information about individuals. Fur-
thermore, strategies for additionally personalizing models locally are
proposed. To empirically evaluate Federated Learning, a large-scale
system was implemented for Mozilla Firefox. 360,000 users helped to
train and evaluate a model that aims to improve search results in the
Firefox URL bar.
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Notation

e At a given time:

— There are k users in total
— They have n data points in total

— n; data points are from the ¢-th user
e In each iteration:

— K users sampled
— These users have N data points

— H; is the update proposed by the i-th user
e Statistics:

— 7 is the learning rate

— 0 are the weights of the model

— m is the number of weights

— f is the prediction function of a model

— L is the total loss of the model over a dataset

— X is an estimator of a value X
e Data:

— x; and y; respectively are the i-th data point and label in total

— x;; and y;; are the j-th data point and label of the i-th user

e V is the gradient operator, or, more generally, a function that com-
putes a model improvement based on the loss
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1 Introduction

1.1 Motivation

Many problems in computer science are tremendously difficult to solve by
handcrafting algorithms. Speech recognition systems are a prominent exam-
ple of this. The audio recordings that need to be analyzed consist of huge
amounts of high-dimensional data. Understanding this data well by manual
inspection is virtually impossible.

Machine learning provides an alternative approach to solving such prob-
lems. Tt is often referred to as the field of learning from example data [12, 30].
By collecting data and then applying statistical techniques, patterns can be
found in an automated way. In the example of speech recognition, one would
collect a large amount of audio recordings and their respective transcriptions.
Machine learning algorithms can then find patterns in the audio data that
help with interpreting the audio signals [40].

In the past few years, this idea has been successfully applied to many
different areas [54]. Speech recognition and recommender systems are mostly
based on machine learning nowadays [36, 40, 77]. The areas of computer
vision and natural language processing also increasingly rely on data-driven
approaches. For example, most state-of-the-art solutions in object detection
and machine translation are based on learning from data [52, 6].

Many learning algorithms that are now extremely successful have been
known for many years. For instance, the backpropagation algorithm, which
most of deep learning is based on, was described as early as in 1970 [57, 37].
To explain why these ideas are only now being used successfully, three rea-
sons are generally given. First, there have been some fundamental improve-
ments to the algorithms that had a great effect. To give just a single example,
Adam has greatly reduced the amount of tuning that is required to make
gradient descent work well [49].

A second reason for the recent success has been the increase in com-
putational resources that are available. Processing power has repeatedly
doubled over the years [59] and special hardware for linear algebra and ma-
chine learning has been released [48]. However, the third reason, and often
considered the most central one, is that more data to train on is available.
Having more example data means that the algorithms get more information
to decide what patterns are truly important. Consequently, it is less likely
that example data points are just memorized or that random patterns are
detected as a useful signal.

An impressive demonstration of the value of having more data was given
by Facebook in May 2018 [93]. By training an object detection model
using 3.5 billion Instagram images [21], they outperformed all other models
on ImageNet, the standard benchmark for object recognition [24]. Even
though the methods used to analyze the data were not completely new, the
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huge amount of data helped them to build the best object detection model to
date. The fact that having a lot of data is extremely important in building
good machine learning models has been widely described and discussed [38].

The predominant way of using machine learning nowadays involves col-
lecting all this data in a data center. The model is then trained on power-
ful servers. However, this data collection process is often privacy-invasive.
Many users do not want to share private data with companies, making it
difficult to use machine learning in some situations, e.g. when medical data
is involved. Even when privacy is not a concern, having to collect data can
be infeasible. For example, self-driving cars generate too much data to be
able to send all of it to a server [101].

Federated Learning [63, 50] is an alternative approach to machine learn-
ing where data is not collected. In a nutshell, the parts of the algorithms
that touch the data are moved to the users’ computers. Users collabora-
tively help to train a model by using their locally available data to compute
model improvements. Instead of sharing their data, users then send only
these abstract improvements back to the server.

This approach is much more privacy-friendly and flexible. Applications
on mobile phones provide examples where this is especially evident. Users
generate vast amounts of data through interaction with the device. This
data is often deeply private in nature and should not be shared completely
with a server. Federated Learning still allows training a common model
using all this data, without necessarily sacrificing computational power or
missing out on smarter algorithms. Here, Federated Learning approaches
can even lead to better models than conventional techniques since more
data is available.

1.2 Structure of the Thesis

It is the goal of this thesis to give an introduction to Federated Learning
and to provide an overview over solving various related problems. Since the
field is still fairly new as of 2018, the aim is to provide a complete guide on
developing a Federated Learning system. For aspects that were previously
suggested as future research areas, such as personalizing models [64], we
propose new approaches. Additionally, the goal is to demonstrate empir-
ically that Federated Learning does not only work in simulations but can
also work in complex software projects.

The remainder of this thesis is structured as follows: The field of Fed-
erated Learning is defined and formalized in Section 1.3. The fundamental
properties and the protocol introduced in that section serve as a basis for
all other chapters. The necessary background knowledge to understand this
thesis is given in Section 2.

The next two sections focus on making Federated Learning more ef-
ficient. Section 3 deals with various aspects related to the optimization
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process. Compression techniques for reducing the communication effort are
introduced in Section 4.

In Section 5, privacy-specific aspects of Federated Learning are discussed.
Using Differential Privacy [26], it can be ensured that it is virtually impossi-
ble to make conclusions about what data individuals used to help train the
model. Allowing personalized models, while still collaboratively helping to
train a central model, is the topic of Section 6.

An implementation of a Federated Learning system for Mozilla Firefox
is discussed in Section 7. Finally, Section 8 gives an overview over all the
topics covered and provides a short conclusion.

1.3 Federated Learning

In supervised learning, n example inputs and the corresponding outputs are
given:

Example inputs z1,...,z,
outputs y1,...,Yn

This example data is sampled from some underlying distribution that is not
known to us. The goal is to find a function f that maps from example inputs
to outputs sampled from this distribution. To do this, we decide on the form
of the function and then optimize the variable parts of it. For example, this
could mean fixing the function to be linear and then finding the best possible
coefficients. Because only some example data is available, the goal is to find
a function that maps well from the example inputs to the outputs under the
constraint that it also needs to work as well for new data sampled from the
same distribution.

In other areas like unsupervised machine learning, the example outputs
might be missing and the success criteria for f are defined differently [33].
The variable parts of the function which are optimized during the learning
process are called parameters or weights. Values that need to be set before
the training begins are called hyperparameters. Generally, these are much
more difficult to optimize [35].

In order to use conventional machine learning techniques, the n data
points are collected and the training process is performed on a server. This
is in contrast to Federated Learning, where the explicit requirement is that
users do not have to share their data. Instead, the n data points are parti-
tioned across the computers of k£ users. Users can have varying numbers of
data points, so n; denotes how many examples the i-th client has access to.

Most machine learning algorithms work in an iterative process where
they repeatedly look at example data. They start off with an initial solution
and then continually try to improve it. In each iteration, the model is
evaluated using the training data and then updated. Each update is meant
to improve the model’s performance on the training data a little bit.
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To avoid collecting the training data, a distributed way of running the
learning algorithm is required. The parts of the algorithm that directly
make use of the data need to be executed on the users’ computers. These
correspond to the sections of the algorithm that compute the previously
mentioned updates. In Federated Learning, users compute updates based
on their locally available training data and send them to a server. These
updates are much harder to interpret than pure data, so this is a major
improvement for privacy. For some applications with huge amounts of data,
it might also be cheaper to communicate the updates compared to directly
sending the data.

While the computers of users generally have much less computational
power than servers in a data center, there is also less data on them. By
having a lot of users, the computations that need to be performed are vastly
distributed. There is not much work to do on the computer of each individ-
ual.

Conventional machine learning can be seen as a centralized system where
all the work is performed on one server. In the process described so far, re-
sponsibilities are moved from the server to the clients. This is not a fully
decentralized system because the server still runs a part of the algorithm. In-
stead, it is a federated system: A federation of clients takes over a significant
amount of work but there is still one central entity, a server, coordinating
everything.

Before the server starts off the distributed learning process, it needs to
initialize the model. Theoretically, this can be done randomly. In practice,
it makes sense so smartly initialize the model with sensible default values.
If some data is already available on the server, it can be used to pretrain
the model. In other cases, there might be a known configuration of model
parameters that already leads to acceptable results. Having a good first
model gives the training process a headstart and can reduce the time it
takes until convergence.

After the model has been initialized, the iterative training process is
kicked off. A visualization of the steps performed in each iteration is shown
in Figure 12. At the beginning of an iteration, a subset of K clients are
randomly selected by the server. They receive a copy of the current model
parameters @ and use their locally available training data to compute an
update. The update of the i-th client is denoted by H;. The updates are
then sent back to the server.

In this thesis, we generally assume 6 and H; to be vectors in R"™. How-
ever, the same concepts transfer directly to any sequence of vectors since
they can be concatenated into one long vector.

The server waits until it has received all updates and then combines them
into one final update. This is usually done by computing an average of all
updates, weighted by how many training examples the respective clients
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(a) The server selects K users (b) They receive the current model
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(¢) and compute updates using their data (d) Updates are shared with the server

Figure 1: One communication round in a Federated Learning system

used. The update is then applied to the model using

K
06— %H (1)
=1

where N = Zfil n; is the total number of data points used in this iteration.
A new iteration begins after every model update.

In each iteration only K users are queried for updates. While requesting
updates from all users would lead to more stable model improvements, it
would also be extremely expensive to do because there can be millions of
users. Only querying a subset of them makes it more feasible to efficiently
run many iterations.

This training process is then repeated until the model parameters con-
verge, as determined by an appropriate criterion. In some situations, it
can also make sense to keep the training running indefinitely. In case user
preferences change, the model will automatically adapt correspondingly. In-
dependently of the length of the training process, new models should be
distributed to all clients from time to time. This ensures that they have a
good model to use locally.

Federated Learning might seem similar to distributed machine learn-
ing in a data center. Parts of the problem setting are indeed comparable.
Data is distributed across compute nodes, or users. Algorithms are used
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in a MapReduce [23] kind of a way where updates are calculated on many
computers at the same time and then combined afterwards [19].

However, Federated Learning is a vastly more distributed way of col-
laboratively training machine learning models. It can be distinguished by
several key properties. These also describe the some of the challenges in
Federated Learning:

1. A huge number of users: In a data center, there might be thousands
of compute nodes. Popular consumer software has several orders of
magnitude more users than that. All of these users should be able to
participate in training the model at some point, so Federated Learning
needs to scale to millions of users

2. Unbalanced number of data points: It is easy to guarantee that
compute nodes have a similar number of data points in a data center.
In Federated Learning, there is no control over the location of data at
all. It is likely that some users generate vastly more data than others

3. Different data distributions: Even worse, no assumptions about
the data distributions themselves can be made. While some users
probably generate similar data, two randomly picked users are likely
to compute very different updates. This is also unfortunate from a
theoretical standpoint because no iid [25] assumptions can be made,
i.e. random variables are generally not independently and identically
distributed

4. Slow communication: Since compute nodes in Federated Learn-
ing correspond to users’ computers, the network connections are often
bad [106]. This is especially the case if the training happens on mo-
bile phones [105]. Updates for complex models can be large, so this is
problematic when training more sophisticated models

5. Unstable communication: Some clients might not even be con-
nected to the internet at all when the server asks them to send back
model updates. In a data center, it is much easier to guarantee that
compute nodes stay online

In a nutshell, Federated Learning is a massively distributed way of train-
ing machine learning models where very little control over the compute nodes
and the distribution of data can be exercised. The properties listed above
motivate several of the next chapters.

1.4 Applications

The protocol introduced so far is fairly abstract and it remains to be dis-
cussed what exactly can be implemented with it. In general, it is possible
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to use Federated Learning with any type of models for which some notion of
updates can be defined. It turns out that most popular learning algorithms
can be described in that way.

A large part of machine learning is based on gradient descent, a popular
optimization algorithm that is described in more detail in Section 2.2. Gra-
dient descent naturally transfers well to Federated Learning. The updates
are partial derivatives that define in what direction the model parameters
should be moved. Linear regression, logistic regression and neural networks
are generally all optimized using gradient descent [35, 12]. Linear support
vector machines and matrix factorization based methods, like collaborative
filtering, can also be optimized with this method [72, 32, 51].

Federated Learning is not just limited to supervised learning. It can also
be used in other areas, such as unsupervised and reinforcement learning.
k-means is an unsupervised learning algorithm that by design works well
in a Federated Learning setting: Updates specify how the centroids are
moved [12, 56].

Even algorithms that are not usually described in terms of updates can be
used with Federated Learning. For example, principal component analysis
is based on computing eigenvectors and -values. These can also be calcu-
lated using the power-iteration method, which transfers well to distributed
computation [56]. The model consists of eigenvector estimates which are
continually improved by the clients.

Some algorithms, however, can not be reformulated for Federated Learn-
ing. For example, k-NN requires memorizing the data points themselves [12],
which is not possible here. Non-parametric models in general can be prob-
lematic since their configurations often heavily depend on the exact data
that was used to train them.

Independently of the model type, the kind of data that is available is
another criteria which can be used to decide if it is reasonable to use Fed-
erated Learning. Of course, whenever data is too private to be transferred
to a server, Federated Learning is a good choice. This is often the case in
situations where users implicitly generate a lot of data, just by interacting
with their device. In the best case, they also label the data in this process.

One example for such an application is showing users suggestions for
the next word they might want to type on a mobile phone, a functionality
offered by most virtual keyboards. Recurrent neural networks are generally
used to implement this [65, 64, 84]. They try to predict the next word
that is going to be typed by analyzing the previously typed words. Such a
model could be trained on any language corpus, for example on text from
Wikipedia. However, the language used on Wikipedia differs from the one
used by people in daily life.

For this reason, directly training on the text typed by users would lead
to better results. Conventional methods cannot be used to do this since the
data is extremely private. It should not be sent to a server and should not
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even be stored unnecessarily for a longer time. Federated Learning can still
be used to train a model on this data [64].

This is an extremely elegant application of Federated Learning: People
generate data points by typing on their devices and label these themselves
as soon as they type the next word. The model can improve itself on the
fly. While the user is typing, the model tries to predict the next word. As
soon as the user finished typing the word, the correct label is available and
the model can use this information to compute an update to improve itself.
The data used to generate the update is directly discarded afterwards. This
way, a high-quality model can still be trained, without making any sacrifice
on privacy.
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2 Background

2.1 Estimators

Often it is not possible or simply impractical to compute certain values ex-
actly. This might be because it is too expensive computationally or because
not enough information is available. Instead, these values can be estimated.
The quality of estimates varies. In statistics, this concept is formalized in
estimation theory [25, 41].

An estimator is a function that estimates a value based on other ob-
servations. This process can involve randomness. Reasons for this can for
example be that the function itself is random or that there is random noise
in the observations it uses. One measure for the quality of an estimator X
is its bias or how far off its estimate is on average from the true value X:

bias[X] = E[X] — X

where the expected value is over the randomness involved in computing
estimates.

If the bias of an estimator is 0, it is called an unbiased estimator [88].
This is generally a desirable property to have because it means that the
estimator is correct on average. If one samples for long enough from the
estimator, the average converges to the true value X. This is due to the law
of large numbers [25].

Theorem 1. If k estimators Xl, . ,f(k all produce unbiased estimates of
X, then any weighted average of them is also an unbiased estimator. The
new estimator is given by

X:wl*f(l—i—...—i—wk*Xk
where the sum of weights Zle w; needs to be normalized to 1.

Proof. The unbiasedness is due to the linearity of expectation:

E[X] = Elw; * X1 + ... + wy * Xp]
= w * B[X{] 4 ... + wy, * E[X}]
=wi * X+ ... +wp*xX
=X

O]

If an estimator is unbiased, its individual estimates can still be far off
from the true value. While the mean of many sampled estimates eventually
converges to the true expected value, this can take a long time, meaning the
estimator is inefficient. To quantify how consistently an estimator is close
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to the true value, another statistic is required. Commonly, the variance of
the estimator is considered here. It is defined as the mean squared distance
between the estimate and the value to be estimated:

Var[X] = E[(X — X)?]

Many different things can be analyzed using estimators. For example,
statistical models can be seen as estimators. They use observations, or data,
to make predictions. These predictions are generally not perfect because
randomness is involved and only a limited amount of information is available.
Thus, it makes sense to analyze statistical models in terms of bias and
variance.

A central problem when building models is balancing underfitting and
overfitting. If the training data is just memorized, the model does not gen-
eralize well to new data. This is a case of overfitting. The opposite issue,
only barely matching the pattern in the training data, is called underfitting.

This problem is also known as the bias-variance tradeoff [30, 12, 81].
If the model has a high bias, its predictions are off, which corresponds to
underfitting. If overfitting occurred, i.e. the data is matched too well, the
estimates have a high variance. By resampling the data that the model was
built on, totally different estimates are generated. This is because the model
is now based on different random noise.

Generally, it is not possible to perfectly optimize both, bias and variance,
for statistical models, so they need to be balanced here. On the other hand,
the focus in some of the following sections is purely on keeping estimators
unbiased. Depending on how the estimators are used, different qualities are
important.

2.2 Gradient Descent

Machine learning can be considered an optimization problem. In supervised
learning, a loss function quantifies how close a prediction f(z;) of a model
is to the correct answer ;. The parameters of the model should be chosen
to minimize the loss.

Generally this is done by optimizing them for the training data while
also validating the model on otherwise unused data. The parameters with
the best performance on the validation data are selected in the end. The
full loss for a prediction function f is given by:

L= > loss(f (i), o)
=1

A popular choice for the loss function is the squared error:
loss(p,y) = (p — y)?

10
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There are many algorithms for minimizing L. Perhaps surprisingly, a
huge part of machine learning is based on a conceptually simple method
called gradient descent [35, 12]. It is an iterative algorithm where the model
parameters are repeatedly moved into a direction where they work a little
bit better. To start off, the model is initialized with an arbitrary set of
parameters.

Afterwards, the iterative optimization process begins. In each iteration,
the partial derivatives of the loss with respect to the model parameters are
computed. To be able to do this, gradient descent requires the prediction
function f and the loss function to be differentiable.

An important property of the vector of partial derivatives is that it points
into the direction of steepest ascent. Because the loss should be minimized,
the parameters are updated into the opposite direction. Since the vector of
partial derivatives only points to the next optimum but does tell us how far
to go, a scaling factor 7, called the learning rate, is also applied.

Each parameter 6; is then repeatedly updated using this idea:

oL

In each iteration, all parameters are updated at the same time using this
formula. Note that this is conceptually very similar to Equation 1. The
parameters are repeatedly improved, moving them closer and closer to a
local optimum. Once a local optimum is reached, the gradient becomes 0
and no more updates are performed. In practice, the learning rate needs to
be tuned well to make sure that the updates do not jump over an optimum.
Figure 2 shows several gradient descent iterations using a contour plot of
the loss and two weights.

62

N

> 01

Figure 2: A two-dimensional illustration of gradient descent [107]

11
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To simplify the notation when working with many partial derivatives,
the gradient operator V is introduced. The gradient VL is the vector of all

partial derivatives:

0L
il =
v 00,

To calculate the gradient VL of the loss, we can make use of the linearity
of the gradient operator:

1

— % gvmss(f(xi), Yi)

In many cases, n is a very large value and computing the full update VL
is expensive. This is especially true if there is duplicated training data. If the
training set consists of 10 copies of a different dataset, then the evaluation of
the formula above is also unnecessarily expensive. Every required calculation
is repeated 10 times. While this is an extreme example, it does happen in
practice that much of the training data is similar. To save time, it often
makes sense to only use a part of the data to estimate the gradient.

In stochastic gradient descent (SGD), a single data point x and label y
are sampled uniformly from the training set. The true gradient VL is then
estimated using

VL = Vloss(f(z),y)
Theorem 2. The SGD estimate VL is an unbiased estimator of VL.

Proof.
BV = 3 Lot
i=1

1 n
= - 1 i)y Yi
nvgl oss(f(zi), yi)
=VL
OJ

The computations for SGD can be performed very quickly but still give
us an unbiased estimate of the true gradient. This property is the reason
why optima can be found using this algorithm. While individual estimates
are off, the randomness averages out over iterations and the parameters still
move into a sensible direction overall. Since iterations are much cheaper,
more of them can be performed.

12
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These individual estimates can have a large variance however, leading
to noisy and jumpy updates. A further improvement over this method is
mini-batch gradient descent. Instead of just sampling one data point, we
sample a small batch of k examples. The estimated gradient is an average
of all k single estimates. By Theorem 2 each of these individual estimators
is unbiased. Thus, their average also has to be an unbiased estimator, due
to Theorem 1. In contrast to SGD however, there is much less variance,
because more data is used to compute the estimate.

Most gradient computations can be formulated using linear algebra op-
erations. These calculations can be parallelized very well on GPUs [68]. So
with appropriate hardware there is no significant performance penalty for
using 1 < k < n data points to compute the estimate. Because the variance
is much smaller compared to SGD, mini-batch gradient descent typically has
the best convergence rate in practice.

Finally, it is worth mentioning that gradient descent can only guaran-
tee the convergence to local optima. This is typically not a problem in
real-world applications because there are generally very few local optima in
high-dimensional spaces. The likelihood that the loss does increase in all
directions at the same time is extremely low. However, gradient descent can
also get stuck in saddle points and plateaus, which occur more often [22].
Plateaus commonly happen when the gradient is dominated by one dimen-
sion, in which case updates mostly slide along this one dimension. If there
is little improvement of the loss in this dimension, then the algorithm gets
stuck on a plateau. A saddle point has less requirements than an optimum.
While the gradient is 0 in all directions, it does not mean that there is no
better point in the close neighborhood.

2.3 Computational Graphs

Using gradient descent requires being able to compute partial derivatives.
For most well established models, it is known how these derivatives look
like. The gradients for linear and logistic regression, for example, are easy
to derive by hand and can be found in the literature [79, 82]. As learning
algorithms become more complex, deriving the gradients gets harder. If one
wants to test out new architectures, the process of manually figuring out the
derivatives is time-consuming and error-prone.

The major innovation behind deep learning libraries are computational
graphs [2, 74]. They are a smart abstraction that allow for an efficient and
easy way of implementing automatic differentiation. Instead of viewing a
function as one huge symbolic term, it is broken up into smaller pieces.
These smaller pieces correspond to elementary functions like addition, mul-
tiplication or the exponential function. Derivatives for these functions are
directly implemented.

To build up a large function, like a neural network, these small building

13



2.3 Computational Graphs Florian Hartmann

blocks are then composed and connected in a graph. Nodes in the graph
represent functions. Edges show how data flows between those functions.
For example, the function

f(a,b,¢) = (a+ exp(b)) * (exp(b) + ¢)

can be represented using the graph shown in Figure 3. This example also
shows that sending data through the computational graph can be more
efficient than naively evaluating a symbolic expression. The term exp(b) is
only computed once when executing the computational graph for f. These
graphs can be automatically created when describing the function in code.
The respective libraries only need to be told which values represent variables
and which ones should be treated as constants.

Figure 3: A simple example for a computational graph

After the graph has been constructed, backpropagation can be used to
compute partial derivatives [35, 80]. The derivatives for elementary functions
are already known, so they only need to be combined with each other and
with the original functions themselves. This is done by applying the chain
rule for function composition and other well-known rules for differentiation,
e.g. for handling function addition.

In the same way that computation was saved when sending data through
the graph, backpropagation is an extremely efficient way of computing deriva-
tives. It is a dynamic programming approach to differentiation: By smartly
computing the derivatives step by step and by reusing results, duplicated cal-
culations are avoided. Another advantage of computational graphs is that
the decomposed representation of functions makes it easier to efficiently
schedule and parallelize the execution of individual computations.

Computational graphs as a software engineering abstraction make it
much easier to quickly test out new ideas. They can be utilized for all
models where the training process involves computing gradients. The fol-
lowing sections make use of them whenever architectures are adapted. This
makes it much easier to apply the changes. No assumptions about the rest
of the model architecture have to be made to be able to describe how the
derivatives can be computed.
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3 Federated Optimization

Machine learning algorithms require many iterations until the model pa-
rameters converge. A part of the field of optimization is concerned with
developing methods for reducing this number of iterations. In Federated
Learning this is particularly important because individual iterations take
much more time. Since the server is idle until users respond back with
updates, it is plausible that much more time is spent waiting rather than
actually computing something. This is especially the case if the server needs
to wait until users generate new data.

This chapter shows how the optimization parts of Federated Learning
can be improved. The first subsection begins by analyzing some fundamental
properties of training using distributed data. Based on this, the remaining
subsections focus on speeding up convergence. This can be done by selecting
users in a smarter way, by improving the quality of their proposed updates
and by stopping the training process at a good time.

3.1 Distributed Training Data

The Federated Learning protocol described earlier implements an adapted
form of mini-batch gradient descent. To estimate the full update more ef-
ficiently, only some data points are used in each iteration. But since the
data points are partitioned across users, they are not sampled completely
independently of each other anymore.

To start off analyzing what this means, consider a simplified protocol
where in each iteration only a single user is sampled. The ¢-th user is selected
with a probability of 7¢. Their j-th data point and label are denoted by x;;
and y;; respectively. The full update proposed by the i-th user is then given
by

H; = ]Zl niVIOSS(f(fz])a yz])

The remainder of this thesis generally assumes updates to be gradients.
However, the same analysis transfers over to any mechanism for computing
updates that is linear like the gradient operator.

To show that the update estimate of a single user is unbiased, we need
to iterate over all users, denoted by k. For each one, their proposed update
and the probability that they were sampled is considered:
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- gZ:Z:Vlos.s(f(acij),yz'j) (2)

where after Equation 2 we switch from a nested summation over all users
and their data points to a direct summation over all data points. This is
possible because Ele n; =n.

Even though the data is arbitrarily distributed among users, an unbiased
estimate can still be computed. This also holds when K users are sampled at
the same time. The final estimate in that case is an average of the individual
estimates, weighted by the number of data points that the clients used. By
Theorem 1, this is an unbiased estimator again.

While the distribution of the training data has no influence on the bias of
the estimator, it can have a huge effect on the variance. If it can be controlled
where the data is located, it is easy to ensure that all users produce similar
estimates. In that case, the variance of the estimator is low and convergence
can be reached quickly. In Federated Learning, such control over the data
is not possible and the variance can be large.

As an extreme example, consider a situation where users only have two
kinds of data points, which are extremely different from each other. If the
location of training data can be changed, like in a data center, each compute
node can have a similar number of both data points. In Federated Learning,
it is possible that users either only have the first kind of data points or only
the second. In that case, the two kinds of users will produce very different
gradient estimates, leading to a larger variance.

3.2 Sampling Techniques

To improve convergence, it is helpful to reduce the variance of the update
estimates. Variance reduction is a well-understood topic in statistics, with
common strategies that can be implemented [15, 25]. Some of these methods
based on smarter sampling are introduced in this section.

The technique used so far is based on simple sampling. Users are chosen
independently of each other, weighted by their number of data points. As a
result, all data points have the same probability of being used in an iteration.
This can lead to bad results because the set of selected users is not necessarily
representative of the entire population.

The field of statistics has developed alternative sampling strategies that
explicitly aim to sample a diverse set of people. This has applications in
many areas. For example, when performing surveys for elections or when
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testing new drugs, it is important to base the experiment on a representa-
tive subpopulation. Rather than choosing people completely at random, it
should be ensured that individuals of different groups are represented.

Two common sampling strategies to do this are stratified sampling and
cluster sampling [25]. Both try to encourage sampling a diverse set of people
by assigning them to groups. The two methods differ in how these groups
and the relationship between individuals in the groups are defined.

In stratified sampling, each user is assigned to a stratum. Strata are
meant to group similar users together, forming collections that are homoge-
neous internally. To sample users, a simple sampling is performed in each
stratum. The number of users sampled in a group depends on its size. A
visualization of this idea is shown in Figure 4.
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(a) Users are represented by two features (b) Strata and the sampled users

Figure 4: Stratified sampling: Random sampling in each stratum

To assign people to strata, their personal features are used. Political
surveys commonly choose strata based on demographic factors. In Federated
Learning, this is not done by using the data stored on the users’ computer,
which is meant to be used by the learning algorithm. Instead, some metadata
about users is often already known on the server and can be used for stratified
sampling.

For example, users could be grouped based on the region in which they
are located. This is especially useful if the data of users highly differs de-
pending on their region, e.g. when training on language data. A simple
sampling is unlikely to select a representative group of users since only a
few users of the regions where it is currently night are online. Stratified
sampling, on the other hand, ensures that regardless of the time, users from
different regions are always represented in the same way.

Cluster sampling is a related strategy that also assigns users to groups,
called clusters. In contrast to strata, clusters represent heterogeneous groups
of people. Each group by itself is meant to be representative of the entire
population.

This technique is commonly used whenever a natural way of dividing the
population into similar groups exists. For example, when a new drug is to be
tested in a country, clusters could represent villages. A simple sampling of
individuals across the entire country would lead to high costs for the study.
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Instead, cluster sampling can be used to select people from a handful of
villages. This way, a study can be performed on a representative group of
people in a much cheaper way. Cluster sampling generally selects all people
that are assigned to the sampled clusters.

How exactly stratified and cluster sampling can be implemented for Fed-
erated Learning heavily depends on the application and on the meta data
that is available. Generally, it is useful to do whenever a sensible way of
grouping users on the server exists.

3.3 Improving Individual Update Quality

The previous section purely focused on carefully selecting the users that
participate in an iteration. After this set of users is fixed, the quality of their
proposed updates should be improved as much as possible. Generally this
works by increasing the amount of work performed on each user’s computer.

In the case of gradient descent, this idea can be implemented by perform-
ing multiple update steps locally before sending anything to the server [63].
By running several iterations, the update that is computed can be of much
higher quality. This is often the case because it adds degrees of freedom to
the update. only taking one step, the update has to be alongside the gra-
dient of that iteration. By allowing several iterations, the update can move
in different ways and has more chances of properly going into an optimum.

—) one step
----- one step scaled

------- » multiple steps

Figure 5: One step of gradient descent step compared to taking multiple [107]

An example of this is given in Figure 5. The solid black arrow shows
the update performed after a single step of gradient descent. The dashed
gray line visualizes how this update could have changed the loss if a different
learning rate would have been used. In contrast to this, the dotted black
arrows visualize the improvement when taking several steps of gradient de-
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scent with a sufficiently small learning rate. By using the latter approach,
the loss can be minimized much better. This effect is even stronger when
the loss surface is more complex since individual updates usually only lead
to small improvements in such a space.

Running several iterations locally before synchronizing with the server
is a purely heuristic method. There are no theoretical guarantees that this
technique improves convergence. When the learning rate is chosen poorly,
the updates jump passed the optimum. Doing this multiple times decreases
the quality of the update further and further. The average that the server
computes is also not an unbiased estimator anymore. Because clients apply
different intermediate updates locally, the final updates they sent to the
server are generally based on different parameters.

Still, empirically this approach has led to large improvements. In some
simulations it has been shown that running multiple iterations locally im-
proves convergence by a factor between 3 and 100 [63]. Computationally
this is also not a significant amount of additional work. Running a few ad-
ditional steps of gradient descent locally is cheap since individual users only
have little data. Other optimization algorithms can be adapted in similar
ways, by essentially removing synchronization points to perform additional
local work.

3.4 Early Stopping

Neural networks are universal function approximators [20]. They can ap-
proximate any function in C'*® arbitrarily well, given that they are composed
of a sufficient number of neurons [44]. The set C* contains all functions
that have derivatives of all orders. This allows neural networks to also ap-
proximate a function that acts as a lookup table to the training data. If the
model is then only evaluated on the training data, it could work arbitrarily
close to perfect.

Of course, such a model would also generalize very badly. Unseen data
is not in the lookup table and so the accuracy based on such data is likely
to be much worse. To check if overfitting occurred, the training accuracy
should be compared to the accuracy on otherwise unused data. This idea
remains the same if other metrics than accuracy are used.

Since neural networks are eventually going to learn a function that mem-
orizes the training data, it is not enough to simply check for overfitting after
the end of the training. As the network begins to overfit, the validation
accuracy stops improving, as visualized in Figure 6. The standard solution
to this problem is early stopping [76, 35]. After each iteration, the training
accuracy is compared to the accuracy that is reached on validation data. In
the end, the model with the best validation accuracy is selected.

Even though this is a straightforward solution, it is used in the training
process of nearly any neural network. Generally the training is stopped if
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accuracy
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Figure 6: Overfitting after seven iterations

there was no improvement for a certain number of iterations. Supervising
the learning process is also a useful tool when training other models. It can
be used to see if the learning process can be stopped because the training
converged. In the case of Federated Learning, it is additionally helpful to
check if there are problems with the implementation or to see if everything
is converging as expected.

Evaluating on validation data is distinctly different to using a test set.
The validation set is used to choose between different models. The test set
is only meant to be used once in the very end, purely to evaluate the quality
of the selected model.

Testing is simple to implement for Federated Learning. After the end of
the training process, users only report back about the model quality, instead
of computing updates. On the other hand, evaluating using validation data
and early stopping can be implemented in different ways. A straightforward
solution is assigning the users sampled in an iteration to training and val-
idation groups. Depending on their group, users either send back weight
updates or validation feedback. This is equivalent to the standard approach
of partitioning a dataset into training, validation and test sets in statistics.

For Federated Learning, this might be a bad solution because the valida-
tion set could be small, leading to much noise and variance in the validation
feedback. A more elegant solution is possible when training on a stream
of data. This means that data is only looked at once during training and
directly discarded afterwards. An example of this is training a model to
predict the next word. The model is trained while the user is typing, but
none of that data is stored persistently. Each data point used during the
training was just generated by the user and is directly forgotten afterwards.

In such a situation, all sampled users can provide both updates and
validation feedback. When a new data point is generated, it is used to
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compute the validation accuracy of the model in the current time step.
Afterwards, it is used to calculate a model update for the next iteration.
The data point is then completely discarded.

This is a proper way of validating because the validation feedback is
based on data that was not used in the training of the evaluated model.
The data for computing the validation accuracy for the model of time step
¢ is only used for training the model of time step ¢ + 1. It is also a very
efficient way of using the data. The same data points are used for both
training and validating, meaning no data is lost unnecessarily. This has the
effect that validation accuracy is less noisy because it can be based on more
data. At the same time, the communication requirements are not increased
significantly and no additional users are required.

This idea can only be applied if all of the data used is freshly generated
in each iteration. If data is stored and reused across iterations, then there
is a problem of information leakage between the model and the data that is
used to evaluate it. In that case, the set of users has to be cleanly partitioned
into two groups instead.

3.5 RProp

Vanilla gradient descent, as introduced earlier, requires a learning rate n
that is used to scale the gradient. Selecting this hyperparameter well is
tremendously important. If it is too large, the optimizer quickly moves to
a local optimum in the beginning. However, the learning rate will be too
large to properly land in that optimum. Instead, the weights will oscillate
around the local optimum.

If the learning rate is too small, we steadily keep going closer to the next
local optimum. Still, the optimum will not be reached in any reasonable
amount of time. A visualization of these cases is shown in Figure 7.

loss

------ n too large
......... n too small

iterations
Figure 7: The learning rate is crucial to make the optimization work

Generally, the learning rate is selected by testing many values at different
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orders of magnitude. This requires an expensive naive search. For this
reason, various gradient descent variations have been developed that improve
on this.

In Federated Learning, this is particularly important. Testing out differ-
ent learning rates requires shipping the client part of the Federated Learning
system to users and then trying out the respective learning rates in produc-
tion. This is not desirable because most learning rates are not going to work
well, leading to a bad user experience. Additionally, it takes a long time to
try many different values like this.

The fundamental problem in the Federated Learning case is that we have
no information about gradient magnitudes before deploying the system. Just
collecting weight updates, without using them to compute new models, is not
sufficient because the gradient magnitudes might differ strongly depending
on the iteration. Since no data should be collected directly, an algorithm
that can automatically deal with any gradient magnitudes is required.

One gradient descent variant that dynamically adapts the learning rate
is RProp [78, 80], short for Resilient Propagation. A property that makes
RProp unique among gradient descent optimization algorithms is that it uses
only the signs of the components of the gradient and completely ignores its
magnitude. Since RProp is a general optimization algorithm, its motivation
is independent of Federated Learning.

To understand how RProp works and why it uses only the signs, it is
worth taking a step back to consider most other popular gradient descent
variants. They typically use the signs of the gradient components as well as
the magnitude. The gradient points in the direction of steepest ascent. To
find a local minimum, we go into the opposite direction. This direction is
completely determined by the sign alone.

To decide on the step size, a scaled version of the gradient’s magnitude
is generally used. This heuristic often works well but there is no guarantee
that it is always a good choice. To see that it can work extremely badly,
and does not have to contain valuable information, we consider a function f.
Figure 8 shows f as well as two scaled versions.

All three of these functions have the exact same optima, so the step
updates using gradient descent should all be similar. However, if we deter-
mine the step size using the gradient’s magnitude, then the step sizes for
the three functions differ by orders of magnitude. Even worse, the gradient
virtually vanishes for the second function and explodes for the third. This
is illustrated in Figure 9. The values of the derivative of the third function
are either very small or very large unless they are extremely close to the
original local optima.

This shows that the gradient’s magnitude does not necessarily contain
useful information for determining the step size. Even though optima can
still be found by choosing appropriate learning rates, this makes it clear
that using the gradient’s magnitude at all is sometimes questionable. Using
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Figure 8: Three functions with the same optima but vastly different gradi-
ents
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Figure 9: The first derivatives of the three functions

a fixed learning rate will also fail if only some parts of the function are scaled.

Modern gradient descent variants try to circumvent this problem by dy-
namically adapting the step size. RProp does this in a way that only requires
the sign of the gradient components. By ignoring the gradient’s magnitude,
RProp has no problems if a function has a few very steep areas.

To implement this, RProp uses a different step size for each dimension.
Let ni(t) be the step size for the i-th weight in the ¢-th iteration of gradient
descent. The value for the first and second iteration, 772(0) and ni(l)
hyperparameter that needs to be chosen in advance. This step size is then
dynamically adapted for each weight, depending on the gradient.

The weights themselves are updated using

_ _ oLt
0= s (25 @

, is a

i
where the sign of the partial derivative of the error in the last step with
respect to the respective weight is computed. We go into the direction of
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descent using the determined step size.

In each iteration of RProp, the gradients are computed and the step sizes
are updated for each dimension individually. This is done by comparing the
sign of the partial derivative of the current and previous iteration. The idea
here is the following:

e When the signs are the same, we go into the same direction as in the
previous iteration. Since this seems to be a good direction, the step
size should be increased to go to the optimum more quickly

e If the sign changed, the new update is moving into a different direction.
This means that we just jumped over an optimum. The step size should
be decreased to avoid jumping over the optimum again

Jumping over the optimum Going in the direction of the optimum
12 12
10 10
8 8
6 6
4 4
2 2
0 0
-2 0 2 4 6 -2 0 2 4 6

Figure 10: A change in gradient direction means we jumped over an optimum
A visualization of this idea is shown in Figure 10. To implement this update
scheme, the following formula is used:

(t=1) oL®) oLt=b

mm(nz * Q, nmax) if (’991@ 89?71) >0
t t—1 . (t) (t—1)
77§t_1) otherwise

where a > 1 > [ scale the step size, depending on whether the speed should
be increased or decreased. The step size is then clipped using Nmin and Mmax
to avoid it becoming too large or too small. If a gradient was zero, a local
optimum for this weight was found and the step size is not changed.

These seem like many hyperparameters to choose, but in practice there
are known values for them that generally work well [47]. It is also not
problematic if the clipping values Nyin, and nmax are respectively smaller and
larger than necessary because an inconvenient step size is usually adapted
quickly. Popular values for « and 8 are 1.2 and 0.5. Heuristically, it works
well to increase the step size slowly, while allowing for the possibility of
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quickly decreasing it when jumping around an optimum. For fine-tuning
the weights, it is important that S is not the reciprocal of «, to allow for
many different step sizes.

One advantage of RProp that was not discussed so far is having a dif-
ferent step size for each weight. If one weight is already very close to its
optimal value while a second weight still needs to be changed a lot, this is not
a problem for RProp. Other gradient descent variants can have much more
problems with such a situation, especially because the gradient magnitudes
can be misleading here.

To use RProp in Federated Learning, clients send updates in form of
gradients to the server. The server then averages the gradients and updates
the learning rates and weights using Equations 4 and 3 respectively.

A potential disadvantage of RProp is that it is highly sensitive to random
noise [78]. If the batch size, or the number of sampled users in Federated
Learning, is too small, then this can lead to the average update having a
high variance. This can significantly limit how close RProp can go to an
optimum. If the signs of the partial derivative keep changing, then the
learning rates effectively stay nearly stable or at least only change slowly.
This can be because the signs just fluctuate much due to random noise, even
though a larger batch size would lead to a stable movement in one direction.
In practice, this is not necessarily a problem as long as it is possible to
sample enough users in every iteration.

All in all, RProp can be highly useful for Federated Learning because
it is not difficult to initialize its internal values well. Even if the initial
learning rate is off, it is going to adapt itself quickly. Additionally, we do
not need prior knowledge about the user data to make RProp work well in
our distributed optimization setting.
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4 Compression

4.1 Communication Cost

A naive implementation of the previously introduced Federated Learning
protocol scales badly when used with more complex models. This is due to
the fact that the protocol requires a lot of communication between clients
and the server. In each iteration, sampled clients download a copy of the
current model and upload updates for all of its parameters. This has the
effect that the amount of required communication grows proportionally with
the size of the model.

In the past few years, models have become much larger, with neural
networks consisting of more and more layers. As of 2018, it is not uncommon
anymore to use neural networks with millions of parameters. Overviews of
models have shown that the number of parameters, and with them the total
computational cost, of the largest models has doubled every three to four
months between 2012 and 2018 [94].

In Federated Learning, it is often cheap to compute the updates on the
computers of individual users since they generally have little training data
compared to the entire population of clients. The more expensive part is
communicating the updates. This is especially the case for mobile phones
which often only have access to much slower connections [105]. Since the
communication effort is the bottleneck of Federated Learning, this section is
dedicated to compression techniques for reducing the required bandwidth.

To tackle this problem, it is important to keep in mind that network con-
nections are generally asymmetric [106]. Downloading data is much faster
than uploading it. In most countries, in 2018, downloads are on average
between three and ten times faster than uploads [106, 105]. This section
entirely focuses on compressing the upload of updates, to make them as
efficient as downloads. Compressing the models themselves for fast down-
loading is a separate problem, with different goals and known algorithms.

There are many obvious techniques that can be used to improve the pre-
viously introduced protocol. For example, updates could be collected and
only be sent once a good network connection becomes available. Further-
more, standard lossless compression techniques can be applied to reduce the
number of bits required to encode the updates.

Instead of discussing these in more detail, this section is concerned with
dedicated lossy compression techniques for Federated Learning. Fundamen-
tally, these methods try to perform a distributed mean estimation with very
little communication. Since the server only requires the mean to update
the model, this is the only statistic that needs to be accurate for Federated
Learning to work. As a result, it is completely acceptable to change individ-
ual update reports, to encode them using fewer bits, as long as the overall
mean stays stable.
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This differentiates the techniques in this section from standard compres-
sion techniques. Compressing the entire model for downloads is a another
very different problem, where the goal is to keep the predictions as stable
as possible [39]. This can however significantly decrease the quality of the
model, and might thus not always be an option.

From a theoretical perspective, we would like to reduce the communi-
cation requirements for uploads by more than a constant factor. This will
ensure that updates can still be transmitted efficiently , even if the band-
width of network connections does not increase as quickly as the size of
common models in the future. From a practical standpoint, this is not en-
tirely necessary. Decreasing the size of uploads by an order of magnitude
makes uploads as efficient as downloads. Since compressing the model it-
self for downloads might not be desirable, a constant compression factor
for uploads can already be sufficient. Some of the methods introduced in
the next subsections have hyperparameters that allow for either a constant
compression factor or one that depends on the model size.

The compression algorithms presented here fall into several categories.
Sketched update techniques aim to provide unbiased estimators of the true
updates. These estimates are the true update on average but require fewer
bits to encode them. Structured update methods change the optimization
process itself in order to allow for more compact representations. Finally, it
is discussed how RProp can be useful for efficiently encoding updates.

For simplicity’s sake, all the methods introduced are described for a single
matrix of weights. Of course, if the model consists of several matrices, the
methods can be applied individually to all of them. The true weight update
matrix is denoted by H, the compressed update matrix by H. Individual
elements of these matrices are denoted by h and h respectively.

4.2 Sketched Updates

Sketched update methods first compute the full update and then compress
it afterwards [50]. In earlier sections, we sometimes made use of unbiased
estimators to efficiently approximate some values. This concept can also be
applied to the compression of updates.

Concretely, sketched update methods want the compressed update H to
be an unbiased estimator of the true update H. This means that the com-
pressed update is the true update on average, even though it can be encoded
much more efficiently. This way we can still compute an unbiased estimate
of the true gradient, just like when only working with a subset of clients in
each iteration. These methods also give us a theoretical justification on why
they work.
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4.2.1 Sparse Masks

A straightforward approach for reducing the communication cost is forcing
updates to be sparse. In this method, each user is only allowed to update
a certain number of weights. The exact number, or the probability p of
being allowed to update a given weight, is a hyperparameter that needs to
be tuned for the problem at hand. Because users only communicate updates
for a subset of weights, the communication costs can be reduced drastically.

Which weights a client is allowed to update is chosen randomly on the
user’s device. A different random seed is used by each client. The random
mask matrix M of a client is then sampled from a Bernoulli distribution
using the predefined probability p of being allowed to update a given weight:

M;; ~ Bernoulli(p)

This mask matrix has the same dimensions as the weight matrix W. To
tell the server which weights a client updated, it only sends the random seed
to the server. The mask matrix itself is not sent because the seed is enough
to fully reconstruct it.

The weights that were not selected by the mask are treated as constants.
Updates for the other parameters are handled as always. If H is the normal
update matrix, then the sketched update matrix H is given by

ﬁ:(H@M)*1
b

where ® is the Hadamard product, i.e. pointwise multiplication:
(A® B)ij = Aij * Bij

It is clear that this method allows for a large compression factor because
clients only send updates for the weights selected by the mask. It remains
to discuss why this method can work well. Fundamentally, this is because
no information is lost on average. Since M;; is Bernoulli-distributed, it is
given that

E[My;] = p
By using the linearity of expectation, it follows:

E[H] = E[(H ® M) * ;]

1
_ (1 @ E[M)) + -
p
1
=(Hxp®1)x*—
p
—H®l
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where 1 is the matrix that only contains ones, i.e. 1;; = 1 for all 4, j.

The average compressed update is thus the true update. To account for
that fact that many zeros are summed up, we need to multiply with the
reciprocal of p. In the actual implementation this would not be necessary
as the masked entries are not sent to the server, so it is sufficient to directly
compute the estimate.

While this method based on sparse random masks is conceptually simple,
it also allows for a good compression. To ensure that the upload can be
performed as quickly as the download, it is sufficient to choose p = 1—10. A
sublinear compression is also possible, for example by choosing p so that
the expected number of updated parameters per client is logarithmic in the
number of total weights m:

_logm

m

Since the elements of M are Bernoulli-distributed, we would thus expect
mx*p = logm updated parameters per clients. Even though these are strong
compression factors, the mean is going to stay stable as long as we sample
enough users.

4.2.2 Probabilistic Quantization

The method of the previous section reduced the communication cost by only
sending selected elements of the update matrix to the server. An alternative
to this is sending the entire update matrix but encoding each element of the
matrix using fewer bits. Probabilistic quantization is such a technique. It
is a sketched update method, so the full update matrix is first computed.
Afterwards, each element of this matrix is compressed individually, totally
independently of the others.

Instead of directly introducing this compression algorithm, we start off
with a simpler binarization approach and then extend it to use multiple bits
and probabilistic techniques. Let Apyiy, and hpyax be the smallest and largest
values of the update matrix that we want to compress. To compress an
element h of the update matrix, it is compared to Apin and hmax and the
closer value is selected:

iL . {hmax if hmax —h S h — hmin

hmin  otherwise

Because only two values are possible for every compressed weight, this
information can be encoded using a single bit. If hy.x was selected the bit
is 1, otherwise it is 0. Additionally, hApax and hmin are sent to the server.
Before the compression, h was a 32- or 64-bit float, so a large compression
factor is achieved using this method.
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However, it is also a very lossy compression. As an extreme example, if
hmin = 0, Amax = 1 but most values are marginally below 0.5, then mostly
0 is used for the compressed updates. If all users have similar such update
matrices, then most averages computed on the server are going to be very
different from the true averages.

One potential solution to this problem was already shown in the previous
section. The compressed value h should be an unbiased estimator of the true
update h. To implement this idea here, the distances from h to hAmin and
hmax are interpreted as probabilities:

P hmax with probability (h — hmin)/(Rmax — Pmin) (5)
hmin  with probability (hmax — )/ (Amax — Pmin)

where (h — hpin) + (Amax — B) = Amax — hmin 18 used as a normalization
factor. A large distance of h to one of the possible values corresponds to a
large probability for the other value. This is visualized in Figure 11.

hmin h hmax

| | |
[ I |

probability for Amax probability for Amin

Figure 11: A visualization of the probabilities in probabilistic binarization,
assuming normalized distances

In the case of the example distribution of i that was previously discussed,
this scheme works much better. Now, values of 0 and 1 are selected with
similar frequency, leading to a good estimate of the true average. In the
more general case, we can show that & is truly an unbiased estimator of h
by using the definitions of & and the expected value:

E[%’] = hmax * IP[E - hmax] + hmin * IP[E - hmin]
o hmax * (h - hmin) + hmin * (hmax - h)

hmax - hmin

hmax *h — hmax * hmin + hmin * hmax - hmin * h

hmax - hmin

_hmax*h_hmin*h

hrnax - hmin
_ h * (hmax - hmin)

hmax - hmin

=h

If many users have similar weight update distributions, this is likely to
be a good approach. Individual compressed updates might be far off from
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the true update, but by averaging these differences will even out. In such a
case, probabilistic binarization leads to little information loss although much
fewer bits are required to communicate all updates.

For some other situations, probabilistic binarization will lead to a large
error. This is the case if many users have different distributions or hmin
and hpy.x are far away from each other. In such a case, additional bits can
be used to reduce the error introduced by the compression scheme. The
process is then called quantization instead of binarization. If k£ bits are
used, 2% values can be encoded. These are selected by evenly segmenting
the range [hmin, Amax-

To compress an update h, the two closest possible values are determined.
The probabilistic binarization scheme from Equation 5 is then used to decide
between these two values. The resulting formula is still an unbiased esti-
mator because the selected hpin and hpax are definitely smaller and larger
than the respective h. This was the only requirement for h to be an unbiased
estimator.

To determine the two closest possible values efficiently, binary search
could be used. But since we have the full information of how the possible
values are computed, there is a closed formula that can be used to compute
the index of the next smallest value. The length of the interval [Amin, Amax| 1S
given by |Amax — Amin|- The k bits allow us to encode 2k values which means
there are 2 — 1 possible pairs of values that could be used for (Amin, hmax)
in Equation 5.

To find the lower bound that should be used, we first compute the dis-
tance between the individual possible values. The distance d is then given
by:

d — |hmax - hmin|
2k —1
where the numerator corresponds to the total length of the interval and the
denominator to the number of possible values for the lower bound. Sub-
tracting 1 is necessary because the largest value that can be encoded cannot
be used as the value for Ay, in Equation 5.
The index 7 of the closest smaller value can then be computed as follows:

. h*hmin
T4

In the numerator, we compute the distance of h to the start of the interval.
This is then divided by the distance between the individual values. The
index of the larger value is then given by ¢ + 1. The formula allows finding
the two closest values in constant time, independently of the number of used
bits.
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4.3 Structured Updates

In the previous subsection, the computation of updates was performed com-
pletely independently of the compression. We were able to show that the
expected compressed version is equal to the true value. However, individual
compressions can still be very lossy. While it is not possible to completely
get rid of an error without switching to lossless compression algorithms, we
still want to ensure that the compressed update leads to a good next model.

Structured update techniques enforce a certain form on the update that
allows for a more efficient representation. The fact that the update has to
have this structure is taken into account during the optimization process
itself. Generally, this is implemented by adapting the computational graph
of the model.

By doing this, the optimizer can find updates that follow the enforced
structure but still minimize the loss. In other words, we can find a locally
optimal update that can be encoded efficiently, since it has the predefined
structure. In this process, the theoretical guarantees of unbiased estimators
are lost, and the methods are only motivated on a heuristic level.

4.3.1 Sparse Masks

In the sparse mask compression method for sketched updates, each client
was only allowed to update a certain set of weights in every iteration. This
idea can be extended into a structured update technique. If a client can
only update certain weights, then it could take this information into account
during the optimization process.

Instead of computing a normal weight update and then making it sparse
afterwards, updates should only be computed for the weights selected by
the mask. To implement this, the other weights are marked as constants
in the computational graph. When computing the updates like this in one
SGD step, the results are not going to differ from the ones of the sketched
method. In the process of computing partial derivatives, all the other weights
are treated as constants anyways, so this does not change any results yet.

However, a structured update method allows us to change the optimiza-
tion process itself. To this end, we perform several steps of SGD based on
the sparse updates. After the updates of the first step were computed, they
are applied locally and new sparse updates are computed. Only the weights
chosen by the mask are updated in all these steps.

Like in the sketched update method, the final result is a sparse update
matrix that can be efficiently shared with the server. The difference is that
the updates from individual clients can be much more meaningful. By taking
several SGD steps, the updates are likely to have a higher quality, as outlined
in Section 3.3.

One disadvantage compared to the sketched update method is that the-
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oretical guarantees are lost. The resulting matrix H is not an unbiased
estimator of H anymore. Still, the empirical results from performing several
SGD steps show that this might be a promising approach.

4.3.2 Matrix Decomposition

Another method for enforcing a structure on the updates in a way that
allows for an efficient encoding is based on matriz decomposition. Instead
of directly sending H, we find two matrices A and B that can be used to
approximate H. Concretely, the update matrix can be factorized using A
and B:

H=AxB

The dimensions of A and B are chosen accordingly. If H is a dy X do
matrix, then A has dimensions d; x k and B has dimensions k x dz. By
doing this, we effectively limit the rank of H to be at most k. This makes
H a low-rank approzimation of H. Thus, H contains less information than
H, the trade-off being that it is easier to encode.

Both the compression factor and quality of the compression depend on
the size of k. If k is too small, not much information is retained and noth-
ing complex can be learned. Conversely, only a weak compression can be
achieved if k is too large. The matrices A and B are k/ds and k/d; the size
of H. What compression factor is viable depends on the task to be learned
but in the experiments for this thesis a factor of 5 to 10 usually seemed
feasible.

An important property of this method is that the low rank of the updates
does not force the rank of W to be low as well. Because users create up-
date matrices which have different linearly dependent rows, the final weight
matrix W can still have a full rank. This is also the case because there are
multiple rounds of communication.

Up until this point, this technique sounds like it might be a sketched
update method. This would be true if H is computed in the normal way and
A, B are chosen afterwards to approximate the selected H as well as possible.
However, if we know that H needs to be factorized into two smaller matrices,
then it makes sense to already take this information into account during
the optimization process. Instead of just approximating H afterwards, we
directly try to find the A and B that optimize our loss function.

To implement this, computational graphs come in handy. In the compu-
tational graph that encodes our neural network, we replace each occurrence
of W with W + A x B. The matrices A, B have to be declared as variables,
while W is now marked as a constant.
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(a) Original subgraph %%

(b) Subgraph for a decomposed update

Figure 12: Each subgraph containing a weight matrix W needs to be adapted

The computational graph allows us to easily partially differentiate with
respect to the elements of A and B. These two matrices can then be op-
timized with the same gradient descent process that could also be used to
optimize W. The local optimization process performs several steps of SGD
to keep improving A and B. By doing all of this, we perform a structured
update method where the enforced constraint is a low rank of W.

This also explains why we do not make use of standard decomposition
algorithms like singular value decomposition [34]. While they might also
find a sensible decomposition, they would be applied one step too late. If
we directly optimize based on the fact that we want to decompose, then we
can produce much more meaningful updates.

Like all weights matrices, A and B are randomly initialized and then op-
timized iteratively. An alternative to the method just presented is keeping
either A or B fixed after initialization and only optimizing the other one. If
clients use a local random seed to generate the fixed matrix, then it is enough
to transfer the random seed since it fully encodes how the fixed matrix looks
like. The other matrix is then optimized using the same computational
graph idea. The advantage of that method is that the communication cost
is reduced by around half, depending on the size of d; and ds. The disad-
vantage is at hand: The decomposition found is a worse approximation than
the one found by optimizing both matrices.

Konec¢ny et al. [50] performed a number of experiments where A or B
were kept fixed. They found that keeping A fixed generally worked much
better than keeping B fixed. No formal reasoning for this was given but
on an intuitive level it can be explained like this: B acts as a projection
matrix. It maps the data to a smaller, k-dimensional space. A is a recon-
struction matrix. Given the k-dimensional encoding, it tries to reconstruct
as much information as possible. If B is fixed and randomly chosen, then a
projection that can not be reconstructed well could be found. Choosing the
reconstruction randomly is not as bad because this part touches the data at
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a later part. The projection matrix can be optimized to prepare the data
well for the random reconstruction.

4.4 Updates for RProp

All of the methods discussed so far focused on the client’s role in the opti-
mization process. A different way to tackle the problem is to think about
the optimization algorithm used on the server. For Federated Learning, we
are especially interested in optimization algorithms that allow us to encode
the required information very efficiently.

The RProp optimization algorithm introduced earlier can be highly use-
ful for this. It only uses the sign of gradient and ignores its magnitude. The
sign of a weight update can be encoded using a single bit as opposed to 32
or 64 bits for encoding the entire gradient as a float. Using RProp with
Federated Learning is simple. Each client computes its local gradient but
only sends one bit per weight to the server: 0 for a negative sign, 1 for a
nonnegative one.

To update the step size for a weight, the server then uses the more
common sign. The third case in Equation 4 is discarded because one bit per
client and weight does not allow us to conclude if 0 is the most common sign.
This is not a problem because the chance of perfectly landing in an optimum
is virtually non-existing anyways. This algorithm is also slighted different
to the standard RProp in that the gradient magnitude is already ignored
before computing the average update. Instead of first averaging and then
taking the sign, we first compute the individual signs here and then select
the most common one. Still, it closely resembles the original algorithm and
behaves similarly if most users produce updates of similar size.

RProp allows for a compression factor equivalent to probabilistic bi-
narization. However, no crucial information is lost at all because RProp
was designed to purely work based on gradient signs. This makes RProp a
promising optimization algorithm for Federated Learning. It can be moti-
vated based on the fact that it is well suited for distributed optimization as
well as based on its usefulness for compression.

4.5 Compression-Sampling Tradeoff

By sampling a subset of users in each iteration, we only estimate the update
that should be applied to the model. This estimate has a smaller variance
if more users are sampled. On the other hand, adding lossy compression
makes it more difficult to compute a good estimate because the individual
updates from users now contain less information.

To estimate updates well, with little communication per user, a tradeoff
between the number of users and the compression factor has to be found [63].
Adding additional compression reduces the update quality but this can be
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offset to some degree by sampling more users in each iteration. This allows
us to effectively distribute the required communication across many users,
making the protocol more efficient for individuals.

Figure 13 shows simulation results for this. A model is trained using the
frecency simulation dataset [98], introduced in Section 7.3. Three different
simulations are shown. The first simulation samples 200 users in each it-
eration and uses no compression at all. The other two simulations sample
more users but use a sparse mask compression factor so that all simulations
require the same amount of bandwidth in each iteration.

10 Different number of users but same total number of megabytes transferred per iteration

—e— 200 users
09 500 users
1,000 users
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iteration

Figure 13: Adding more users allows us to use a stronger compression factor

It can be observed that the methods with compression converge only
slightly slower, while reducing the communication per user quite strongly.
Increasing the number of users is very helpful here. The convergence speed in
a different simulation which uses the same compression methods but always
samples 200 users is up to three times slower.
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5 Privacy

5.1 Motivation

One primary motivation for introducing Federated Learning were privacy
concerns with the way machine learning is conventionally done. Federated
Learning seems like a major improvement in this regard since the data does
not leave the users’ devices anymore. However, it still remains to be dis-
cussed if it is possible to reconstruct data based on the updates that are sent
to the server.

Since neural networks are universal function approximators, they are able
to approximate a function that acts as a look-up table to all the data [20].
Neural networks with too many neurons typically memorize parts of the
training data instead of learning more general pattern [35]. We have to
assume that an adversary could intercept all messages and read the model
weights. This adversarial actor could analyze the weights to figure out in-
formation about individuals.

Weights of neural networks have the reputation of being incredibly hard
to analyze [31]. Still, there has been some work in this area. Fredrikson et
al. [29] analyzed the weights of a facial recognition model. They were able
to reconstruct some of the faces that were used in the training of the model.

While all of this remains incredibly difficult to do and there have been
few successful such attempts, they show that attack vectors to Federated
Learning do exist. When looking at the techniques introduced so far, we
are not able to quantify how difficult it really is to figure anything out
about the data of individuals. Having no formal guarantees for privacy is a
major problem. Historically, there have been many cases where people tried
to anonymize data to ensure the privacy of individuals. When there were
no formal guarantees, this anonymization often looked solid but was later
broken.

One of these cases was related to the Netfliz Prize [9]. Netflix published a
dataset that contained information about users and which movies they liked.
The dataset was meant to be used in a competition to improve the Netflix
recommender system. Obvious personal identifiers, such as names and user
IDs, were removed from this dataset. Many users however also published
their movie reviews on IMDb. By joining the Netflix and IMDb datasets,
researchers were able to deanonymize parts of the Netflix dataset [67].

A similar case occurred in the 1990s, when a government agency in Mas-
sachusetts published a dataset about hospital visits of its employees [8]. This
dataset was meant for research purposes. Again, personal identifiers, such as
names and social security numbers, were removed. However, the dataset was
still deanonymized in parts by joining it with a voter roll dataset. Datasets
with information about people registered for voting can be bought legally in
the US [108]. Since both datasets shared some fields, it was possible to join
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them.

A few personal attributes make it surprisingly easy to identify people.
In the US, 87% of people can be uniquely identified by gender, birth date
and postal code alone [86]. In the case of the health-related dataset, the
information was enough to identify the governor of Massachusetts in the
dataset.

All these stories share a common pattern. When the data was pub-
lished, steps for anonymization were taken but there were no formal guar-
antees. Later, someone found auxiliary information that could be used to
deanonymize parts of the dataset. These cases show that formalization is
desirable when it comes to privacy. While Federated Learning looks like it
is much better for privacy, we want to have guarantees. These guarantees
should even hold if attackers have access to additional information that we
have no knowledge about.

5.2 Differential Privacy

To deal with the problems outlined in the previous section, we want to
formalize what privacy means. Differential Privacy is a mathematical field
that tries to do this using a stochastic framework [26]. It allows us to
quantify how much certain algorithms respect privacy. We do not consider
algorithms to be either privacy-preserving or to be bad for privacy. Instead
of this binary view, we try to describe how difficult it is to make conclusions
about the data of individuals.

On a high level, the goal of Differential Privacy is to compute accurate
statistics on the entirety of users while not knowing anything about indi-
viduals with high confidence. For example, we might want to compute the
mean value across many users without knowing the exact values of individu-
als. In the case of machine learning, we want to fit a model without knowing
details about the data of individuals.

To describe this formally, two datasets D1 and D are considered. These
datasets are adjacent to each other. The definition of adjacent can differ
across applications but it usually means that the two datasets are identical
except for one data point which is missing in one of the two datasets.

A statistical query @ is then executed on both datasets. This query
could, for example, compute the mean or fit a statistical model. It usually
involves randomness. Even for queries that are not random by default,
such as computing the mean, adding randomness helps to improve privacy
guarantees.

Definition 1. A query @ is considered to be e-differentially-private if for
all adjacent datasets D1, Dy and for every possible subset R of results of the
query, the following formula holds:

PIQ(Dy) € R] < e x P[Q(D2) € R
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That is, adding an additional data point to a dataset must not sub-
stantially change the result of the query. The formula is expressed using
probabilities to account for the randomness in Q. If we guess the results of
the query to be in a set of possible values R, then adding one data point
should not change the probability of being correct by more than e€. If this
is not the case, then adding the new data point is bad for privacy because
it is noticeable whether the data point was used by the query or not.

The value € is called the level of Differential Privacy. The definition
above captures what we intuitively understand as privacy. It should be very
hard to figure out whether an individual contributed data, and much less so
what their data looks like.

To make algorithms fit into the framework of Differential Privacy, ran-
domization strategies are used [26, 28]. Instead of having users report their
true data, they only share a version where random noise was added on top.
In the case of discrete data where it is hard to add a little bit of noise,
users could lie with some given probability [28]. By doing this, the entity
collecting the data cannot make confident conclusions about individuals any-
more. However, it is possible to estimate the overall random noise well when
enough users are surveyed.

In the following subsection, we use a slight variation of the earlier defi-
nition.

Definition 2. A query Q is called (e, )-differentially-private if for all pos-
sible subsets of results R and all adjacent datasets Dy, Ds, the following
holds:

P[Q(D:) € R] < e xP[Q(D2) € R] +6

In contrast to the first definition, an additional § is added. This allows
for a probability § of directly breaking Differential Privacy. We want to keep
both € and ¢ small to ensure good privacy.

To show that an algorithm conforms to some form of Differential Privacy,
the concept of sensitivity is often used.

Definition 3. The sensitivity S(Q) of a query Q describes by how much the
result can differ if the query is executed on two adjacent datasets:

5(Q) = max [|Q(D1) — Q(Da)||2

D1,D>

where || - ||2 is the La-norm. The sensitivity should be low, or, even better,
bounded by a constant.

5.3 Differentially-Private Federated Learning

In one iteration of Federated Learning, data of a specific user is either used
entirely or not used at all. To account for this, a different definition of
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adjacent datasets is required. We now consider two datasets Dy, D2 to be
adjacent if they only differ in the data of one single user. That is, the
datasets are the same except that one of the datasets contains data from a
user that is not present in the other dataset.

The motivation behind this is that is should be difficult to tell whether a
user participated in training the model. The model should not differ much
by adding a new user. If this is the case, then the model can not have
memorized the data of that specific user.

To design a Federated Learning algorithm which can be proven to be
(€, 0)-differentially-private, we build on ideas from Abadi et al. [3]. They
introduce a noisy version of SGD and present the following theorem:

Theorem 3. A learning algorithm based on SGD computes a gradient es-
timate in each of T iterations. The data used to compute the estimate is
sampled using a probability q. The sensitivity of the estimate is bounded by
a constant d and noise sampled from N(0,0%d?) is added to the estimate in
each iteration. To compute the weights of the next iteration, the estimate is
subtracted from the current weights.

Then, constants c1,ca exist, so that the algorithm is (e, §)-differentially-
private for any € < c1¢*°T and § > 0 if noise is added using:

< cgq\/Tlog(l/é)

€

McMahan et al. [64] then adapted Federated Learning to make it fit into
the framework above. The remainder of this section explains how this can
be done.

First of all, users are sampled with a probability ¢. This means that the
number of sampled users can differ across iterations. The underlying proof
of the theorem requires that the data was sampled independently from each
other, so we have to sample with a probability ¢ instead of always sampling
K users. This also means that strategies like stratified or cluster sampling
cannot be used as they introduce a bias. They might sample one user with
a very high probability, making it hard to ensure this person’s privacy.

To bound the sensitivity of the gradient estimate, we want to bound
the size that individual updates H; can have by s. This is implemented by
checking the Lo-norm of H; and scaling it down if necessary:

H; * HHS'\Iz otherwise
T

F {H if ||Hills < s

An alternative way of limiting the Ls-norm for neural networks is to
enforce different limits in the various layers. If s; is the limit of the Lo-norm
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in the i-th layer and there are [ layers, then the overall limit is given by

since the sum in the square root can be expanded to the sum of squares of
the individual components of the update vector. The bounds of different
layers can be tuned to improve the learning process.

The RProp variation idea from Section 4.4 makes it easy to enforce a low
upper bound on the update. Since all components of the update are either
1 or —1, the bound is already given by

||Hil|2 = vV/m

where m is the number of weights.
If the set of sampled users is denoted by C, then a simple way of esti-
mating the gradient is
2icc it

D iec M
where the number of data points n; weights the importance of the user’s
update.

To show that this estimator has a bounded sensitivity, we first estimate
g(C) upwards. Let N = >, ~n; be the number of data points used in the
current iteration:
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where we use the triangle inequality in step 6.
This allows us to bound the sensitivity of the gradient estimate:
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Since we know that the sensitivity of the gradient estimate is bounded,
Theorem 3 can be applied. We thus add a sufficient amount of noise each
iteration. In the implementation, an accountant object keeps track of the
privacy loss over the iterations. In each iteration, the accountant checks
what the level of Differential Privacy currently is. Omnce € or § pass the
configured maximum level, the training is stopped, without applying the
last aggregated update.

Some of the changes made to the algorithm are common regularization
strategies. Gradient clipping is often used to deal with exploding gradients,
which for example happen when the optimizer is in a very steep area [73, 35].
However, usually the final gradient estimate is clipped, while we clip the
individual elements before computing the average here.

Adding noise is another popular regularization strategy [69, 5]. By
adding some random noise, the model has a harder time memorizing data,
which can combat overfitting. It has been shown that this can be equiv-
alent to other forms of regularization, such as penalizing the size of the
weights [11].

To ensure a good level of Differential Privacy, both of these methods
might need to be used extensively. In this case, the regularization effect
can become too strong, making learning much more difficult. Empirically,
McMahan et al. [64] showed that they can reach the same level of accuracy
with this algorithm. However, training takes roughly 60 times longer since
the clipped gradients and the additional noise slow the convergence process
down.

Another problem is choosing an appropriate level of Differential Privacy.
It is not entirely clear what level can be considered a good choice in a
given situation. This is a common problem with Differential Privacy in
general [45, 55], independent of the application to Federated Learning.

Still, the fact that a comparable accuracy can be reached using this
algorithm is interesting from a theoretical perspective. It shows that it is
possible to train machine learning models in highly privacy-respecting ways.
The data does not leave the device at all and we can prove that it is incredibly
hard to analyze the abstract updates that are sent.

While there are no guarantees that these algorithms find good models,
this is no different to most of machine learning. Most machine learning
algorithms give no strong guarantees and are only evaluated empirically.
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6 Personalization

6.1 Motivation

Personalizing models for individual users can be useful in many applications.
One prominent example of this are recommender systems. Here, personal
preferences of users can differ a lot, so having models incorporate additional
user-specific context can boost performance [10, 4]. By slightly customizing
models for individuals, we can try to match pattern in their data more
closely.

From a theoretical perspective, users can generate data from different
underlying distributions. By fitting just one model on all the data, it is only
possible to detect pattern that exist in the data of many users. The central
model can thus not be perfect for everyone. Personalization means that we
adapt the model for each individual, to improve the performance on their
data.

A naive approach of tackling this problem does not use Federated Learn-
ing at all. Instead, completely independent models are trained for each user,
locally on their own computer. This solution generally works badly because
individuals often do not have enough data to properly fit a model.

This section deals with methods between the two extremes of having one
central, non-personalized model and having completely independent models.
To this end, both approaches are combined: A central model is trained using
Federated Learning. Because a lot of data is available for this model, it can
have a good quality and will generalize well. Additionally, users take this
model and also customize it locally to improve the performance even further.

Fine-tuning an already trained model is possible with much less data [71],
so this is a more feasible approach. Compared to a standard Federated
Learning system, this is only a small step engineering-wise since we are al-
ready training on the user’s computer. To respect privacy, the customized
model is not shared with the server. Information leaks in the collabora-
tive training part can be controlled using Differential Privacy, as explained
earlier.

To formally define the goals of personalization, we consider the overall
loss across all users. If users customized the model, the loss is computed
using that model. Otherwise, the central model is used. The first goal is
that the loss should be smaller when using individually personalized models
compared to using the central one.

Additionally, the quality of the central model should not be decreased.
New users that do not have their own data yet will fall back to this model.
Thus, it should work as well as when trained with a standard Federated
Learning system. Making sure models work well for new users that have no
data yet is known as handling the cold start problem in machine learning
and recommender systems [53]. Personalization strategies should deal with
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this problem.

The next two subsections describe two possible approaches to this prob-
lem. Since personalization is a new research area of Federated Learning that
was just recently proposed [64], there is no existing literature describing these
exact methods. Still, they built on existing ideas in machine learning and
thus have some empirical evidence behind them. Finally, to evaluate them
on one example dataset, simulation results are presented.

6.2 Transfer Learning

Transfer Learning is a common machine learning strategy for training mod-
els in situations where little data is available for the exact problem that
needs to be solved [71, 87]. However, there is a lot of data available for a
more general version of the problem. For example, one might want to train
an object detection model that is able to recognize a certain kind of a traffic
sign.

If there are not many training images of this exact traffic sign available,
it can be hard to fit a good model. However, a lot of training data exists
for more general object detection tasks, such as the ImageNet dataset [24].
These datasets have images of thousands of different kinds of objects, with
traffic signs not necessarily being among them. Transfer Learning tries to
make use of the larger dataset to be able to solve the actual problem of
fitting a model on the small dataset.

Generally, this is a two-step process. First, a model is trained on the large
dataset. For many well-known datasets, these models were already trained
and are freely available online, for example for standard object detection
tasks [103]. In the next step, we continue to train the same model but use
the small dataset for this.

The motivation behind this technique is that many parts of the first
model are reusable for the second problem. The training on the small dataset
thus starts from a much better initial point. This also resembles more closely
how humans learn [16]. When we learn to recognize a new object, we do not
start from scratch but can learn more quickly because we already know how
to recognize certain shapes and edges.

Sometimes, only parts of the model are fine-tuned [70]. During the train-
ing on the small dataset, the other layers are frozen and ignored by the
optimization process. To freeze a layer, its weights are marked as constants
in the computational graph. For example, convolutional layers are often
only trained on the first dataset. This is because convolutional layers be-
have similarly in most object detection problems [89], e.g. they are doing
general edge detection. The model generalizes better if only the final, fully-
connected layers are fine-tuned in such cases.

Transfer Learning has been used successfully in many parts of modern
computer vision [70] Many custom object detection models are based on
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Transfer Learning as of 2018 [46]. Increasingly, natural language processing
also makes use of Transfer Learning. By first learning on a large corpus of
general text, it becomes easier to work with inputs that represent words [75,
13]. Models for machine translation or text summarization are based on this
idea [7, 83].

The same idea can also be applied to Federated Learning. Training
on the data of all users is the equivalent of training on the large, more
general dataset here. We use this data to generate a good starting point for
personalizing models locally. This is also a two-step process:

1. A central model is trained collaboratively by all users, using Federated
Learning

2. Users individually fine-tune their model locally. Here, Transfer Learn-
ing techniques, such as freezing layers, are used

This technique can solve the general personalization problem, outlined
in the previous section. Because the local training starts with an already
well-trained model, it is easier to get a good custom model with little data.
This approach can also handle the cold start problem. New users start by
using the central model, which was trained by a lot of users.

The fundamental problem with this approach is that the central model
can become outdated. As soon as users start fine-tuning their local model,
they cannot collaborate to train the central model anymore. If the over-
all distribution of data changes over time, this could be problematic. For
example, recommender systems might become outdated when new trends
emerge.

6.3 Personalization Vector

Adapting the architecture of the model is an alternative approach to per-
sonalization in Federated Learning. This needs to be done in a way that
allows users to personalize while also being able to continuously help train
the central model. To this end, the model is given an additional input vector
that differs across users. This personalization vector abstractly encodes user
preferences and is not shared with the server at all. The values of the vector
are learned, based on data.

In the beginning, only the central model is trained until it has suffi-
cient quality. Then, we alternate between continuing to train the model
parameters and optimizing the personalization vector. In every second it-
eration, partial derivatives of the loss with respect to the personalization
vector are computed. The personalization vector is then locally updated
by an optimizer that uses this gradient. By using computational graphs,
it is straightforward to compute the partial derivatives with respect to the
personalization vector. Over time, the personalization vector will reflect the
user’s preferences more closely.
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In every other iteration, a vector of zeros is used as the additional input
in place of the personalization vector. Only the weights of the model are then
optimized. To do this, an update is computed and send to the server. The
server uses these updates to improve the central model, and thus ensures
that it does not become outdated. Even if users do not have their own
personalization vector yet, they can rely on the central model. The cold
start problem is thus addressed.

By introducing a personalization vector, we give the model the capability
to store abstract information about the user. It can learn to remember in-
formation that allows itself to match pattern in the user’s data more closely.
Even if additional information is not useful, it could learn to ignore the per-
sonalization vector. The model with the personalization vector has thus the
capacity to outperform the central model by itself because it has access to
more information.

Just like the first approach, this idea builds on existing concepts. Al-
ternating between optimizing different values is based on the alternating
least squares algorithm that is commonly used for collaborative filtering [92].
Learning a vector that remembers the important part of the data seen so
far is the basis of how recurrent neural networks process streams of infor-
mation [35, 43].

Compared to the first approach, this method is much more flexible. All
users can help train the central model indefinitely. The cost for this is an
increased engineering effort since the protocol involved is more complicated
to implement. The size of the personalization vector is also an additional
hyperparameter that needs to be tuned.

6.4 Simulations

To empirically evaluate if these methods can work, they were implemented
in a simulation. This simulation consists of three parts:

1. All users help to train a central model using Federated Learning

2. All users start to customize the model, using either the Transfer Learn-
ing idea or using an additional personalization vector

3. The way that users sample the data is slowly changed while the train-
ing itself still works in the same way as in the previous step

We report how the accuracy changes during these steps.

The frecency dataset [98] was used in this simulation. The goal is to
predict which website a user wants to visit when they enter a certain search
term. This is done based on features like how often and how recently they
visited the candidate websites, whether they bookmarked them and so on.
The dataset was created by encoding some assumptions such as how many
websites users bookmark or how often they return to websites. To make sure
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that individual users sample differently, they make use of different random
seeds. A more thorough description of this data is given in Section 7.3.

During the training, new data is sampled in every iteration. Models
are evaluated using the early stopping idea from Section 3.4. Sampled data
is first used to compute an update and then used to evaluate the current
model.

Figure 14 shows the results of training a model on this data using the
Transfer Learning approach. Initially, everyone uses the central model,
which improves over time. In iteration 12, the personalization stage be-
gins. Users now fine-tune the model locally, while the central model is not
trained anymore. This means that the accuracy of the central model es-
sentially stays stable. Because of the randomness involved in evaluating
the model using newly sampled training data, there are small fluctuations.
The performance of the local models quickly increases because individual
preferences can be matched much more closely now.

In iteration 19, the way that the data is sampled starts to change. There
are now fewer bookmarks and users visited sites less recently. Since the
central model is not updated anymore, its quality starts to degrade. The
local models are not affected that much because users still update them.
However, individuals also do not have enough data to fit a really good model
anymore, leading to a small loss in accuracy.

1.0
—— Accuracy (Central) . :
09 +- Accuracy (Local) ‘/r’ e ...“
Personalization starts e .-
0g T Distribution of data changes H
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Figure 14: Personalization using Transfer Learning

Figure 15 shows the results of the same simulation when using a person-
alization vector. The central model now keeps improving continuously, even
in the personalization phase. However, this also means that the local version
improves more slowly since clients only spent part of their time optimizing
the personalization vector.

When the underlying data starts to change in iteration 19, both, the
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central model and the local vectors, continue to improve. This is because
there is enough data to adapt the central model. The cold-start problem is
handled much better by this approach since the central model has a high
quality even when the way that data is generated slightly changes over time.
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Figure 15: Personalization using a custom input vector
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7 Implementation

This section describes an implementation of a Federated Learning system
that was built for Firefox. The system was used to improve the history and
bookmark search in the Firefox URL bar. 186,315 people participated in
the training, while many others used the new model.

To the best knowledge of the author, this was the first large-scale Fed-
erated Learning system ever built outside of Google. The entire code of the
project was open sourced and is freely available [96, 97, 98]. Many of the
techniques introduced in this thesis were utilized in the process. The RProp
optimizer is the centerpiece of the optimization process. The early stopping
idea from Section 3.4 was used to validate the model during training.

To make it possible to develop the entire system during the work for this
thesis, the trained model could not be too complex. This is why a model
with fewer weights was trained. The compression techniques from Section 4
were thus not required.

7.1 Search in Firefox

The Firefox URL bar displays suggestions when typing a search query, as
shown in Figure 16. Some of them are directly provided by a search en-
gine. The others are generated by Firefox itself, for example based on the
user’s history, bookmarks or open tabs. Those suggestions are selected by
a handcrafted algorithm that contains numbers that were not chosen in a
data-driven process. To optimize them, Federated Learning can be used.

New Tab X +

c @ hacker news|

Q_ hacker news — Search with Google
Machine Teaching: Building Machine Learni... —
Ask HN: What is your favorite CS paper? | ... —
Redefine statistical significance | Hacker N... —
Hacker News

Y. Hacker News —

Q_ hacker news

Q_ hacker news who's hiring

Q_ hacker news search

Q_ hacker news jobs

Search with:

Figure 16: The Firefox URL with and five history and bookmark suggestions
Searching for history and bookmark entries in the Firefox URL bar is a
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two-step process:

1. The search query is matched against the browser history and book-
marks. Matching is a binary decision. Pages either match the query
or do not

2. The set of matched links is ranked based on the user’s history

The Federated Learning system optimizes the ranking part of this pro-
cess, while the matching part itself is not changed. Before diving into the
current implementation, it is worth taking a step back to understand how
ranking in machine learning works. This makes it easier to see how the
current algorithm fits into a machine learning system. Fundamentally, there
are three different approaches for learning a ranking algorithm [58, 18]:

1. Pointwise ranking: Each item is given separately to the model, which
assigns a score to the item. The ranking is then determined by sorting
all items using their respective scores. Essentially, this is a special type
of a regression model since we are assigning a real number to every
input

2. Pairwise ranking: The model learns to compare pairs of items. Its
task is to decide which of the two items should be ranked higher.
Intuitively, this method can be motivated by the fact that the learned
comparison function could then be used by various sorting algorithms.
In this approach, we treat the problem as a classification task since
the model can only have two possible outputs

3. Listwise ranking: Instead of only working with individual items in each
step, these methods try to operate on the entire list. The motivation
behind this idea is that the evaluation metric can be optimized directly
this way. In practice, this turns out to be fairly difficult because many
evaluation metrics are not differentiable and the models need to work
with many more inputs. Another difficulty is that the list could have
an arbitrary length

All these approaches have different advantages and disadvantages. The
existing ranking algorithm in Firefox is very similar to a pointwise ranking
approach. Since this algorithm should be optimized using machine learning
techniques, this gives us a clear set of techniques that could be useful in the
optimization process.

The ranking of possible suggestions in the Firefox URL bar is performed
using frecency [102], an algorithm that weights pages by how frequently and
recently they were visited. To do this, a frecency score is assigned to each
history entry and bookmark entry. After computing the score, it is cached.
When searching, the matched results are then sorted using this score. The
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remainder of this section introduces the existing frecency algorithm, while
the next one explains how it could be improved.

Frecency does not only take frequency and recency into account but also
uses other information, such as how the page was visited, if it is bookmarked
or if there are any redirects. It does this by looking at the latest visits to
the respective site. The value visit(v) of one single visit v is then defined by
how recent that visit was, scaled by the type of visit:

visit(v) = recency(v) * type(v)

Frecency scores have to be cached in order to allow an efficient ranking
while the user is typing. This means that the recency aspect has to be
modelled using time buckets. Otherwise the score would change all the time
and caching would not work. In the current Firefox implementation, there
are five time buckets. With this approach, the recency score only changes
when a visit changes time buckets:

(

100 if visited in the past 4 days

70  if visited in the past 14 days
recency(v) = ¢ 50  if visited in the past 31 days
30  if visited in the past 90 days

10  otherwise

Sites can be visited in many different ways. If the user typed the entire
link themselves or if it was a bookmarked link, we want to weight that
differently to visiting a page by clicking a link. Other visit types, like some
types of redirects, should not be worth any score at all. This is implemented
by scaling the recency score with a type weight:

1.2 if normal visit
2 if link was typed out
1.4 if link is bookmarked

0 otherwise

type(v) =

Now that a score can be assigned to every visit, the full points of a page
could be determined by summing up the scores of each visit to that page.
This approach has several disadvantages. For one, it would scale badly
because some pages are visited a lot. Additionally, user preferences change
over time and we might want to decrease the points in some situations.

Instead, we compute the average score of the last 10 visits. This score is
then scaled by the total number of visits. The full frecency score can now
be efficiently computed and changes in user behavior can be reflected fairly
quickly. Let S, be the set of all visits to page x, and let T}, be the set of
the 10 most recent of these. The set T, contains fewer than 10 elements if
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there were fewer visits to the respective page. The full frecency score is then
given by:

S
frecency(x) = |T$‘ * Z visit(v)
’ 2?’ 'UETIIJ

Note that this is a simplified version of the algorithm. There is some
additional logic for special cases, such as typing out bookmarks or different
kinds of redirects [102]. The description here only shows the essence of the
algorithm in a mathematical form.

7.2 Optimization

While frecency has been working fairly well in Firefox, the weights in the
algorithm were not decided on in a data-driven way. Essentially, they are
similar to magic numbers in software engineering [61]. It is hard to under-
stand why these exact numbers should be used. Even worse, there is no
evidence that they are optimal. Maybe different time buckets or different
weights would lead to much better results.

The Federated Learning implementation replaces these constants by vari-
ables that are optimized for. This is done for all numbers in the previous
section, except for two:

e number of considered visits (10): If this number increases too much,
it would be more expensive to compute frecency scores. The current
value represents a good trade-off between performance and using a
sufficient amount of information

e number of time buckets (5): Optimizing this would be hard with an
approach based on gradient descent since this value affects how many
variables there are. In the current implementation there was also no
easy way of changing this

There are 22 remaining weights in the full algorithm that are optimized
using Federated Learning. By doing this, more optimal values can be found,
or it can at least be confirmed that the current ones were already chosen
very well. It is also a safe way of experimenting with the Firefox URL bar.
The optimization process starts off from the current set of values and then
tries to improve them from there.

This process is based on the users’ interactions with the URL bar. They
are shown a set of suggestions that were ranked using our model. If they do
not choose the top one, our model can use this feedback as a signal that it
needs to change the weights to improve the rank of the selected item. Even
if the top item was chosen, we can teach our model to be more confident in
this decision.
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Using Federated Learning for this makes it straightforward to use the
underlying data in the optimization process. Alternative solutions that send
the browser history to a server would be too privacy-invasive.

To describe the optimization goal formally, a loss function, which is used
to evaluate how well the model works, needs to be defined. To this end, an
adapted form of the SVM loss [91] is used. A similar form of the SVM loss
has been used for pairwise ranking before [17]. This idea was transferred to
pointwise ranking for this implementation. In our pointwise ranking setting,
the loss function takes a set of items with their assigned score and the index
of the selected item. The optimization goal is that the selected item should
have the highest score.

But even if that was the case, our model might not have been too con-
fident in that decision. One example for this is the selected item having a
score of 100 and the second item having a score of 99.9. The model made
the correct prediction, but only barely so. To make sure it does a good job
in similar cases, we need to provide a signal to the model which shows that
it can still improve.

If the URL bar displayed suggestions for pages x1,...,Z, in that order
and suggestion x; was chosen, then the SVM loss for ranking is given by:

loss((Z1,...,%n),1) = Zmax(o, flxj) + A= f(x;))
J#
where f(x;) is the score assigned to page x; by the pointwise ranking model.

We iterate over all suggestions that were not chosen and check that their
score was smaller than the one of the selected page by at least a margin of A.
If not, an error is added. The full loss should be minimized. The margin A
is a hyperparameter that needs to be decided on before the optimization
process starts.

Figure 17 shows a visualization of this loss function. Each bar represents
a possible suggestion, with the selected one being shown in black. The y-axis
displays how many points the model assigned to the respective suggestion.
The hatched areas show the SVM loss. Everything above the selected sug-
gestion and below it by a margin of A adds to the full loss. Even though the
selected suggestion had the second highest score, four suggestions contribute
to the penalty.

Every time a user performs a history or bookmark search in the URL
bar, the SVM loss is computed based on that search. To compute an update,
we then try to move the weights a little bit into a direction where this loss
is minimized. The update corresponds to the gradient of the SVM loss with
respect to the weights in the frecency algorithm that we optimize for.

Gradients can be computed elegantly using computational graphs. By
using machine learning libraries, the function that we want to compute needs
to be constructed. Afterwards, automatic differentiation techniques can be
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Figure 17: A visualization of the SVM loss when adapted for ranking

used to obtain the gradient. The initial prototyping was based on this idea.
The major advantage is that it is very easy to change the model architecture.

The current frecency implementation in Firefox, however, is written in
C++, while the client-side part of this experiment works using JavaScript.
To launch the experiment, the Firefox SHIELD mechanism was used [104].
SHIELD allows directly sending new code to Firefox clients, without having
to go through major version releases which only happen roughly every six
weeks. To be able to do this, SHIELD experiments have to be written in
JavaScript and can only make very limited use of C++ components.

This made it hard to add a computational graph to the existing C++
frecency module. Reimplementing the full algorithm in JavaScript seemed
like a bad idea. Performance-wise there would be a huge penalty and it is
hard to reconstruct the way the current implementation handles all the edge
cases.

Instead, a simple finite-difference technique was used. To compute the
gradient estimate of a function g at the point z, we check the difference of
values close to that point, given by a very small e:

(x+e)—g(x—ce)
2x€

g
g (x) =

This formula is very close to the definition of derivatives. To compute
the gradient of a multivariate function, this process is then performed by
iterating through all dimensions independently. In each dimension, the value
is changed by € in the two directions, while all other values stay constant.
The resulting vector is our gradient estimate.
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This method is both easy to understand and implement. It is simple
to change the frecency weights from JavaScript in our experiment without
changing the actual algorithm. For large models there is a performance
penalty since g needs to be evaluated two times for every dimension. In m
dimensions, O(m) function evaluations are required, as opposed to O(1) for
computational graphs. But since we only work in 22 dimensions here, this
is not a major problem. However, numerical stability can suffer when using
this method with a very small e.

The finite-difference method also allows us to essentially treat frecency
as a black box. Our model does not need to know about all edge cases. It is
sufficient for the model to see how different decisions affect the output and
the loss.

The client-side part described so far is part of Firefox itself. This part
of the implementation observes how users are interacting with the URL
bar and retrieves all necessary information to compute the gradient. That
update and some statistics about how well the model is doing are then sent
to a Mozilla server. This works by using Mozilla’s telemetry [99], a system
designed to send information back to servers. It is a well-designed system
with clear rules about what can be collected. There is a lot of infrastructure
around using it and dealing with the data on the server.

On the server-side, all messages sent by clients are stored in a Par-
quet [95] data store. This is a special column-oriented database [1]. In
column-oriented data stores, each column is stored in a contiguous sequence
of memory. This is in contrast to row-oriented databases, most SQL sys-
tems, where data is stored by rows. Column-oriented databases provide
major performance improvements for big data applications because data in
the same column can be aggregated more quickly. This is useful in our case
as we are interested in computing the average update quickly at the end of
each iteration.

The Spark [90] MapReduce system is used to periodically compute new
updates. Every 30 minutes, a Spark job reads the new updates, averages
them and performs the optimization step. This is done in a MapReduce
fashion across a cluster of six to 10 nodes, depending on how many updates
users sent. The average update is then given to an optimizer and applied
to the model. The resulting model is published and fetched by clients.
Clients retrieve the model directly after a new version was published and
additionally when Firefox is first opened.

It is possible to compute the average update in an online fashion, without
loading much data into memory [85]. The naive solution of computing the
full sum and then dividing it by the number of updates works badly because
the sum can be large. Numerical stability can thus be lost easily. Instead,
the average can be computed by iteratively updating the average of the
updates that were considered so far. Let H; be the average after i updates
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were taken into account.
Hy = H;

The average when taking into account one additional update, can then
be computed by: _ .
R L
The first part of the sum essentially scales the previous average back to the
full previous sum. Afterwards, the new average is computed. Of course,
this does not help with numerical stability, so the above formula can be
transformed further:

Hi =

i 1
H.. . = H, H:
= oyt i
_ 1 1 —
- H +— H.,+— —_H
I e
 H -
:H¢+M
7+ 1

The final formula gives us a recurrence relation that can be used to
compute the next average based on the current one. It is more numerically
stable because we avoid working with huge numbers. The new average is
given by the old average in addition to a small changed based on the new
element.

This streaming algorithm can be used to compute the next average up-
date while data is coming in. For this thesis, it was important to store
all updates persistently so that they could be analyzed later. If this is not
necessary, then the updates can directly be discarded after the average was
updated using this algorithm.

After the average update was computed, it is given to an optimizer. Since
no data was directly collected, it is hard to tune the optimizer beforehand.
Even values like the learning rate are hard to set since we have no information
about the gradient magnitude. Trying out many different optimizers in
production would take a substantial amount of time and could lead to a bad
user experience. Directly collecting some data to decide on this beforehand
conflicts with the goal of doing machine learning in a privacy-respecting way.

This problem was tackled in two ways. First of all, simulations were
created which use a made-up dataset that should be similar to the one we
expected to see in production [98]. This allowed simpler experimenting with
different optimizers and helped with making early design decisions. It also
made it possible to quickly iterate on ideas to see if they could work.

The second way of dealing with the fact that it is hard to set hyperpa-
rameters was using the RProp optimizer. Because it ignores the gradient
magnitude, it is straightforward to make it work with different kinds of data
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that users might generate. The learning rate is automatically adapted, so
the initial one does not have to be perfect.

One additional advantage in our case was that RProp updates are very
interpretable. RProp makes it easy to understand how weights can change
in a given iteration. By setting the hyperparameters accordingly, all updates
are at most 3. This means that the frecency weights cannot explode after one
iteration because one gradient magnitude was too large. When looking at
the existing weights, this still allows the optimization process to significantly
change all weights in a dozen iterations. The initial learning rates were 2
for recency weights and 0.02 for type weights, the other hyperparameters
a=2,08=0.6.

After RProp produces an update, two additional constraints are en-
forced:

1. Weights have to be nonnegative. This means visiting a site cannot
directly have a negative effect

2. The time buckets have to be sorted by the last day they take into
account. In other words, the (i + 1)-th time bucket needs to contain
older visits than the i-th time bucket. This is to ensure that the client-
side frecency implementation continues to work

These essentially act as safeguards to make sure that user experience
does not degrade too much if the optimization process fails. The constraints
are enforced by trimming the update magnitude if necessary.

Additionally, the optimization process was designed in a way that allows
it to deal with integer updates. Some of the weights, like the number of days
for time buckets, have to be integers. To allow for discrete optimization,
updates are computed with ¢ = 1. The RProp optimizer then makes sure
that the final updates are rounded respectively.

7.3 Simulations

To check if all the ideas presented above could work and to quickly iterate
on them, a simulation [98] was created before developing the actual system
for Firefox. In this simulation, the users and the server are represented by
objects. To communicate with clients, the server simply calls methods of
the respective objects. This makes it possible to simulate an entire Feder-
ated Learning optimization process in little time, without having to wait for
network connections.

To tune the process of computing weight updates, both an approach
based on computational graphs and the finite-difference method were imple-
mented. This allowed evaluating whether the finite-difference method can
lead to a similar accuracy as the analytical method based on computational
graphs. The simulated server performs exactly the same steps as the web
server that is queried by real Firefox users.
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The only major part that differs between the simulation and the actual
implementation is what data is used for training. Since no data should be
collected, the simulation could not be based on real data from users. Instead,
a mock dataset was created. This dataset was designed to resemble the data
we expected users to generate.

Since there was no way of knowing how the data is actually distributed,
several assumptions had to be made. How recently websites were visited
was initially modelled using a uniform distribution over the past 180 days.
Afterwards, the distribution was slightly skewed towards more recent visits.
Websites are assumed to be visited by clicking a link 60% of the time, by
typing out a link 20% of the time and by using a bookmark 20% of the time.
While the numbers for typed out links and bookmarks seem high, they made
it easier to guarantee that more diverse data was sampled by clients.

To decide on how frequently websites are visited, an exponential distri-
bution with A = 7 is used. This mean that there are many websites that
are only visited few times and few websites that are visited a lot. For sim-
plicity’s sake, recency, type and frequency are assumed to be independent
of each other. The number of websites that match a query is sampled from
a normal distribution with p = 4,02 = 10. To ensure that individual users
generate different data, they fix different random seeds.

To model what suggestion a user clicks on, the existing frecency algo-
rithm is used to compute a score for each suggestion. Random noise, sampled
from a normal distribution with p = 0,02 = 30, is then added to the score.
The dataset assumes that the suggestion with the highest score is selected.
By using the existing frecency algorithm with some noise, it is easy to see
if the simulation finds useful weights, as they should be similar to the ones
of the current algorithm. The initial weights of the model in the simulation
are configured to differ substantially from the ones we expect to find.

To supervise the model’s performance, the loss and accuracy are checked.
In this case, accuracy refers to the portion of queries where the model as-
signed the highest score to the suggestion that the dataset also considered to
be the most important one. The difference in absolute scores is not impor-
tant as long as both model and dataset agree on which item the user clicks
on. This metric differs to the ones used in the actual Firefox implementation
because more information related to the user interface is available there.

It is worth noting that this dataset is likely to differ substantially from
the data generated by real users. It is difficult to perfectly describe how the
data looks like, without having seen any of it. Still, creating the dataset
allowed for quick prototyping, which made it much easier to make many
design decisions.
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7.4 Study Design

The client-side part of the experiment was shipped to 25% of Firefox Beta,
which corresponds to roughly 500,000 daily active users. Since it takes some
time to roll out updates, only a part of the users was enrolled in the study
before the optimization process was completed.

Users were split into three groups:

1. treatment: The full study was shipped to these users. They compute
updates, send them to the server, and start using a new model every
30 minutes

2. control: This group is solely observatory. No behavior in the URL bar
actually changes. We are just collecting statistics for comparison to
treatment

3. control-no-decay: Firefox decays frecency scores over time. Qur treat-
ment group loses this effect because we are recomputing scores every
30 minutes. To check if the decay is actually useful, this group has no
decay effect but uses the same original algorithm otherwise

60% of users were assigned to the treatment group and 20% to both
control groups respectively.

The criteria for a successful experiment were defined before anything was
rolled out to users. This was done to ensure that everything was done in a
statistically sound way. Concretely, there were three goals:

1. Do not significantly decrease the quality of the existing Firefox URL
bar

2. Successfully train a model using Federated Learning

3. Stretch goal: Improve the Firefox URL bar

Actually improving the quality of the ranking for users was only a stretch
goal. The primary goal of the study was to see if it is possible to make the
distributed optimization process work. Kssentially this meant consistently
decreasing the loss of the model. At the same time, the quality of the URL
bar should not decrease. The reason for distinguishing between these is that
our optimization goal could have been misaligned. It is possible to minimize
some loss function without actually improving the experience for the user.

To measure the quality of history and bookmark suggestions in the URL
bar, two metrics were used. First, the number of typed characters that
a user types before selecting a result should be minimized. Users should
have to type as few characters as possible to find what they are looking for.
Secondly, the rank of the suggestion that is selected is considered. The item
that is selected should be as far on top of the list as possible. The top most
item has a rank of 0. Both of these metrics should thus be minimized.
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If the quality of any of these two metrics increases, the stretch goal is
considered to be reached. Prior to the study, it was unclear if both metrics
could be improved. One theory for this was that maybe users always type
a similar number of characters before choosing one of the suggestions. The
alternative could also be possible: Users always type until the first suggestion
displayed is the one they were looking for. For this reason, only one of the
two metrics needs to be improved. The first goal meant that both metrics
should not get significantly worse.

An important part of designing studies is a power analysis [25, 27]. It
tries to answer the question of how many people are required to get statis-
tically significant results in an experiment. If too few people are enrolled,
the results will contain too much random noise to rely on them. If a lot of
people are enrolled, we can be confident in the results but the cost of the
study will be much higher.

In the case of Firefox, this cost consists of two factors. For one, if our
study enrolls most Firefox users, we would block other studies that want
to experiment with changes in the URL bar. Another reason is that the
experiment might break parts of Firefox. If this happens, it should not
affect unnecessarily many people.

For this reason, a power analysis was performed to decide on the sam-
ple sizes for treatment and both control groups. Concretely, this analysis
consisted of two parts:

1. How many users do we need to have enough data to train a model?
(relevant for treatment)

2. How many users do we need to show certain effects confidently?
(relevant for treatment and control)

The first part was answered using simulations [98]. By using an adapted
form of the simulation that was used to decide on optimization hyperpa-
rameters, it was possible to get some idea on how many users were needed.
Existing statistics from Mozilla about search queries were helpful for this,
as they showed how many history and bookmark searches users generally
perform every day [100].

The second part of the power analysis was tackled using classical hypoth-
esis testing. There was no prior data on the number of typed characters,
so no power analysis was possible for this metric. To analyze the rank of
the selected item, the Mann- Whitney-U test [60, 62] was used since the data
was not following a distribution that allows for parametric tests. The Mann-
Whitney-U test is non-parametric, which means that it does not make any
assumptions about the underlying distribution of the data.

These tests concluded that about 60,000 users per group were necessary
to show sufficient effects. Treatment required roughly 200,000 daily searches
to get enough data for the model. This analysis turned out to be helpful
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since it showed that the control groups could be smaller than the treatment
group.

7.5 Analyzing the Results

Over the course of the experiment, 723,581 users were enrolled in the study.
The model was fetched 58,399,063 times from the server. 360,518 users
participated in sending updates and evaluation data to the server, accounting
for a total of 5,748,814 messages. The optimization phase of the experiment
consisted of 137 iterations of 30 minutes each, or just under three days. In
this phase, 186,315 users sent pings to help in the training process.

A separate phase of purely evaluating the model was started afterwards
and took a total of 10 days. In this phase, 306,200 users send 3,674,063
pings, which included statistics detailing how well the model worked for
them. Since all these users were assigned to treatment or control groups,
the new model can be compared well to the old one that was used by the
control groups. Some users were enrolled but did not help with optimization
or evaluation because they performed no history and bookmark searches.

During the optimization process, the loss of the model was supervised
to check how well the training was going. This was done by using the ideas
from Section 3.4. Instead of additionally splitting users in treatment into
training and validation sets, their data was first used to compute the loss
and only afterwards used to compute the next model.

Figure 18 shows how the loss changed over time, across all three study
variations. The loss of the treatment group goes down continuously. This
shows that the optimization process generally worked. After 40 iterations,
less than one day of optimization, the loss of the treatment group is always
below the loss of the control groups. The second goal of the study was thus
reached.
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Figure 18: The reported loss over time

Since only a small portion of users reports back in a given iteration,
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the loss evaluation data can be very noisy. If the model of an iteration is
performing worse than the one of the previous iteration, it could be purely
because not enough users reported back, which lead to inaccurate estimates.
The loss is also sensible to outliers. It can grow very large just because a
few users did not select a suggestion with a large frecency score. While it is
not desirable to outright ignore outliers, a less noisy plot can be helpful for
interpreting the results of the first few iterations.

Figure 19 shows a plot of a smooth version of the loss. This is generated
by plotting the average loss of the last five iterations for every iteration.
Now it is more clearly visible that the treatment group improved over the
other two groups from an early point on.
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Figure 19: A smooth version of the reported loss over time

The Federated Learning protocol used in this experiment slightly devi-
ated from the one introduced in Section 1.3. Instead of sampling K users
per iteration, users were assigned to a study variation once. All users from
the treatment group could then help train the model in every iteration. This
made sense because fewer people had to be enrolled in the study this way.

To understand why loss estimates can be noisy, it is helpful to look at
the number of pings over time. Figure 20 visualizes the number of different
reports in the various iterations. The plot shows that Firefox Beta users are
more active during certain parts of the day. Since Firefox Beta is strongly
skewed towards users from Asia, this effect can be severe. The most active
iterations have around four times more users than the ones with the least
activity.
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Figure 20: The number of pings sent by clients over time

In retrospective, the Federated Learning protocol used was too simple.
It could be improved by dynamically determining the iteration length de-
pending on how many updates were sent to the server so far. This way, there
would be no iterations with very few updates. Furthermore, there could be
more iterations during periods with many active users, allowing for a faster
optimization process.

H mean number of typed characters ‘ mean selected rank

treatment 3.6747 0.37435
control 4.26239 0.35350
control-no-decay 4.24125 0.35771

Figure 21: Results of the evaluation phase

After the optimization process ended, an evaluation phase began to de-
termine how well the new model works. This is equivalent to the testing
phase in machine learning. The model is evaluated on new data that was
not used for training or validation.

Figure 21 shows the results. On average, users in the treatment group
type about half a character less to find what they are looking for. This
is a strong improvement over both control groups. However, users in the
treatment group also choose suggestions that were ranked slightly worse.

To determine if these changes are statistically significant, hypothesis
testing has to be used. Before analyzing the data, a significance level of 5%
was set. Since data from both metrics does not follow any distributions that
allow for parametric tests, the Mann-Whitney U test is used again. The
null hypothesis states that there was no real difference between the study
variations and that all data is actually sampled from the same underlying
distribution. This null hypothesis is tested using the Mann-Whityney U
test. The resulting p-values are displayed in Figure 22.
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groups compared mean number of typed characters
treatment vs. control 2.11938 % 10~ 10°
treatment vs. control-no-decay 1.26503 % 10~

control vs. control-no-decay 0.01019
groups compared mean selected rank

treatment vs. control 2.26015 * 10~ 118
treatment vs. control-no-decay 1.02944 % 10~ 72
control vs. control-no-decay 1.41092 % 107

Figure 22: p-values when comparing the results of different study variations

P-values describe the probability of seeing an effect that is at least as
strong as the one observed just by pure chance. Since six tests are performed,
the significance level should be corrected so that it is less likely to incorrectly
reject a null hypothesis just because many tests were done. The Bonferroni
correction [66, 25] divides the significance level by the number of performed
tests. In our case, we use 0.05/6 as the new significance level.

All of the changes observed in the treatment group are highly statistically
significant since the p-values are well below the significance level. Because
the metrics differ strongly between the treatment and control groups and
due to the large sample size of 3,674,063 data points, we can reject the null
hypothesis with high confidence when comparing treatment to the control
groups. We can conclude that there is sufficient statistical evidence that
the observed effects in the treatment group were not just by pure chance.
The only null hypothesis we fail to reject is that there is a difference between
control and control-no-decay when checking the number of typed characters.
The p-value is above the Bonferroni-corrected significance level here.

From a user perspective, it is not clear if these changes improve the
user experience. While users now have to type a good amount less, they
also selected suggestions that were not on top of the list more often. One
potential explanation for this could be that the items they were looking for
are displayed earlier in the suggestion list. Since they spent less time typing,
they might be willing to take the time to select an item that is not the top
ranked one.

It is hard to determine purely based on these two metrics if this change is
good, since it is not clear how their importance should be weighted. Instead,
surveying users would be required to decide if goal 3 was met. But even if
users are not satisfied with the new model, the Federated Learning system
is still highly useful. Since the optimization process worked, one would only
need to find a loss function that correlates more closely with what users
want. We consider goal 1 to be reached since at least one of the metrics
improved.
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Figure 23: Number of typed characters over time (smoothed results)

Figure 23 and 24 show how these two metrics developed over time during
the optimization process. In the early stages of the training, both metrics
behaved similarly across all study variations. The number of typed charac-
ters in treatment significantly went down after iteration 60. When looking
at the rank of the selected item, treatment generally performed worse than
the control groups from about iteration 40 on. It is worth noting that these
results are more noisy than the final evaluation data because there were
much fewer users in any given iteration of the optimization process.
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Figure 24: Selected rank over time (smoothed results)

To analyze how many users were really required in the optimization
process, it is interesting to check the quality of update estimates. To this
end, a simulation based on the actual updates was performed where every
iteration could only use 2,000 update reports. These 2,000 updates were
randomly sampled from the ones received in that iteration. Because of
the randomness involved, this process was repeated 50 times. Since these
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simulations were highly computationally expensive, it was very useful that
the data was stored in Parquet and could easily be queried using MapReduce
Spark jobs.

Figure 25 shows the average difference between the new estimate and the
actual update, as well as the standard deviation. The mean is displayed as a
dot, while the standard deviation is shown as a bar. To compute a distance
between the two update vectors, the Li-distance is used. As time goes on,
the distance decreases. From iteration 95 on, it is possible to compute good
update estimates based on only the 2,000 updates. This shows that more
users are necessary in the earlier iterations of the optimization process. In
the beginning, there is more variance in what updates users might propose.
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Figure 25: Mean and standard deviation of difference in update quality when
only using 2,000 updates

Since this study was based on the RProp optimizer, these updates can be
analyzed in more detail. Concretely, only the sign of the update is important
for RProp. Figure 26 shows the same simulation but only the signs of the
updates are used. Now, even in the last few iterations, the results are not
that stable. This shows that the number of required users heavily depends
on the exact optimizer that is being used. Just reducing the variance in
gradient magnitudes by sampling more users is not useful for RProp as long
as this does not improve the estimate of the signs.
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Figure 26: Mean and standard deviation of difference in the signs of the
update when only using 2,000 updates

Estimating the loss well is also important since it is supervised during
the training process. Figure 27 shows the same simulation when checking
the loss. As time goes on, it becomes much easier to estimate the loss. The
standard deviation decreases strongly. At least partly, this is because the
loss itself is reduced over time. Since more clients report a loss of 0 towards
the end, the loss becomes easier to estimate, even when only using a subset
of clients.
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Figure 27: Mean and standard deviation of difference in loss quality when
only using 2,000 updates

We can conclude that it makes sense to set iteration lengths more dy-
namically in this experiment. For one, this would allow making better use
of data during time periods of strong user activity. Furthermore, iteration
lengths could be increased or decreased depending on how stable the current
update and loss are.
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8 Conclusion

This thesis introduced Federated Learning and gave an overview over the
various subareas related to it. Privacy concerns are the primary motivation
behind this approach to machine learning. A lot of data on consumer devices
is considered private and should not be sent to a server. Federated Learning
allows training a model on this data by first processing it locally. Only
weight updates derived using the data are sent to a server.

It was shown that this optimization process can compute unbiased gradi-
ent estimates, similar to mini-batch gradient descent. However, it can take
a long time until individual iterations are completed since the server needs
to wait until users can respond with updates. To decrease convergence time,
several optimization-related strategies were introduced.

A direct implementation of Federated Learning can require a lot of com-
munication between clients and the server. To make Federated Learning
scale efficiently with the size of the model, special compression techniques
were discussed. It was shown how they can be used to make uploading data
as fast as downloading.

To ensure that Federated Learning is truly better for privacy, Differen-
tial Privacy techniques were discussed. By bounding how much individuals
can influence the model weights and by randomizing updates, we can quan-
tify how difficult it is to make conclusions about individuals. While this
approach does come at a large computational cost, it is interesting from
a theoretical perspective because it shows that models can be trained in
completely privacy-respecting ways.

Furthermore, new strategies for personalizing models in Federated Learn-
ing were proposed. A simple approach based on Transfer Learning makes
it possible to customize models locally. Through a more complex architec-
ture, clients can continue to help train the central model while also locally
personalizing it.

To evaluate how well Federated Learning can work in a real application,
an implementation for Mozilla Firefox was developed. A model was trained
on the data of over a million URL bar searches performed by Firefox users.
Since the loss consistently decreased over the iterations, this shows that the
optimization process can work well in practice.

For future work, it still remains to be shown that more advanced tech-
niques such as differentially-private Federated Learning and the personaliza-
tion approaches can work in practice. The model implemented for Firefox
had to be simple to make it possible to develop the entire system during the
work behind this thesis. Literature about training more complex models
outside of simulations is still missing.

While differentially-private Federated Learning has theoretical guaran-
tees for the level of privacy, the additional computational cost is huge. Future
research could focus on making it more feasible to use these techniques.

68



8 Conclusion Florian Hartmann

One area of research that is outside the scope of this thesis is cryptog-
raphy. By using encryption techniques, it can be ensured that the server
can only read updates from users once a certain number of them were re-
ceived [14, 42]. These methods make man-in-the-middle attacks much more
difficult.

While there is future work left, this thesis showed that Federated Learn-
ing can be useful for training models in strongly privacy-respecting ways.
This is especially valuable to organizations that do not want to collect cer-
tain kinds of data but that still want to make use of machine learning tech-
niques. By training on data that could otherwise not be used, it is possible
to fit new kinds of models and to build more intelligent applications.
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